## org.apache.commons.math3.dfp Class Dfp

```java.lang.Object
org.apache.commons.math3.dfp.Dfp
```
All Implemented Interfaces:
FieldElement<Dfp>, RealFieldElement<Dfp>
Direct Known Subclasses:
DfpDec

`public class Dfpextends Objectimplements RealFieldElement<Dfp>`

Decimal floating point library for Java

Another floating point class. This one is built using radix 10000 which is 104, so its almost decimal.

The design goals here are:

1. Decimal math, or close to it
2. Settable precision (but no mix between numbers using different settings)
3. Portability. Code should be kept as portable as possible.
4. Performance
5. Accuracy - Results should always be +/- 1 ULP for basic algebraic operation
6. Comply with IEEE 854-1987 as much as possible. (See IEEE 854-1987 notes below)

1. Memory foot print. I'm using more memory than necessary to represent numbers to get better performance.
2. Digits are bigger, so rounding is a greater loss. So, if you really need 12 decimal digits, better use 4 base 10000 digits there can be one partially filled.

Numbers are represented in the following form:

```  n  =  sign × mant × (radix)exp;
```
where sign is ±1, mantissa represents a fractional number between zero and one. mant[0] is the least significant digit. exp is in the range of -32767 to 32768

IEEE 854-1987 Notes and differences

IEEE 854 requires the radix to be either 2 or 10. The radix here is 10000, so that requirement is not met, but it is possible that a subclassed can be made to make it behave as a radix 10 number. It is my opinion that if it looks and behaves as a radix 10 number then it is one and that requirement would be met.

The radix of 10000 was chosen because it should be faster to operate on 4 decimal digits at once instead of one at a time. Radix 10 behavior can be realized by adding an additional rounding step to ensure that the number of decimal digits represented is constant.

The IEEE standard specifically leaves out internal data encoding, so it is reasonable to conclude that such a subclass of this radix 10000 system is merely an encoding of a radix 10 system.

IEEE 854 also specifies the existence of "sub-normal" numbers. This class does not contain any such entities. The most significant radix 10000 digit is always non-zero. Instead, we support "gradual underflow" by raising the underflow flag for numbers less with exponent less than expMin, but don't flush to zero until the exponent reaches MIN_EXP-digits. Thus the smallest number we can represent would be: 1E(-(MIN_EXP-digits-1)*4), eg, for digits=5, MIN_EXP=-32767, that would be 1e-131092.

IEEE 854 defines that the implied radix point lies just to the right of the most significant digit and to the left of the remaining digits. This implementation puts the implied radix point to the left of all digits including the most significant one. The most significant digit here is the one just to the right of the radix point. This is a fine detail and is really only a matter of definition. Any side effects of this can be rendered invisible by a subclass.

Since:
2.2
Version:
\$Id: Dfp.java 1462423 2013-03-29 07:25:18Z luc \$
`DfpField`

Field Summary
`static int` `ERR_SCALE`
The amount under/overflows are scaled by before going to trap handler
`protected  int` `exp`
Exponent.
`static byte` `FINITE`
Indicator value for normal finite numbers.
`static byte` `INFINITE`
Indicator value for Infinity.
`protected  int[]` `mant`
Mantissa.
`static int` `MAX_EXP`
The maximum exponent before overflow is signaled and results flushed to infinity
`static int` `MIN_EXP`
The minimum exponent before underflow is signaled.
`protected  byte` `nans`
Indicator for non-finite / non-number values.
`static byte` `QNAN`
Indicator value for quiet NaN.
`static int` `RADIX`
The radix, or base of this system.
`protected  byte` `sign`
Sign bit: 1 for positive, -1 for negative.
`static byte` `SNAN`
Indicator value for signaling NaN.

Constructor Summary
` ` `Dfp(Dfp d)`
Copy constructor.
`protected ` `Dfp(DfpField field)`
Makes an instance with a value of zero.
`protected ` ```Dfp(DfpField field, byte x)```
Create an instance from a byte value.
`protected ` ```Dfp(DfpField field, byte sign, byte nans)```
Creates an instance with a non-finite value.
`protected ` ```Dfp(DfpField field, double x)```
Create an instance from a double value.
`protected ` ```Dfp(DfpField field, int x)```
Create an instance from an int value.
`protected ` ```Dfp(DfpField field, long x)```
Create an instance from a long value.
`protected ` ```Dfp(DfpField field, String s)```
Create an instance from a String representation.

Method Summary
` Dfp` `abs()`
Get the absolute value of instance.
` Dfp` `acos()`
Arc cosine operation.
` Dfp` `acosh()`
Inverse hyperbolic cosine operation.
` Dfp` `add(Dfp x)`
` Dfp` `add(double a)`
'+' operator.
`protected  int` `align(int e)`
Make our exp equal to the supplied one, this may cause rounding.
` Dfp` `asin()`
Arc sine operation.
` Dfp` `asinh()`
Inverse hyperbolic sine operation.
` Dfp` `atan()`
Arc tangent operation.
` Dfp` `atan2(Dfp x)`
Two arguments arc tangent operation.
` Dfp` `atanh()`
Inverse hyperbolic tangent operation.
` Dfp` `cbrt()`
Cubic root.
` Dfp` `ceil()`
Round to an integer using the round ceil mode.
` int` `classify()`
Returns the type - one of FINITE, INFINITE, SNAN, QNAN.
`protected  int` `complement(int extra)`
Negate the mantissa of this by computing the complement.
` Dfp` `copySign(Dfp s)`
Returns the instance with the sign of the argument.
`static Dfp` ```copysign(Dfp x, Dfp y)```
Creates an instance that is the same as x except that it has the sign of y.
` Dfp` `copySign(double s)`
Returns the instance with the sign of the argument.
` Dfp` `cos()`
Cosine operation.
` Dfp` `cosh()`
Hyperbolic cosine operation.
`protected  String` `dfp2sci()`
Convert an instance to a string using scientific notation.
`protected  String` `dfp2string()`
Convert an instance to a string using normal notation.
` Dfp` `divide(Dfp divisor)`
Divide this by divisor.
` Dfp` `divide(double a)`
'÷s;' operator.
` Dfp` `divide(int divisor)`
Divide by a single digit less than radix.
` Dfp` ```dotrap(int type, String what, Dfp oper, Dfp result)```
Raises a trap.
` boolean` `equals(Object other)`
Check if instance is equal to x.
` Dfp` `exp()`
Exponential.
` Dfp` `expm1()`
Exponential minus 1.
` Dfp` `floor()`
Round to an integer using the round floor mode.
` DfpField` `getField()`
Get the `Field` (really a `DfpField`) to which the instance belongs.
` Dfp` `getOne()`
Get the constant 1.
` int` `getRadixDigits()`
Get the number of radix digits of the instance.
` double` `getReal()`
Get the real value of the number.
` Dfp` `getTwo()`
Get the constant 2.
` Dfp` `getZero()`
Get the constant 0.
` boolean` `greaterThan(Dfp x)`
Check if instance is greater than x.
` int` `hashCode()`
Gets a hashCode for the instance.
` Dfp` `hypot(Dfp y)`
Returns the hypotenuse of a triangle with sides `this` and `y` - sqrt(this2 +y2)
avoiding intermediate overflow or underflow.
` int` `intLog10()`
Get the exponent of the greatest power of 10 that is less than or equal to abs(this).
` int` `intValue()`
Convert this to an integer.
` boolean` `isInfinite()`
Check if instance is infinite.
` boolean` `isNaN()`
Check if instance is not a number.
` boolean` `isZero()`
Check if instance is equal to zero.
` boolean` `lessThan(Dfp x)`
Check if instance is less than x.
` Dfp` ```linearCombination(Dfp[] a, Dfp[] b)```
Compute a linear combination.
` Dfp` ```linearCombination(Dfp a1, Dfp b1, Dfp a2, Dfp b2)```
Compute a linear combination.
` Dfp` ```linearCombination(Dfp a1, Dfp b1, Dfp a2, Dfp b2, Dfp a3, Dfp b3)```
Compute a linear combination.
` Dfp` ```linearCombination(Dfp a1, Dfp b1, Dfp a2, Dfp b2, Dfp a3, Dfp b3, Dfp a4, Dfp b4)```
Compute a linear combination.
` Dfp` ```linearCombination(double[] a, Dfp[] b)```
Compute a linear combination.
` Dfp` ```linearCombination(double a1, Dfp b1, double a2, Dfp b2)```
Compute a linear combination.
` Dfp` ```linearCombination(double a1, Dfp b1, double a2, Dfp b2, double a3, Dfp b3)```
Compute a linear combination.
` Dfp` ```linearCombination(double a1, Dfp b1, double a2, Dfp b2, double a3, Dfp b3, double a4, Dfp b4)```
Compute a linear combination.
` Dfp` `log()`
Natural logarithm.
` int` `log10()`
Deprecated. as of 3.2, replaced by `intLog10()`, in 4.0 the return type will be changed to Dfp
` int` `log10K()`
Get the exponent of the greatest power of 10000 that is less than or equal to the absolute value of this.
` Dfp` `log1p()`
Shifted natural logarithm.
` Dfp` `multiply(Dfp x)`
Multiply this by x.
` Dfp` `multiply(double a)`
'×' operator.
` Dfp` `multiply(int x)`
Multiply this by a single digit x.
` Dfp` `negate()`
Returns a number that is this number with the sign bit reversed.
` boolean` `negativeOrNull()`
Check if instance is less than or equal to 0.
` Dfp` `newInstance()`
Create an instance with a value of 0.
` Dfp` `newInstance(byte x)`
Create an instance from a byte value.
` Dfp` ```newInstance(byte sig, byte code)```
Creates an instance with a non-finite value.
` Dfp` `newInstance(Dfp d)`
Create an instance by copying an existing one.
` Dfp` `newInstance(double x)`
Create an instance from a double value.
` Dfp` `newInstance(int x)`
Create an instance from an int value.
` Dfp` `newInstance(long x)`
Create an instance from a long value.
` Dfp` `newInstance(String s)`
Create an instance from a String representation.
` Dfp` `nextAfter(Dfp x)`
Returns the next number greater than this one in the direction of x.
` boolean` `positiveOrNull()`
Check if instance is greater than or equal to 0.
` Dfp` `pow(Dfp e)`
Power operation.
` Dfp` `pow(double p)`
Power operation.
` Dfp` `pow(int n)`
Integer power operation.
` Dfp` `power10(int e)`
Return the specified power of 10.
` Dfp` `power10K(int e)`
Get the specified power of 10000.
` Dfp` `reciprocal()`
Returns the multiplicative inverse of `this` element.
` Dfp` `remainder(Dfp d)`
Returns the IEEE remainder.
` Dfp` `remainder(double a)`
IEEE remainder operator.
` Dfp` `rint()`
Round to nearest integer using the round-half-even method.
` Dfp` `rootN(int n)`
Nth root.
` long` `round()`
Get the closest long to instance value.
`protected  int` `round(int n)`
Round this given the next digit n using the current rounding mode.
` Dfp` `scalb(int n)`
Multiply the instance by a power of 2.
`protected  void` `shiftLeft()`
Shift the mantissa left, and adjust the exponent to compensate.
`protected  void` `shiftRight()`
Shift the mantissa right, and adjust the exponent to compensate.
` Dfp` `signum()`
Compute the signum of the instance.
` Dfp` `sin()`
Sine operation.
` Dfp` `sinh()`
Hyperbolic sine operation.
` Dfp` `sqrt()`
Compute the square root.
` boolean` `strictlyNegative()`
Check if instance is strictly less than 0.
` boolean` `strictlyPositive()`
Check if instance is strictly greater than 0.
` Dfp` `subtract(Dfp x)`
Subtract x from this.
` Dfp` `subtract(double a)`
'-' operator.
` Dfp` `tan()`
Tangent operation.
` Dfp` `tanh()`
Hyperbolic tangent operation.
` double` `toDouble()`
Convert the instance into a double.
` double[]` `toSplitDouble()`
Convert the instance into a split double.
` String` `toString()`
Get a string representation of the instance.
`protected  Dfp` ```trap(int type, String what, Dfp oper, Dfp def, Dfp result)```
Trap handler.
`protected  Dfp` `trunc(DfpField.RoundingMode rmode)`
Does the integer conversions with the specified rounding.
` boolean` `unequal(Dfp x)`
Check if instance is not equal to x.

Methods inherited from class java.lang.Object
`clone, finalize, getClass, notify, notifyAll, wait, wait, wait`

Field Detail

`public static final int RADIX`
The radix, or base of this system. Set to 10000

Constant Field Values

### MIN_EXP

`public static final int MIN_EXP`
The minimum exponent before underflow is signaled. Flush to zero occurs at minExp-DIGITS

Constant Field Values

### MAX_EXP

`public static final int MAX_EXP`
The maximum exponent before overflow is signaled and results flushed to infinity

Constant Field Values

### ERR_SCALE

`public static final int ERR_SCALE`
The amount under/overflows are scaled by before going to trap handler

Constant Field Values

### FINITE

`public static final byte FINITE`
Indicator value for normal finite numbers.

Constant Field Values

### INFINITE

`public static final byte INFINITE`
Indicator value for Infinity.

Constant Field Values

### SNAN

`public static final byte SNAN`
Indicator value for signaling NaN.

Constant Field Values

### QNAN

`public static final byte QNAN`
Indicator value for quiet NaN.

Constant Field Values

### mant

`protected int[] mant`
Mantissa.

### sign

`protected byte sign`
Sign bit: 1 for positive, -1 for negative.

### exp

`protected int exp`
Exponent.

### nans

`protected byte nans`
Indicator for non-finite / non-number values.

Constructor Detail

### Dfp

`protected Dfp(DfpField field)`
Makes an instance with a value of zero.

Parameters:
`field` - field to which this instance belongs

### Dfp

```protected Dfp(DfpField field,
byte x)```
Create an instance from a byte value.

Parameters:
`field` - field to which this instance belongs
`x` - value to convert to an instance

### Dfp

```protected Dfp(DfpField field,
int x)```
Create an instance from an int value.

Parameters:
`field` - field to which this instance belongs
`x` - value to convert to an instance

### Dfp

```protected Dfp(DfpField field,
long x)```
Create an instance from a long value.

Parameters:
`field` - field to which this instance belongs
`x` - value to convert to an instance

### Dfp

```protected Dfp(DfpField field,
double x)```
Create an instance from a double value.

Parameters:
`field` - field to which this instance belongs
`x` - value to convert to an instance

### Dfp

`public Dfp(Dfp d)`
Copy constructor.

Parameters:
`d` - instance to copy

### Dfp

```protected Dfp(DfpField field,
String s)```
Create an instance from a String representation.

Parameters:
`field` - field to which this instance belongs
`s` - string representation of the instance

### Dfp

```protected Dfp(DfpField field,
byte sign,
byte nans)```
Creates an instance with a non-finite value.

Parameters:
`field` - field to which this instance belongs
`sign` - sign of the Dfp to create
`nans` - code of the value, must be one of `INFINITE`, `SNAN`, `QNAN`
Method Detail

### newInstance

`public Dfp newInstance()`
Create an instance with a value of 0. Use this internally in preference to constructors to facilitate subclasses

Returns:
a new instance with a value of 0

### newInstance

`public Dfp newInstance(byte x)`
Create an instance from a byte value.

Parameters:
`x` - value to convert to an instance
Returns:
a new instance with value x

### newInstance

`public Dfp newInstance(int x)`
Create an instance from an int value.

Parameters:
`x` - value to convert to an instance
Returns:
a new instance with value x

### newInstance

`public Dfp newInstance(long x)`
Create an instance from a long value.

Parameters:
`x` - value to convert to an instance
Returns:
a new instance with value x

### newInstance

`public Dfp newInstance(double x)`
Create an instance from a double value.

Parameters:
`x` - value to convert to an instance
Returns:
a new instance with value x

### newInstance

`public Dfp newInstance(Dfp d)`
Create an instance by copying an existing one. Use this internally in preference to constructors to facilitate subclasses.

Parameters:
`d` - instance to copy
Returns:
a new instance with the same value as d

### newInstance

`public Dfp newInstance(String s)`
Create an instance from a String representation. Use this internally in preference to constructors to facilitate subclasses.

Parameters:
`s` - string representation of the instance
Returns:
a new instance parsed from specified string

### newInstance

```public Dfp newInstance(byte sig,
byte code)```
Creates an instance with a non-finite value.

Parameters:
`sig` - sign of the Dfp to create
`code` - code of the value, must be one of `INFINITE`, `SNAN`, `QNAN`
Returns:
a new instance with a non-finite value

### getField

`public DfpField getField()`
Get the `Field` (really a `DfpField`) to which the instance belongs.

The field is linked to the number of digits and acts as a factory for `Dfp` instances.

Specified by:
`getField` in interface `FieldElement<Dfp>`
Returns:
`Field` (really a `DfpField`) to which the instance belongs

`public int getRadixDigits()`
Get the number of radix digits of the instance.

Returns:

### getZero

`public Dfp getZero()`
Get the constant 0.

Returns:
a Dfp with value zero

### getOne

`public Dfp getOne()`
Get the constant 1.

Returns:
a Dfp with value one

### getTwo

`public Dfp getTwo()`
Get the constant 2.

Returns:
a Dfp with value two

### shiftLeft

`protected void shiftLeft()`
Shift the mantissa left, and adjust the exponent to compensate.

### shiftRight

`protected void shiftRight()`
Shift the mantissa right, and adjust the exponent to compensate.

### align

`protected int align(int e)`
Make our exp equal to the supplied one, this may cause rounding. Also causes de-normalized numbers. These numbers are generally dangerous because most routines assume normalized numbers. Align doesn't round, so it will return the last digit destroyed by shifting right.

Parameters:
`e` - desired exponent
Returns:
last digit destroyed by shifting right

### lessThan

`public boolean lessThan(Dfp x)`
Check if instance is less than x.

Parameters:
`x` - number to check instance against
Returns:
true if instance is less than x and neither are NaN, false otherwise

### greaterThan

`public boolean greaterThan(Dfp x)`
Check if instance is greater than x.

Parameters:
`x` - number to check instance against
Returns:
true if instance is greater than x and neither are NaN, false otherwise

### negativeOrNull

`public boolean negativeOrNull()`
Check if instance is less than or equal to 0.

Returns:
true if instance is not NaN and less than or equal to 0, false otherwise

### strictlyNegative

`public boolean strictlyNegative()`
Check if instance is strictly less than 0.

Returns:
true if instance is not NaN and less than or equal to 0, false otherwise

### positiveOrNull

`public boolean positiveOrNull()`
Check if instance is greater than or equal to 0.

Returns:
true if instance is not NaN and greater than or equal to 0, false otherwise

### strictlyPositive

`public boolean strictlyPositive()`
Check if instance is strictly greater than 0.

Returns:
true if instance is not NaN and greater than or equal to 0, false otherwise

### abs

`public Dfp abs()`
Get the absolute value of instance.

Specified by:
`abs` in interface `RealFieldElement<Dfp>`
Returns:
absolute value of instance
Since:
3.2

### isInfinite

`public boolean isInfinite()`
Check if instance is infinite.

Returns:
true if instance is infinite

### isNaN

`public boolean isNaN()`
Check if instance is not a number.

Returns:
true if instance is not a number

### isZero

`public boolean isZero()`
Check if instance is equal to zero.

Returns:
true if instance is equal to zero

### equals

`public boolean equals(Object other)`
Check if instance is equal to x.

Overrides:
`equals` in class `Object`
Parameters:
`other` - object to check instance against
Returns:
true if instance is equal to x and neither are NaN, false otherwise

### hashCode

`public int hashCode()`
Gets a hashCode for the instance.

Overrides:
`hashCode` in class `Object`
Returns:
a hash code value for this object

### unequal

`public boolean unequal(Dfp x)`
Check if instance is not equal to x.

Parameters:
`x` - number to check instance against
Returns:
true if instance is not equal to x and neither are NaN, false otherwise

### rint

`public Dfp rint()`
Round to nearest integer using the round-half-even method. That is round to nearest integer unless both are equidistant. In which case round to the even one.

Specified by:
`rint` in interface `RealFieldElement<Dfp>`
Returns:
rounded value
Since:
3.2

### floor

`public Dfp floor()`
Round to an integer using the round floor mode. That is, round toward -Infinity

Specified by:
`floor` in interface `RealFieldElement<Dfp>`
Returns:
rounded value
Since:
3.2

### ceil

`public Dfp ceil()`
Round to an integer using the round ceil mode. That is, round toward +Infinity

Specified by:
`ceil` in interface `RealFieldElement<Dfp>`
Returns:
rounded value
Since:
3.2

### remainder

`public Dfp remainder(Dfp d)`
Returns the IEEE remainder.

Specified by:
`remainder` in interface `RealFieldElement<Dfp>`
Parameters:
`d` - divisor
Returns:
this less n × d, where n is the integer closest to this/d
Since:
3.2

### trunc

`protected Dfp trunc(DfpField.RoundingMode rmode)`
Does the integer conversions with the specified rounding.

Parameters:
`rmode` - rounding mode to use
Returns:
truncated value

### intValue

`public int intValue()`
Convert this to an integer. If greater than 2147483647, it returns 2147483647. If less than -2147483648 it returns -2147483648.

Returns:
converted number

### log10K

`public int log10K()`
Get the exponent of the greatest power of 10000 that is less than or equal to the absolute value of this. I.E. if this is 106 then log10K would return 1.

Returns:
integer base 10000 logarithm

### power10K

`public Dfp power10K(int e)`
Get the specified power of 10000.

Parameters:
`e` - desired power
Returns:
10000e

### intLog10

`public int intLog10()`
Get the exponent of the greatest power of 10 that is less than or equal to abs(this).

Returns:
integer base 10 logarithm
Since:
3.2

### power10

`public Dfp power10(int e)`
Return the specified power of 10.

Parameters:
`e` - desired power
Returns:
10e

### complement

`protected int complement(int extra)`
Negate the mantissa of this by computing the complement. Leaves the sign bit unchanged, used internally by add. Denormalized numbers are handled properly here.

Parameters:
`extra` - ???
Returns:
???

`public Dfp add(Dfp x)`

Specified by:
`add` in interface `FieldElement<Dfp>`
Parameters:
`x` - number to add
Returns:
sum of this and x

### negate

`public Dfp negate()`
Returns a number that is this number with the sign bit reversed.

Specified by:
`negate` in interface `FieldElement<Dfp>`
Returns:
the opposite of this

### subtract

`public Dfp subtract(Dfp x)`
Subtract x from this.

Specified by:
`subtract` in interface `FieldElement<Dfp>`
Parameters:
`x` - number to subtract
Returns:
difference of this and a

### round

`protected int round(int n)`
Round this given the next digit n using the current rounding mode.

Parameters:
`n` - ???
Returns:
the IEEE flag if an exception occurred

### multiply

`public Dfp multiply(Dfp x)`
Multiply this by x.

Specified by:
`multiply` in interface `FieldElement<Dfp>`
Parameters:
`x` - multiplicand
Returns:
product of this and x

### multiply

`public Dfp multiply(int x)`
Multiply this by a single digit x.

Specified by:
`multiply` in interface `FieldElement<Dfp>`
Parameters:
`x` - multiplicand
Returns:
product of this and x

### divide

`public Dfp divide(Dfp divisor)`
Divide this by divisor.

Specified by:
`divide` in interface `FieldElement<Dfp>`
Parameters:
`divisor` - divisor
Returns:
quotient of this by divisor

### divide

`public Dfp divide(int divisor)`
Divide by a single digit less than radix. Special case, so there are speed advantages. 0 <= divisor < radix

Parameters:
`divisor` - divisor
Returns:
quotient of this by divisor

### reciprocal

`public Dfp reciprocal()`
Returns the multiplicative inverse of `this` element.

Specified by:
`reciprocal` in interface `FieldElement<Dfp>`
Specified by:
`reciprocal` in interface `RealFieldElement<Dfp>`
Returns:
the inverse of `this`.

### sqrt

`public Dfp sqrt()`
Compute the square root.

Specified by:
`sqrt` in interface `RealFieldElement<Dfp>`
Returns:
square root of the instance
Since:
3.2

### toString

`public String toString()`
Get a string representation of the instance.

Overrides:
`toString` in class `Object`
Returns:
string representation of the instance

### dfp2sci

`protected String dfp2sci()`
Convert an instance to a string using scientific notation.

Returns:
string representation of the instance in scientific notation

### dfp2string

`protected String dfp2string()`
Convert an instance to a string using normal notation.

Returns:
string representation of the instance in normal notation

### dotrap

```public Dfp dotrap(int type,
String what,
Dfp oper,
Dfp result)```
Raises a trap. This does not set the corresponding flag however.

Parameters:
`type` - the trap type
`what` - - name of routine trap occurred in
`oper` - - input operator to function
`result` - - the result computed prior to the trap
Returns:
The suggested return value from the trap handler

### trap

```protected Dfp trap(int type,
String what,
Dfp oper,
Dfp def,
Dfp result)```
Trap handler. Subclasses may override this to provide trap functionality per IEEE 854-1987.

Parameters:
`type` - The exception type - e.g. FLAG_OVERFLOW
`what` - The name of the routine we were in e.g. divide()
`oper` - An operand to this function if any
`def` - The default return value if trap not enabled
`result` - The result that is specified to be delivered per IEEE 854, if any
Returns:
the value that should be return by the operation triggering the trap

### classify

`public int classify()`
Returns the type - one of FINITE, INFINITE, SNAN, QNAN.

Returns:
type of the number

### copysign

```public static Dfp copysign(Dfp x,
Dfp y)```
Creates an instance that is the same as x except that it has the sign of y. abs(x) = dfp.copysign(x, dfp.one)

Parameters:
`x` - number to get the value from
`y` - number to get the sign from
Returns:
a number with the value of x and the sign of y

### nextAfter

`public Dfp nextAfter(Dfp x)`
Returns the next number greater than this one in the direction of x. If this==x then simply returns this.

Parameters:
`x` - direction where to look at
Returns:
closest number next to instance in the direction of x

### toDouble

`public double toDouble()`
Convert the instance into a double.

Returns:
a double approximating the instance
`toSplitDouble()`

### toSplitDouble

`public double[] toSplitDouble()`
Convert the instance into a split double.

Returns:
an array of two doubles which sum represent the instance
`toDouble()`

### getReal

`public double getReal()`
Get the real value of the number.

Specified by:
`getReal` in interface `RealFieldElement<Dfp>`
Returns:
real value
Since:
3.2

`public Dfp add(double a)`
'+' operator.

Specified by:
`add` in interface `RealFieldElement<Dfp>`
Parameters:
`a` - right hand side parameter of the operator
Returns:
this+a
Since:
3.2

### subtract

`public Dfp subtract(double a)`
'-' operator.

Specified by:
`subtract` in interface `RealFieldElement<Dfp>`
Parameters:
`a` - right hand side parameter of the operator
Returns:
this-a
Since:
3.2

### multiply

`public Dfp multiply(double a)`
'×' operator.

Specified by:
`multiply` in interface `RealFieldElement<Dfp>`
Parameters:
`a` - right hand side parameter of the operator
Returns:
this×a
Since:
3.2

### divide

`public Dfp divide(double a)`
'÷s;' operator.

Specified by:
`divide` in interface `RealFieldElement<Dfp>`
Parameters:
`a` - right hand side parameter of the operator
Returns:
this÷s;a
Since:
3.2

### remainder

`public Dfp remainder(double a)`
IEEE remainder operator.

Specified by:
`remainder` in interface `RealFieldElement<Dfp>`
Parameters:
`a` - right hand side parameter of the operator
Returns:
this - n × a where n is the closest integer to this/a (the even integer is chosen for n if this/a is halfway between two integers)
Since:
3.2

### round

`public long round()`
Get the closest long to instance value.

Specified by:
`round` in interface `RealFieldElement<Dfp>`
Returns:
closest long to `RealFieldElement.getReal()`
Since:
3.2

### signum

`public Dfp signum()`
Compute the signum of the instance. The signum is -1 for negative numbers, +1 for positive numbers and 0 otherwise

Specified by:
`signum` in interface `RealFieldElement<Dfp>`
Returns:
-1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
Since:
3.2

### copySign

`public Dfp copySign(Dfp s)`
Returns the instance with the sign of the argument. A NaN `sign` argument is treated as positive.

Specified by:
`copySign` in interface `RealFieldElement<Dfp>`
Parameters:
`s` - the sign for the returned value
Returns:
the instance with the same sign as the `sign` argument
Since:
3.2

### copySign

`public Dfp copySign(double s)`
Returns the instance with the sign of the argument. A NaN `sign` argument is treated as positive.

Specified by:
`copySign` in interface `RealFieldElement<Dfp>`
Parameters:
`s` - the sign for the returned value
Returns:
the instance with the same sign as the `sign` argument
Since:
3.2

### scalb

`public Dfp scalb(int n)`
Multiply the instance by a power of 2.

Specified by:
`scalb` in interface `RealFieldElement<Dfp>`
Parameters:
`n` - power of 2
Returns:
this × 2n
Since:
3.2

### hypot

`public Dfp hypot(Dfp y)`
Returns the hypotenuse of a triangle with sides `this` and `y` - sqrt(this2 +y2)
avoiding intermediate overflow or underflow.
• If either argument is infinite, then the result is positive infinity.
• else, if either argument is NaN then the result is NaN.

Specified by:
`hypot` in interface `RealFieldElement<Dfp>`
Parameters:
`y` - a value
Returns:
sqrt(this2 +y2)
Since:
3.2

### cbrt

`public Dfp cbrt()`
Cubic root.

Specified by:
`cbrt` in interface `RealFieldElement<Dfp>`
Returns:
cubic root of the instance
Since:
3.2

### rootN

`public Dfp rootN(int n)`
Nth root.

Specified by:
`rootN` in interface `RealFieldElement<Dfp>`
Parameters:
`n` - order of the root
Returns:
nth root of the instance
Since:
3.2

### pow

`public Dfp pow(double p)`
Power operation.

Specified by:
`pow` in interface `RealFieldElement<Dfp>`
Parameters:
`p` - power to apply
Returns:
thisp
Since:
3.2

### pow

`public Dfp pow(int n)`
Integer power operation.

Specified by:
`pow` in interface `RealFieldElement<Dfp>`
Parameters:
`n` - power to apply
Returns:
thisn
Since:
3.2

### pow

`public Dfp pow(Dfp e)`
Power operation.

Specified by:
`pow` in interface `RealFieldElement<Dfp>`
Parameters:
`e` - exponent
Returns:
thise
Since:
3.2

### exp

`public Dfp exp()`
Exponential.

Specified by:
`exp` in interface `RealFieldElement<Dfp>`
Returns:
exponential of the instance
Since:
3.2

### expm1

`public Dfp expm1()`
Exponential minus 1.

Specified by:
`expm1` in interface `RealFieldElement<Dfp>`
Returns:
exponential minus one of the instance
Since:
3.2

### log

`public Dfp log()`
Natural logarithm.

Specified by:
`log` in interface `RealFieldElement<Dfp>`
Returns:
logarithm of the instance
Since:
3.2

### log1p

`public Dfp log1p()`
Shifted natural logarithm.

Specified by:
`log1p` in interface `RealFieldElement<Dfp>`
Returns:
logarithm of one plus the instance
Since:
3.2

### log10

```@Deprecated
public int log10()```
Deprecated. as of 3.2, replaced by `intLog10()`, in 4.0 the return type will be changed to Dfp

Get the exponent of the greatest power of 10 that is less than or equal to abs(this).

Returns:
integer base 10 logarithm

### cos

`public Dfp cos()`
Cosine operation.

Specified by:
`cos` in interface `RealFieldElement<Dfp>`
Returns:
cos(this)
Since:
3.2

### sin

`public Dfp sin()`
Sine operation.

Specified by:
`sin` in interface `RealFieldElement<Dfp>`
Returns:
sin(this)
Since:
3.2

### tan

`public Dfp tan()`
Tangent operation.

Specified by:
`tan` in interface `RealFieldElement<Dfp>`
Returns:
tan(this)
Since:
3.2

### acos

`public Dfp acos()`
Arc cosine operation.

Specified by:
`acos` in interface `RealFieldElement<Dfp>`
Returns:
acos(this)
Since:
3.2

### asin

`public Dfp asin()`
Arc sine operation.

Specified by:
`asin` in interface `RealFieldElement<Dfp>`
Returns:
asin(this)
Since:
3.2

### atan

`public Dfp atan()`
Arc tangent operation.

Specified by:
`atan` in interface `RealFieldElement<Dfp>`
Returns:
atan(this)
Since:
3.2

### atan2

```public Dfp atan2(Dfp x)
throws DimensionMismatchException```
Two arguments arc tangent operation.

Specified by:
`atan2` in interface `RealFieldElement<Dfp>`
Parameters:
`x` - second argument of the arc tangent
Returns:
atan2(this, x)
Throws:
`DimensionMismatchException` - if number of free parameters or orders are inconsistent
Since:
3.2

### cosh

`public Dfp cosh()`
Hyperbolic cosine operation.

Specified by:
`cosh` in interface `RealFieldElement<Dfp>`
Returns:
cosh(this)
Since:
3.2

### sinh

`public Dfp sinh()`
Hyperbolic sine operation.

Specified by:
`sinh` in interface `RealFieldElement<Dfp>`
Returns:
sinh(this)
Since:
3.2

### tanh

`public Dfp tanh()`
Hyperbolic tangent operation.

Specified by:
`tanh` in interface `RealFieldElement<Dfp>`
Returns:
tanh(this)
Since:
3.2

### acosh

`public Dfp acosh()`
Inverse hyperbolic cosine operation.

Specified by:
`acosh` in interface `RealFieldElement<Dfp>`
Returns:
acosh(this)
Since:
3.2

### asinh

`public Dfp asinh()`
Inverse hyperbolic sine operation.

Specified by:
`asinh` in interface `RealFieldElement<Dfp>`
Returns:
asin(this)
Since:
3.2

### atanh

`public Dfp atanh()`
Inverse hyperbolic tangent operation.

Specified by:
`atanh` in interface `RealFieldElement<Dfp>`
Returns:
atanh(this)
Since:
3.2

### linearCombination

```public Dfp linearCombination(Dfp[] a,
Dfp[] b)
throws DimensionMismatchException```
Compute a linear combination.

Specified by:
`linearCombination` in interface `RealFieldElement<Dfp>`
Parameters:
`a` - Factors.
`b` - Factors.
Returns:
`Σi ai bi`.
Throws:
`DimensionMismatchException` - if arrays dimensions don't match
Since:
3.2

### linearCombination

```public Dfp linearCombination(double[] a,
Dfp[] b)
throws DimensionMismatchException```
Compute a linear combination.

Specified by:
`linearCombination` in interface `RealFieldElement<Dfp>`
Parameters:
`a` - Factors.
`b` - Factors.
Returns:
`Σi ai bi`.
Throws:
`DimensionMismatchException` - if arrays dimensions don't match
Since:
3.2

### linearCombination

```public Dfp linearCombination(Dfp a1,
Dfp b1,
Dfp a2,
Dfp b2)```
Compute a linear combination.

Specified by:
`linearCombination` in interface `RealFieldElement<Dfp>`
Parameters:
`a1` - first factor of the first term
`b1` - second factor of the first term
`a2` - first factor of the second term
`b2` - second factor of the second term
Returns:
a1×b1 + a2×b2
Since:
3.2
`RealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)`, `RealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)`

### linearCombination

```public Dfp linearCombination(double a1,
Dfp b1,
double a2,
Dfp b2)```
Compute a linear combination.

Specified by:
`linearCombination` in interface `RealFieldElement<Dfp>`
Parameters:
`a1` - first factor of the first term
`b1` - second factor of the first term
`a2` - first factor of the second term
`b2` - second factor of the second term
Returns:
a1×b1 + a2×b2
Since:
3.2
`RealFieldElement.linearCombination(double, Object, double, Object, double, Object)`, `RealFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)`

### linearCombination

```public Dfp linearCombination(Dfp a1,
Dfp b1,
Dfp a2,
Dfp b2,
Dfp a3,
Dfp b3)```
Compute a linear combination.

Specified by:
`linearCombination` in interface `RealFieldElement<Dfp>`
Parameters:
`a1` - first factor of the first term
`b1` - second factor of the first term
`a2` - first factor of the second term
`b2` - second factor of the second term
`a3` - first factor of the third term
`b3` - second factor of the third term
Returns:
a1×b1 + a2×b2 + a3×b3
Since:
3.2
`RealFieldElement.linearCombination(Object, Object, Object, Object)`, `RealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)`

### linearCombination

```public Dfp linearCombination(double a1,
Dfp b1,
double a2,
Dfp b2,
double a3,
Dfp b3)```
Compute a linear combination.

Specified by:
`linearCombination` in interface `RealFieldElement<Dfp>`
Parameters:
`a1` - first factor of the first term
`b1` - second factor of the first term
`a2` - first factor of the second term
`b2` - second factor of the second term
`a3` - first factor of the third term
`b3` - second factor of the third term
Returns:
a1×b1 + a2×b2 + a3×b3
Since:
3.2
`RealFieldElement.linearCombination(double, Object, double, Object)`, `RealFieldElement.linearCombination(double, Object, double, Object, double, Object, double, Object)`

### linearCombination

```public Dfp linearCombination(Dfp a1,
Dfp b1,
Dfp a2,
Dfp b2,
Dfp a3,
Dfp b3,
Dfp a4,
Dfp b4)```
Compute a linear combination.

Specified by:
`linearCombination` in interface `RealFieldElement<Dfp>`
Parameters:
`a1` - first factor of the first term
`b1` - second factor of the first term
`a2` - first factor of the second term
`b2` - second factor of the second term
`a3` - first factor of the third term
`b3` - second factor of the third term
`a4` - first factor of the third term
`b4` - second factor of the third term
Returns:
a1×b1 + a2×b2 + a3×b3 + a4×b4
Since:
3.2
`RealFieldElement.linearCombination(Object, Object, Object, Object)`, `RealFieldElement.linearCombination(Object, Object, Object, Object, Object, Object)`

### linearCombination

```public Dfp linearCombination(double a1,
Dfp b1,
double a2,
Dfp b2,
double a3,
Dfp b3,
double a4,
Dfp b4)```
Compute a linear combination.

Specified by:
`linearCombination` in interface `RealFieldElement<Dfp>`
Parameters:
`a1` - first factor of the first term
`b1` - second factor of the first term
`a2` - first factor of the second term
`b2` - second factor of the second term
`a3` - first factor of the third term
`b3` - second factor of the third term
`a4` - first factor of the third term
`b4` - second factor of the third term
Returns:
a1×b1 + a2×b2 + a3×b3 + a4×b4
Since:
3.2
`RealFieldElement.linearCombination(double, Object, double, Object)`, `RealFieldElement.linearCombination(double, Object, double, Object, double, Object)`