org.apache.commons.math3.distribution

## Class CauchyDistribution

• ### Constructor Summary

Constructors
Constructor and Description
CauchyDistribution()
Creates a Cauchy distribution with the median equal to zero and scale equal to one.
CauchyDistribution(double median, double scale)
Creates a Cauchy distribution using the given median and scale.
CauchyDistribution(double median, double scale, double inverseCumAccuracy)
Creates a Cauchy distribution using the given median and scale.
• ### Field Detail

• #### DEFAULT_INVERSE_ABSOLUTE_ACCURACY

public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy.
Since:
2.1
Constant Field Values
• ### Constructor Detail

• #### CauchyDistribution

public CauchyDistribution()
Creates a Cauchy distribution with the median equal to zero and scale equal to one.
• #### CauchyDistribution

public CauchyDistribution(double median,
double scale)
Creates a Cauchy distribution using the given median and scale.
Parameters:
median - Median for this distribution.
scale - Scale parameter for this distribution.
• #### CauchyDistribution

public CauchyDistribution(double median,
double scale,
double inverseCumAccuracy)
Creates a Cauchy distribution using the given median and scale.
Parameters:
median - Median for this distribution.
scale - Scale parameter for this distribution.
inverseCumAccuracy - Maximum absolute error in inverse cumulative probability estimates (defaults to DEFAULT_INVERSE_ABSOLUTE_ACCURACY).
Throws:
NotStrictlyPositiveException - if scale <= 0.
Since:
2.1
• ### Method Detail

• #### cumulativeProbability

public double cumulativeProbability(double x)
For a random variable X whose values are distributed according to this distribution, this method returns P(X <= x). In other words, this method represents the (cumulative) distribution function (CDF) for this distribution.
Parameters:
x - the point at which the CDF is evaluated
Returns:
the probability that a random variable with this distribution takes a value less than or equal to x
• #### getMedian

public double getMedian()
Access the median.
Returns:
the median for this distribution.
• #### getScale

public double getScale()
Access the scale parameter.
Returns:
the scale parameter for this distribution.
• #### probability

public double probability(double x)
For a random variable X whose values are distributed according to this distribution, this method returns P(X = x). In other words, this method represents the probability mass function (PMF) for the distribution. For this distribution P(X = x) always evaluates to 0.
Parameters:
x - the point at which the PMF is evaluated
Returns:
0
• #### density

public double density(double x)
Returns the probability density function (PDF) of this distribution evaluated at the specified point x. In general, the PDF is the derivative of the CDF. If the derivative does not exist at x, then an appropriate replacement should be returned, e.g. Double.POSITIVE_INFINITY, Double.NaN, or the limit inferior or limit superior of the difference quotient.
Parameters:
x - the point at which the PDF is evaluated
Returns:
the value of the probability density function at point x
• #### getSolverAbsoluteAccuracy

protected double getSolverAbsoluteAccuracy()
Returns the solver absolute accuracy for inverse cumulative computation. You can override this method in order to use a Brent solver with an absolute accuracy different from the default.
Overrides:
getSolverAbsoluteAccuracy in class AbstractRealDistribution
Returns:
the maximum absolute error in inverse cumulative probability estimates
• #### getNumericalMean

public double getNumericalMean()
Use this method to get the numerical value of the mean of this distribution. The mean is always undefined no matter the parameters.
Returns:
mean (always Double.NaN)
• #### getNumericalVariance

public double getNumericalVariance()
Use this method to get the numerical value of the variance of this distribution. The variance is always undefined no matter the parameters.
Returns:
variance (always Double.NaN)
• #### getSupportLowerBound

public double getSupportLowerBound()
Access the lower bound of the support. This method must return the same value as inverseCumulativeProbability(0). In other words, this method must return

inf {x in R | P(X <= x) > 0}.

The lower bound of the support is always negative infinity no matter the parameters.
Returns:
lower bound of the support (always Double.NEGATIVE_INFINITY)
• #### getSupportUpperBound

public double getSupportUpperBound()
Access the upper bound of the support. This method must return the same value as inverseCumulativeProbability(1). In other words, this method must return

inf {x in R | P(X <= x) = 1}.

The upper bound of the support is always positive infinity no matter the parameters.
Returns:
upper bound of the support (always Double.POSITIVE_INFINITY)
• #### isSupportLowerBoundInclusive

public boolean isSupportLowerBoundInclusive()
Use this method to get information about whether the lower bound of the support is inclusive or not.
Returns:
whether the lower bound of the support is inclusive or not
• #### isSupportUpperBoundInclusive

public boolean isSupportUpperBoundInclusive()
Use this method to get information about whether the upper bound of the support is inclusive or not.
Returns:
whether the upper bound of the support is inclusive or not
• #### isSupportConnected

public boolean isSupportConnected()
Use this method to get information about whether the support is connected, i.e. whether all values between the lower and upper bound of the support are included in the support. The support of this distribution is connected.
Returns:
true