001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.collections4.bloomfilter;
018
019import java.util.Objects;
020import java.util.function.IntPredicate;
021
022/**
023 * A Hasher that implements combinatorial hashing as described by
024 * <a href="https://www.eecs.harvard.edu/~michaelm/postscripts/tr-02-05.pdf">Krisch and Mitzenmacher</a> using the enhanced double hashing technique
025 * described in the wikipedia article  <a href="https://en.wikipedia.org/wiki/Double_hashing#Enhanced_double_hashing">Double Hashing</a>.
026 * <p>
027 * Common use for this hasher is to generate bit indices from a byte array output of a hashing
028 * or MessageDigest algorithm.</p>
029 *
030 * <h2>Thoughts on the hasher input</h2>
031 *
032 *<p>Note that it is worse to create smaller numbers for the {@code initial} and {@code increment}. If the {@code initial} is smaller than
033 * the number of bits in a filter then hashing will start at the same point when the size increases; likewise the {@code increment} will be
034 * the same if it remains smaller than the number of bits in the filter and so the first few indices will be the same if the number of bits
035 * changes (but is still larger than the {@code increment}). In a worse case scenario with small {@code initial} and {@code increment} for
036 * all items, hashing may not create indices that fill the full region within a much larger filter. Imagine hashers created with {@code initial}
037 * and {@code increment} values less than 255 with a filter size of 30000 and number of hash functions as 5. Ignoring the
038 * tetrahedral addition (a maximum of 20 for k=5) the max index is 255 * 4 + 255 = 1275, this covers 4.25% of the filter. This also
039 * ignores the negative wrapping but the behavior is the same, some bits cannot be reached.
040 * </p><p>
041 * So this needs to be avoided as the filter probability assumptions will be void. If the {@code initial} and {@code increment} are larger
042 * than the number of bits then the modulus will create a 'random' position and increment within the size.
043 * </p>
044 *
045 * @since 4.5
046 */
047public class EnhancedDoubleHasher implements Hasher {
048
049    /**
050     * Convert bytes to big-endian long filling with zero bytes as necessary..
051     * @param byteArray the byte array to extract the values from.
052     * @param offset the offset to start extraction from.
053     * @param len the length of the extraction, may be longer than 8.
054     * @return
055     */
056    private static long toLong(final byte[] byteArray, final int offset, final int len) {
057        long val = 0;
058        int shift = Long.SIZE;
059        final int end = offset + Math.min(len, Long.BYTES);
060        for (int i = offset; i < end; i++) {
061            shift -= Byte.SIZE;
062            val |= (long) (byteArray[i] & 0xFF) << shift;
063        }
064        return val;
065    }
066
067    /**
068     * The initial hash value.
069     */
070    private final long initial;
071
072    /**
073     * The value to increment the hash value by.
074     */
075    private final long increment;
076
077    /**
078     * Constructs the EnhancedDoubleHasher from a byte array.
079     * <p>
080     * This method simplifies the conversion from a Digest or hasher algorithm output
081     * to the two values used by the EnhancedDoubleHasher.</p>
082     * <p>The byte array is split in 2 and the first 8 bytes of each half are interpreted as a big-endian long value.
083     * Excess bytes are ignored.
084     * If there are fewer than 16 bytes the following conversions are made.
085     *</p>
086     * <ol>
087     * <li>If there is an odd number of bytes the excess byte is assigned to the increment value</li>
088     * <li>The bytes alloted are read in big-endian order any byte not populated is set to zero.</li>
089     * </ol>
090     * <p>
091     * This ensures that small arrays generate the largest possible increment and initial values.
092     * </p>
093     * @param buffer the buffer to extract the longs from.
094     * @throws IllegalArgumentException is buffer length is zero.
095     */
096    public EnhancedDoubleHasher(final byte[] buffer) {
097        if (buffer.length == 0) {
098            throw new IllegalArgumentException("buffer length must be greater than 0");
099        }
100        // divide by 2
101        final int segment = buffer.length / 2;
102        this.initial = toLong(buffer, 0, segment);
103        this.increment = toLong(buffer, segment, buffer.length - segment);
104    }
105
106    /**
107     * Constructs the EnhancedDoubleHasher from 2 longs. The long values will be interpreted as unsigned values.
108     * @param initial The initial value for the hasher.
109     * @param increment The value to increment the hash by on each iteration.
110     */
111    public EnhancedDoubleHasher(final long initial, final long increment) {
112        this.initial = initial;
113        this.increment = increment;
114    }
115
116    /**
117     * Gets the increment value for the hash calculation.
118     * @return the increment value for the hash calculation.
119     */
120    long getIncrement() {
121        return increment;
122    }
123
124    /**
125     * Gets the initial value for the hash calculation.
126     * @return the initial value for the hash calculation.
127     */
128    long getInitial() {
129        return initial;
130    }
131
132    @Override
133    public IndexProducer indices(final Shape shape) {
134        Objects.requireNonNull(shape, "shape");
135
136        return new IndexProducer() {
137
138            @Override
139            public int[] asIndexArray() {
140                final int[] result = new int[shape.getNumberOfHashFunctions()];
141                final int[] idx = new int[1];
142
143                // This method needs to return duplicate indices
144
145                forEachIndex(i -> {
146                    result[idx[0]++] = i;
147                    return true;
148                });
149                return result;
150            }
151
152            @Override
153            public boolean forEachIndex(final IntPredicate consumer) {
154                Objects.requireNonNull(consumer, "consumer");
155                final int bits = shape.getNumberOfBits();
156                // Enhanced double hashing:
157                // hash[i] = ( h1(x) + i*h2(x) + (i*i*i - i)/6 ) mod bits
158                // See: https://en.wikipedia.org/wiki/Double_hashing#Enhanced_double_hashing
159                //
160                // Essentially this is computing a wrapped modulus from a start point and an
161                // increment and an additional term as a tetrahedral number.
162                // You only need two modulus operations before the loop. Within the loop
163                // the modulus is handled using the sign bit to detect wrapping to ensure:
164                // 0 <= index < bits
165                // 0 <= inc < bits
166                // The final hash is:
167                // hash[i] = ( h1(x) - i*h2(x) - (i*i*i - i)/6 ) wrapped in [0, bits)
168
169                int index = BitMap.mod(initial, bits);
170                int inc = BitMap.mod(increment, bits);
171
172                final int k = shape.getNumberOfHashFunctions();
173                if (k > bits) {
174                    for (int j = k; j > 0;) {
175                        // handle k > bits
176                        final int block = Math.min(j, bits);
177                        j -= block;
178                        for (int i = 0; i < block; i++) {
179                            if (!consumer.test(index)) {
180                                return false;
181                            }
182                            // Update index and handle wrapping
183                            index -= inc;
184                            index = index < 0 ? index + bits : index;
185
186                            // Incorporate the counter into the increment to create a
187                            // tetrahedral number additional term, and handle wrapping.
188                            inc -= i;
189                            inc = inc < 0 ? inc + bits : inc;
190                        }
191                    }
192                } else {
193                    for (int i = 0; i < k; i++) {
194                        if (!consumer.test(index)) {
195                            return false;
196                        }
197                        // Update index and handle wrapping
198                        index -= inc;
199                        index = index < 0 ? index + bits : index;
200
201                        // Incorporate the counter into the increment to create a
202                        // tetrahedral number additional term, and handle wrapping.
203                        inc -= i;
204                        inc = inc < 0 ? inc + bits : inc;
205                    }
206                }
207                return true;
208            }
209        };
210    }
211}