001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.collections4;
018
019import java.util.AbstractList;
020import java.util.ArrayList;
021import java.util.Collection;
022import java.util.Collections;
023import java.util.HashSet;
024import java.util.Iterator;
025import java.util.List;
026
027import org.apache.commons.collections4.bag.HashBag;
028import org.apache.commons.collections4.functors.DefaultEquator;
029import org.apache.commons.collections4.list.FixedSizeList;
030import org.apache.commons.collections4.list.LazyList;
031import org.apache.commons.collections4.list.PredicatedList;
032import org.apache.commons.collections4.list.TransformedList;
033import org.apache.commons.collections4.list.UnmodifiableList;
034import org.apache.commons.collections4.sequence.CommandVisitor;
035import org.apache.commons.collections4.sequence.EditScript;
036import org.apache.commons.collections4.sequence.SequencesComparator;
037
038/**
039 * Provides utility methods and decorators for {@link List} instances.
040 *
041 * @since 1.0
042 * @version $Id: ListUtils.html 972421 2015-11-14 20:00:04Z tn $
043 */
044public class ListUtils {
045
046    /**
047     * <code>ListUtils</code> should not normally be instantiated.
048     */
049    private ListUtils() {}
050
051    //-----------------------------------------------------------------------
052
053    /**
054     * Returns an immutable empty list if the argument is <code>null</code>,
055     * or the argument itself otherwise.
056     *
057     * @param <T> the element type
058     * @param list the list, possibly <code>null</code>
059     * @return an empty list if the argument is <code>null</code>
060     */
061    public static <T> List<T> emptyIfNull(final List<T> list) {
062        return list == null ? Collections.<T>emptyList() : list;
063    }
064
065    /**
066     * Returns either the passed in list, or if the list is {@code null},
067     * the value of {@code defaultList}.
068     *
069     * @param <T> the element type
070     * @param list  the list, possibly {@code null}
071     * @param defaultList  the returned values if list is {@code null}
072     * @return an empty list if the argument is <code>null</code>
073     * @since 4.0
074     */
075    public static <T> List<T> defaultIfNull(final List<T> list, final List<T> defaultList) {
076        return list == null ? defaultList : list;
077    }
078
079    /**
080     * Returns a new list containing all elements that are contained in
081     * both given lists.
082     *
083     * @param <E>  the element type
084     * @param list1  the first list
085     * @param list2  the second list
086     * @return  the intersection of those two lists
087     * @throws NullPointerException if either list is null
088     */
089    public static <E> List<E> intersection(final List<? extends E> list1, final List<? extends E> list2) {
090        final List<E> result = new ArrayList<E>();
091
092        List<? extends E> smaller = list1;
093        List<? extends E> larger = list2;
094        if (list1.size() > list2.size()) {
095            smaller = list2;
096            larger = list1;
097        }
098
099        final HashSet<E> hashSet = new HashSet<E>(smaller);
100
101        for (final E e : larger) {
102            if (hashSet.contains(e)) {
103                result.add(e);
104                hashSet.remove(e);
105            }
106        }
107        return result;
108    }
109
110    /**
111     * Subtracts all elements in the second list from the first list,
112     * placing the results in a new list.
113     * <p>
114     * This differs from {@link List#removeAll(Collection)} in that
115     * cardinality is respected; if <Code>list1</Code> contains two
116     * occurrences of <Code>null</Code> and <Code>list2</Code> only
117     * contains one occurrence, then the returned list will still contain
118     * one occurrence.
119     *
120     * @param <E>  the element type
121     * @param list1  the list to subtract from
122     * @param list2  the list to subtract
123     * @return  a new list containing the results
124     * @throws NullPointerException if either list is null
125     */
126    public static <E> List<E> subtract(final List<E> list1, final List<? extends E> list2) {
127        final ArrayList<E> result = new ArrayList<E>();
128        final HashBag<E> bag = new HashBag<E>(list2);
129        for (final E e : list1) {
130            if (!bag.remove(e, 1)) {
131                result.add(e);
132            }
133        }
134        return result;
135    }
136
137    /**
138     * Returns the sum of the given lists.  This is their intersection
139     * subtracted from their union.
140     *
141     * @param <E>  the element type
142     * @param list1  the first list
143     * @param list2  the second list
144     * @return  a new list containing the sum of those lists
145     * @throws NullPointerException if either list is null
146     */
147    public static <E> List<E> sum(final List<? extends E> list1, final List<? extends E> list2) {
148        return subtract(union(list1, list2), intersection(list1, list2));
149    }
150
151    /**
152     * Returns a new list containing the second list appended to the
153     * first list.  The {@link List#addAll(Collection)} operation is
154     * used to append the two given lists into a new list.
155     *
156     * @param <E>  the element type
157     * @param list1  the first list
158     * @param list2  the second list
159     * @return  a new list containing the union of those lists
160     * @throws NullPointerException if either list is null
161     */
162    public static <E> List<E> union(final List<? extends E> list1, final List<? extends E> list2) {
163        final ArrayList<E> result = new ArrayList<E>(list1);
164        result.addAll(list2);
165        return result;
166    }
167
168    /**
169     * Selects all elements from input collection which match the given
170     * predicate into an output list.
171     * <p>
172     * A <code>null</code> predicate matches no elements.
173     *
174     * @param <E>  the element type
175     * @param inputCollection
176     *            the collection to get the input from, may not be null
177     * @param predicate
178     *            the predicate to use, may be null
179     * @return the elements matching the predicate (new list)
180     * @throws NullPointerException
181     *             if the input list is null
182     *
183     * @since 4.0
184     * @see CollectionUtils#select(Iterable, Predicate)
185     */
186    public static <E> List<E> select(final Collection<? extends E> inputCollection,
187            final Predicate<? super E> predicate) {
188        return CollectionUtils.select(inputCollection, predicate, new ArrayList<E>(inputCollection.size()));
189    }
190
191    /**
192     * Selects all elements from inputCollection which don't match the given
193     * predicate into an output collection.
194     * <p>
195     * If the input predicate is <code>null</code>, the result is an empty
196     * list.
197     *
198     * @param <E>  the element type
199     * @param inputCollection
200     *            the collection to get the input from, may not be null
201     * @param predicate
202     *            the predicate to use, may be null
203     * @return the elements <b>not</b> matching the predicate (new list)
204     * @throws NullPointerException
205     *             if the input collection is null
206     *
207     * @since 4.0
208     * @see CollectionUtils#selectRejected(Iterable, Predicate)
209     */
210    public static <E> List<E> selectRejected(final Collection<? extends E> inputCollection,
211            final Predicate<? super E> predicate) {
212        return CollectionUtils.selectRejected(inputCollection, predicate, new ArrayList<E>(inputCollection.size()));
213    }
214
215    /**
216     * Tests two lists for value-equality as per the equality contract in
217     * {@link java.util.List#equals(java.lang.Object)}.
218     * <p>
219     * This method is useful for implementing <code>List</code> when you cannot
220     * extend AbstractList. The method takes Collection instances to enable other
221     * collection types to use the List implementation algorithm.
222     * <p>
223     * The relevant text (slightly paraphrased as this is a static method) is:
224     * <blockquote>
225     * Compares the two list objects for equality.  Returns
226     * <tt>true</tt> if and only if both
227     * lists have the same size, and all corresponding pairs of elements in
228     * the two lists are <i>equal</i>.  (Two elements <tt>e1</tt> and
229     * <tt>e2</tt> are <i>equal</i> if <tt>(e1==null ? e2==null :
230     * e1.equals(e2))</tt>.)  In other words, two lists are defined to be
231     * equal if they contain the same elements in the same order.  This
232     * definition ensures that the equals method works properly across
233     * different implementations of the <tt>List</tt> interface.
234     * </blockquote>
235     *
236     * <b>Note:</b> The behaviour of this method is undefined if the lists are
237     * modified during the equals comparison.
238     *
239     * @see java.util.List
240     * @param list1  the first list, may be null
241     * @param list2  the second list, may be null
242     * @return whether the lists are equal by value comparison
243     */
244    public static boolean isEqualList(final Collection<?> list1, final Collection<?> list2) {
245        if (list1 == list2) {
246            return true;
247        }
248        if (list1 == null || list2 == null || list1.size() != list2.size()) {
249            return false;
250        }
251
252        final Iterator<?> it1 = list1.iterator();
253        final Iterator<?> it2 = list2.iterator();
254        Object obj1 = null;
255        Object obj2 = null;
256
257        while (it1.hasNext() && it2.hasNext()) {
258            obj1 = it1.next();
259            obj2 = it2.next();
260
261            if (!(obj1 == null ? obj2 == null : obj1.equals(obj2))) {
262                return false;
263            }
264        }
265
266        return !(it1.hasNext() || it2.hasNext());
267    }
268
269    /**
270     * Generates a hash code using the algorithm specified in
271     * {@link java.util.List#hashCode()}.
272     * <p>
273     * This method is useful for implementing <code>List</code> when you cannot
274     * extend AbstractList. The method takes Collection instances to enable other
275     * collection types to use the List implementation algorithm.
276     *
277     * @see java.util.List#hashCode()
278     * @param list  the list to generate the hashCode for, may be null
279     * @return the hash code
280     */
281    public static int hashCodeForList(final Collection<?> list) {
282        if (list == null) {
283            return 0;
284        }
285        int hashCode = 1;
286        final Iterator<?> it = list.iterator();
287
288        while (it.hasNext()) {
289            final Object obj = it.next();
290            hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode());
291        }
292        return hashCode;
293    }
294
295    //-----------------------------------------------------------------------
296    /**
297     * Returns a List containing all the elements in <code>collection</code>
298     * that are also in <code>retain</code>. The cardinality of an element <code>e</code>
299     * in the returned list is the same as the cardinality of <code>e</code>
300     * in <code>collection</code> unless <code>retain</code> does not contain <code>e</code>, in which
301     * case the cardinality is zero. This method is useful if you do not wish to modify
302     * the collection <code>c</code> and thus cannot call <code>collection.retainAll(retain);</code>.
303     * <p>
304     * This implementation iterates over <code>collection</code>, checking each element in
305     * turn to see if it's contained in <code>retain</code>. If it's contained, it's added
306     * to the returned list. As a consequence, it is advised to use a collection type for
307     * <code>retain</code> that provides a fast (e.g. O(1)) implementation of
308     * {@link Collection#contains(Object)}.
309     *
310     * @param <E>  the element type
311     * @param collection  the collection whose contents are the target of the #retailAll operation
312     * @param retain  the collection containing the elements to be retained in the returned collection
313     * @return a <code>List</code> containing all the elements of <code>c</code>
314     * that occur at least once in <code>retain</code>.
315     * @throws NullPointerException if either parameter is null
316     * @since 3.2
317     */
318    public static <E> List<E> retainAll(final Collection<E> collection, final Collection<?> retain) {
319        final List<E> list = new ArrayList<E>(Math.min(collection.size(), retain.size()));
320
321        for (final E obj : collection) {
322            if (retain.contains(obj)) {
323                list.add(obj);
324            }
325        }
326        return list;
327    }
328
329    /**
330     * Removes the elements in <code>remove</code> from <code>collection</code>. That is, this
331     * method returns a list containing all the elements in <code>collection</code>
332     * that are not in <code>remove</code>. The cardinality of an element <code>e</code>
333     * in the returned collection is the same as the cardinality of <code>e</code>
334     * in <code>collection</code> unless <code>remove</code> contains <code>e</code>, in which
335     * case the cardinality is zero. This method is useful if you do not wish to modify
336     * <code>collection</code> and thus cannot call <code>collection.removeAll(remove);</code>.
337     * <p>
338     * This implementation iterates over <code>collection</code>, checking each element in
339     * turn to see if it's contained in <code>remove</code>. If it's not contained, it's added
340     * to the returned list. As a consequence, it is advised to use a collection type for
341     * <code>remove</code> that provides a fast (e.g. O(1)) implementation of
342     * {@link Collection#contains(Object)}.
343     *
344     * @param <E>  the element type
345     * @param collection  the collection from which items are removed (in the returned collection)
346     * @param remove  the items to be removed from the returned <code>collection</code>
347     * @return a <code>List</code> containing all the elements of <code>c</code> except
348     * any elements that also occur in <code>remove</code>.
349     * @throws NullPointerException if either parameter is null
350     * @since 3.2
351     */
352    public static <E> List<E> removeAll(final Collection<E> collection, final Collection<?> remove) {
353        final List<E> list = new ArrayList<E>();
354        for (final E obj : collection) {
355            if (!remove.contains(obj)) {
356                list.add(obj);
357            }
358        }
359        return list;
360    }
361
362    //-----------------------------------------------------------------------
363    /**
364     * Returns a synchronized list backed by the given list.
365     * <p>
366     * You must manually synchronize on the returned list's iterator to
367     * avoid non-deterministic behavior:
368     *
369     * <pre>
370     * List list = ListUtils.synchronizedList(myList);
371     * synchronized (list) {
372     *     Iterator i = list.iterator();
373     *     while (i.hasNext()) {
374     *         process (i.next());
375     *     }
376     * }
377     * </pre>
378     *
379     * This method is just a wrapper for {@link Collections#synchronizedList(List)}.
380     *
381     * @param <E>  the element type
382     * @param list  the list to synchronize, must not be null
383     * @return a synchronized list backed by the given list
384     * @throws IllegalArgumentException  if the list is null
385     */
386    public static <E> List<E> synchronizedList(final List<E> list) {
387        return Collections.synchronizedList(list);
388    }
389
390    /**
391     * Returns an unmodifiable list backed by the given list.
392     * <p>
393     * This method uses the implementation in the decorators subpackage.
394     *
395     * @param <E>  the element type
396     * @param list  the list to make unmodifiable, must not be null
397     * @return an unmodifiable list backed by the given list
398     * @throws IllegalArgumentException  if the list is null
399     */
400    public static <E> List<E> unmodifiableList(final List<? extends E> list) {
401        return UnmodifiableList.unmodifiableList(list);
402    }
403
404    /**
405     * Returns a predicated (validating) list backed by the given list.
406     * <p>
407     * Only objects that pass the test in the given predicate can be added to the list.
408     * Trying to add an invalid object results in an IllegalArgumentException.
409     * It is important not to use the original list after invoking this method,
410     * as it is a backdoor for adding invalid objects.
411     *
412     * @param <E>  the element type
413     * @param list  the list to predicate, must not be null
414     * @param predicate  the predicate for the list, must not be null
415     * @return a predicated list backed by the given list
416     * @throws IllegalArgumentException  if the List or Predicate is null
417     */
418    public static <E> List<E> predicatedList(final List<E> list, final Predicate<E> predicate) {
419        return PredicatedList.predicatedList(list, predicate);
420    }
421
422    /**
423     * Returns a transformed list backed by the given list.
424     * <p>
425     * This method returns a new list (decorating the specified list) that
426     * will transform any new entries added to it.
427     * Existing entries in the specified list will not be transformed.
428     * <p>
429     * Each object is passed through the transformer as it is added to the
430     * List. It is important not to use the original list after invoking this
431     * method, as it is a backdoor for adding untransformed objects.
432     * <p>
433     * Existing entries in the specified list will not be transformed.
434     * If you want that behaviour, see {@link TransformedList#transformedList}.
435     *
436     * @param <E>  the element type
437     * @param list  the list to predicate, must not be null
438     * @param transformer  the transformer for the list, must not be null
439     * @return a transformed list backed by the given list
440     * @throws IllegalArgumentException  if the List or Transformer is null
441     */
442    public static <E> List<E> transformedList(final List<E> list,
443                                              final Transformer<? super E, ? extends E> transformer) {
444        return TransformedList.transformingList(list, transformer);
445    }
446
447    /**
448     * Returns a "lazy" list whose elements will be created on demand.
449     * <p>
450     * When the index passed to the returned list's {@link List#get(int) get}
451     * method is greater than the list's size, then the factory will be used
452     * to create a new object and that object will be inserted at that index.
453     * <p>
454     * For instance:
455     *
456     * <pre>
457     * Factory&lt;Date&gt; factory = new Factory&lt;Date&gt;() {
458     *     public Date create() {
459     *         return new Date();
460     *     }
461     * }
462     * List&lt;Date&gt; lazy = ListUtils.lazyList(new ArrayList&lt;Date&gt;(), factory);
463     * Date date = lazy.get(3);
464     * </pre>
465     *
466     * After the above code is executed, <code>date</code> will refer to
467     * a new <code>Date</code> instance.  Furthermore, that <code>Date</code>
468     * instance is the fourth element in the list.  The first, second,
469     * and third element are all set to <code>null</code>.
470     *
471     * @param <E>  the element type
472     * @param list  the list to make lazy, must not be null
473     * @param factory  the factory for creating new objects, must not be null
474     * @return a lazy list backed by the given list
475     * @throws IllegalArgumentException  if the List or Factory is null
476     */
477    public static <E> List<E> lazyList(final List<E> list, final Factory<? extends E> factory) {
478        return LazyList.lazyList(list, factory);
479    }
480
481    /**
482     * Returns a fixed-sized list backed by the given list.
483     * Elements may not be added or removed from the returned list, but
484     * existing elements can be changed (for instance, via the
485     * {@link List#set(int, Object)} method).
486     *
487     * @param <E>  the element type
488     * @param list  the list whose size to fix, must not be null
489     * @return a fixed-size list backed by that list
490     * @throws IllegalArgumentException  if the List is null
491     */
492    public static <E> List<E> fixedSizeList(final List<E> list) {
493        return FixedSizeList.fixedSizeList(list);
494    }
495
496    //-----------------------------------------------------------------------
497    /**
498     * Finds the first index in the given List which matches the given predicate.
499     * <p>
500     * If the input List or predicate is null, or no element of the List
501     * matches the predicate, -1 is returned.
502     *
503     * @param <E>  the element type
504     * @param list the List to search, may be null
505     * @param predicate  the predicate to use, may be null
506     * @return the first index of an Object in the List which matches the predicate or -1 if none could be found
507     */
508    public static <E> int indexOf(final List<E> list, final Predicate<E> predicate) {
509        if (list != null && predicate != null) {
510            for (int i = 0; i < list.size(); i++) {
511                final E item = list.get(i);
512                if (predicate.evaluate(item)) {
513                    return i;
514                }
515            }
516        }
517        return -1;
518    }
519
520    //-----------------------------------------------------------------------
521    /**
522     * Returns the longest common subsequence (LCS) of two sequences (lists).
523     *
524     * @param <E>  the element type
525     * @param a  the first list
526     * @param b  the second list
527     * @return the longest common subsequence
528     * @throws IllegalArgumentException if either list is {@code null}
529     * @since 4.0
530     */
531    public static <E> List<E> longestCommonSubsequence(final List<E> a, final List<E> b) {
532      return longestCommonSubsequence( a, b, DefaultEquator.defaultEquator() );
533    }
534
535    /**
536     * Returns the longest common subsequence (LCS) of two sequences (lists).
537     *
538     * @param <E>  the element type
539     * @param a  the first list
540     * @param b  the second list
541     * @param equator  the equator used to test object equality
542     * @return the longest common subsequence
543     * @throws IllegalArgumentException if either list or the equator is {@code null}
544     * @since 4.0
545     */
546    public static <E> List<E> longestCommonSubsequence(final List<E> a, final List<E> b,
547                                                       final Equator<? super E> equator) {
548        if (a == null || b == null) {
549            throw new IllegalArgumentException("List must not be null");
550        }
551        if (equator == null) {
552          throw new IllegalArgumentException("Equator must not be null");
553        }
554
555        final SequencesComparator<E> comparator = new SequencesComparator<E>(a, b, equator);
556        final EditScript<E> script = comparator.getScript();
557        final LcsVisitor<E> visitor = new LcsVisitor<E>();
558        script.visit(visitor);
559        return visitor.getSubSequence();
560    }
561
562    /**
563     * Returns the longest common subsequence (LCS) of two {@link CharSequence} objects.
564     * <p>
565     * This is a convenience method for using {@link #longestCommonSubsequence(List, List)}
566     * with {@link CharSequence} instances.
567     *
568     * @param a  the first sequence
569     * @param b  the second sequence
570     * @return the longest common subsequence as {@link String}
571     * @throws IllegalArgumentException if either sequence is {@code null}
572     * @since 4.0
573     */
574    public static String longestCommonSubsequence(final CharSequence a, final CharSequence b) {
575        if (a == null || b == null) {
576            throw new IllegalArgumentException("CharSequence must not be null");
577        }
578        final List<Character> lcs = longestCommonSubsequence(new CharSequenceAsList( a ), new CharSequenceAsList( b ));
579        final StringBuilder sb = new StringBuilder();
580        for ( Character ch : lcs ) {
581          sb.append(ch);
582        }
583        return sb.toString();
584    }
585
586    /**
587     * A helper class used to construct the longest common subsequence.
588     */
589    private static final class LcsVisitor<E> implements CommandVisitor<E> {
590        private ArrayList<E> sequence;
591
592        public LcsVisitor() {
593            sequence = new ArrayList<E>();
594        }
595
596        public void visitInsertCommand(final E object) {}
597
598        public void visitDeleteCommand(final E object) {}
599
600        public void visitKeepCommand(final E object) {
601            sequence.add(object);
602        }
603
604        public List<E> getSubSequence() {
605            return sequence;
606        }
607    }
608
609    /**
610     * A simple wrapper to use a CharSequence as List.
611     */
612    private static final class CharSequenceAsList extends AbstractList<Character> {
613
614      private final CharSequence sequence;
615
616      public CharSequenceAsList(final CharSequence sequence) {
617        this.sequence = sequence;
618      }
619
620      @Override
621      public Character get( int index ) {
622        return Character.valueOf(sequence.charAt( index ));
623      }
624
625      @Override
626      public int size() {
627        return sequence.length();
628      }
629
630    }
631
632    //-----------------------------------------------------------------------
633    /**
634     * Returns consecutive {@link List#subList(int, int) sublists} of a
635     * list, each of the same size (the final list may be smaller). For example,
636     * partitioning a list containing {@code [a, b, c, d, e]} with a partition
637     * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing
638     * two inner lists of three and two elements, all in the original order.
639     * <p>
640     * The outer list is unmodifiable, but reflects the latest state of the
641     * source list. The inner lists are sublist views of the original list,
642     * produced on demand using {@link List#subList(int, int)}, and are subject
643     * to all the usual caveats about modification as explained in that API.
644     * <p>
645     * Adapted from http://code.google.com/p/guava-libraries/
646     *
647     * @param <T>  the element type
648     * @param list  the list to return consecutive sublists of
649     * @param size  the desired size of each sublist (the last may be smaller)
650     * @return a list of consecutive sublists
651     * @throws IllegalArgumentException if list is {@code null} or size is not strictly positive
652     * @since 4.0
653     */
654    public static <T> List<List<T>> partition(final List<T> list, final int size) {
655        if (list == null) {
656            throw new IllegalArgumentException("List must not be null");
657        }
658        if (size <= 0) {
659            throw new IllegalArgumentException("Size must be greater than 0");
660        }
661        return new Partition<T>(list, size);
662    }
663
664    /**
665     * Provides a partition view on a {@link List}.
666     * @since 4.0
667     */
668    private static class Partition<T> extends AbstractList<List<T>> {
669        private final List<T> list;
670        private final int size;
671
672        private Partition(final List<T> list, final int size) {
673            this.list = list;
674            this.size = size;
675        }
676
677        @Override
678        public List<T> get(final int index) {
679            final int listSize = size();
680            if (listSize < 0) {
681                throw new IllegalArgumentException("negative size: " + listSize);
682            }
683            if (index < 0) {
684                throw new IndexOutOfBoundsException("Index " + index + " must not be negative");
685            }
686            if (index >= listSize) {
687                throw new IndexOutOfBoundsException("Index " + index + " must be less than size " +
688                                                    listSize);
689            }
690            final int start = index * size;
691            final int end = Math.min(start + size, list.size());
692            return list.subList(start, end);
693        }
694
695        @Override
696        public int size() {
697            return (list.size() + size - 1) / size;
698        }
699
700        @Override
701        public boolean isEmpty() {
702            return list.isEmpty();
703        }
704    }
705}