org.apache.commons.math3.optim.nonlinear.scalar
Class GradientMultivariateOptimizer

java.lang.Object
  extended by org.apache.commons.math3.optim.BaseOptimizer<PAIR>
      extended by org.apache.commons.math3.optim.BaseMultivariateOptimizer<PointValuePair>
          extended by org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer
              extended by org.apache.commons.math3.optim.nonlinear.scalar.GradientMultivariateOptimizer
Direct Known Subclasses:
NonLinearConjugateGradientOptimizer

public abstract class GradientMultivariateOptimizer
extends MultivariateOptimizer

Base class for implementing optimizers for multivariate scalar differentiable functions. It contains boiler-plate code for dealing with gradient evaluation.

Since:
3.1
Version:
$Id$

Field Summary
 
Fields inherited from class org.apache.commons.math3.optim.BaseOptimizer
evaluations, iterations
 
Constructor Summary
protected GradientMultivariateOptimizer(ConvergenceChecker<PointValuePair> checker)
           
 
Method Summary
protected  double[] computeObjectiveGradient(double[] params)
          Compute the gradient vector.
 PointValuePair optimize(OptimizationData... optData)
          Stores data and performs the optimization.
 
Methods inherited from class org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer
computeObjectiveValue, getGoalType
 
Methods inherited from class org.apache.commons.math3.optim.BaseMultivariateOptimizer
getLowerBound, getStartPoint, getUpperBound
 
Methods inherited from class org.apache.commons.math3.optim.BaseOptimizer
doOptimize, getConvergenceChecker, getEvaluations, getIterations, getMaxEvaluations, getMaxIterations, incrementEvaluationCount, incrementIterationCount
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

GradientMultivariateOptimizer

protected GradientMultivariateOptimizer(ConvergenceChecker<PointValuePair> checker)
Parameters:
checker - Convergence checker.
Method Detail

computeObjectiveGradient

protected double[] computeObjectiveGradient(double[] params)
Compute the gradient vector.

Parameters:
params - Point at which the gradient must be evaluated.
Returns:
the gradient at the specified point.

optimize

public PointValuePair optimize(OptimizationData... optData)
                        throws TooManyEvaluationsException
Stores data and performs the optimization.
The list of parameters is open-ended so that sub-classes can extend it with arguments specific to their concrete implementations.
When the method is called multiple times, instance data is overwritten only when actually present in the list of arguments: when not specified, data set in a previous call is retained (and thus is optional in subsequent calls).

Overrides:
optimize in class MultivariateOptimizer
Parameters:
optData - Optimization data. The following data will be looked for:
Returns:
a point/value pair that satifies the convergence criteria.
Throws:
TooManyEvaluationsException - if the maximal number of evaluations (of the objective function) is exceeded.


Copyright © 2003-2013 The Apache Software Foundation. All Rights Reserved.