## org.apache.commons.math3.geometry.partitioning Interface Embedding<S extends Space,T extends Space>

Type Parameters:
`S` - Type of the embedding space.
`T` - Type of the embedded sub-space.
All Known Implementing Classes:
Line, Line, Plane

`public interface Embedding<S extends Space,T extends Space>`

This interface defines mappers between a space and one of its sub-spaces.

Sub-spaces are the lower dimensions subsets of a n-dimensions space. The (n-1)-dimension sub-spaces are specific sub-spaces known as `hyperplanes`. This interface can be used regardless of the dimensions differences. As an example, `Line` in 3D implements Embedding<`Vector3D`, {link org.apache.commons.math3.geometry.euclidean.oned.Vector1D Vector1D>, i.e. it maps directly dimensions 3 and 1.

In the 3D euclidean space, hyperplanes are 2D planes, and the 1D sub-spaces are lines.

Since:
3.0
Version:
\$Id: Embedding.java 1416643 2012-12-03 19:37:14Z tn \$
See Also:
`Hyperplane`

Method Summary
` Vector<S>` `toSpace(Vector<T> point)`
Transform a sub-space point into a space point.
` Vector<T>` `toSubSpace(Vector<S> point)`
Transform a space point into a sub-space point.

Method Detail

### toSubSpace

`Vector<T> toSubSpace(Vector<S> point)`
Transform a space point into a sub-space point.

Parameters:
`point` - n-dimension point of the space
Returns:
(n-1)-dimension point of the sub-space corresponding to the specified space point
See Also:
`toSpace(org.apache.commons.math3.geometry.Vector)`

### toSpace

`Vector<S> toSpace(Vector<T> point)`
Transform a sub-space point into a space point.

Parameters:
`point` - (n-1)-dimension point of the sub-space
Returns:
n-dimension point of the space corresponding to the specified sub-space point
See Also:
`toSubSpace(org.apache.commons.math3.geometry.Vector)`

Copyright © 2003-2012 The Apache Software Foundation. All Rights Reserved.