001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      https://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.codec.digest;
019
020import org.apache.commons.codec.binary.StringUtils;
021
022/**
023 * Implements the MurmurHash3 32-bit and 128-bit hash functions.
024 *
025 * <p>
026 * MurmurHash is a non-cryptographic hash function suitable for general hash-based lookup. The name comes from two basic
027 * operations, multiply (MU) and rotate (R), used in its inner loop. Unlike cryptographic hash functions, it is not
028 * specifically designed to be difficult to reverse by an adversary, making it unsuitable for cryptographic purposes.
029 * </p>
030 *
031 * <p>
032 * This contains a Java port of the 32-bit hash function {@code MurmurHash3_x86_32} and the 128-bit hash function
033 * {@code MurmurHash3_x64_128} from Austin Appleby's original {@code c++} code in SMHasher.
034 * </p>
035 *
036 * <p>
037 * This is public domain code with no copyrights. From home page of
038 * <a href="https://github.com/aappleby/smhasher">SMHasher</a>:
039 * </p>
040 *
041 * <blockquote>
042 * "All MurmurHash versions are public domain software, and the author disclaims all copyright to their
043 * code."
044 * </blockquote>
045 *
046 * <p>
047 * Original adaption from <a href="https://hive.apache.org/">Apache Hive</a>.
048 * That adaption contains a {@code hash64} method that is not part of the original
049 * MurmurHash3 code. It is not recommended to use these methods. They will be removed in a future release. To obtain a
050 * 64-bit hash use half of the bits from the {@code hash128x64} methods using the input data converted to bytes.
051 * </p>
052 *
053 * @see <a href="https://en.wikipedia.org/wiki/MurmurHash">MurmurHash</a>
054 * @see <a href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp"> Original MurmurHash3 C++
055 *      code</a>
056 * @see <a href=
057 *      "https://github.com/apache/hive/blob/master/storage-api/src/java/org/apache/hive/common/util/Murmur3.java">
058 *      Apache Hive Murmer3</a>
059 * @since 1.13
060 */
061public final class MurmurHash3 {
062
063    /**
064     * Generates 32-bit hash from input bytes. Bytes can be added incrementally and the new
065     * hash computed.
066     *
067     * <p>
068     * This is an implementation of the 32-bit hash function {@code MurmurHash3_x86_32}
069     * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher.
070     * </p>
071     *
072     * <p>
073     * This implementation contains a sign-extension bug in the finalization step of
074     * any bytes left over from dividing the length by 4. This manifests if any of these
075     * bytes are negative.
076     * </p>
077     *
078     * @deprecated Use IncrementalHash32x86. This corrects the processing of trailing bytes.
079     */
080    @Deprecated
081    public static class IncrementalHash32 extends IncrementalHash32x86 {
082
083        /**
084         * Constructs a new instance.
085         */
086        public IncrementalHash32() {
087            // empty
088        }
089
090        /**
091         * {@inheritDoc}
092         *
093         * <p>
094         * This implementation contains a sign-extension bug in the finalization step of
095         * any bytes left over from dividing the length by 4. This manifests if any of these
096         * bytes are negative.
097         * <p>
098         *
099         * @deprecated Use IncrementalHash32x86. This corrects the processing of trailing bytes.
100         */
101        @Override
102        @Deprecated
103        int finalise(final int hash, final int unprocessedLength, final byte[] unprocessed, final int totalLen) {
104            int result = hash;
105            // Note: This fails to apply masking using 0xff to the 3 remaining bytes.
106            int k1 = 0;
107            switch (unprocessedLength) {
108            case 3:
109                k1 ^= unprocessed[2] << 16;
110                // falls-through
111            case 2:
112                k1 ^= unprocessed[1] << 8;
113                // falls-through
114            case 1:
115                k1 ^= unprocessed[0];
116                // mix functions
117                k1 *= C1_32;
118                k1 = Integer.rotateLeft(k1, R1_32);
119                k1 *= C2_32;
120                result ^= k1;
121            }
122            // finalization
123            result ^= totalLen;
124            return fmix32(result);
125        }
126    }
127
128    /**
129     * Generates 32-bit hash from input bytes. Bytes can be added incrementally and the new
130     * hash computed.
131     *
132     * <p>
133     * This is an implementation of the 32-bit hash function {@code MurmurHash3_x86_32}
134     * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher.
135     * </p>
136     *
137     * @since 1.14
138     */
139    public static class IncrementalHash32x86 {
140
141        /** The size of byte blocks that are processed together. */
142        private static final int BLOCK_SIZE = 4;
143
144        /**
145         * Combines the bytes using an Or operation ({@code | } in a little-endian representation
146         * of a 32-bit integer; byte 1 will be the least significant byte, byte 4 the most
147         * significant.
148         *
149         * @param b1 The first byte.
150         * @param b2 The second byte.
151         * @param b3 The third byte.
152         * @param b4 The fourth byte.
153         * @return The 32-bit integer.
154         */
155        private static int orBytes(final byte b1, final byte b2, final byte b3, final byte b4) {
156            return b1 & 0xff | (b2 & 0xff) << 8 | (b3 & 0xff) << 16 | (b4 & 0xff) << 24;
157        }
158
159        /** Up to 3 unprocessed bytes from input data. */
160        private final byte[] unprocessed = new byte[3];
161
162        /** The number of unprocessed bytes in the tail data. */
163        private int unprocessedLength;
164
165        /** The total number of input bytes added since the start. */
166        private int totalLen;
167
168        /**
169         * The current running hash.
170         * This must be finalized to generate the 32-bit hash value.
171         */
172        private int hash;
173
174        /**
175         * Constructs a new instance.
176         */
177        public IncrementalHash32x86() {
178            // empty
179        }
180
181        /**
182         * Adds the byte array to the current incremental hash.
183         *
184         * @param data The input byte array.
185         * @param offset The offset of data.
186         * @param length The length of array.
187         */
188        public final void add(final byte[] data, final int offset, final int length) {
189            if (length <= 0) {
190                // Nothing to add
191                return;
192            }
193            totalLen += length;
194            // Process the bytes in blocks of 4.
195            // New bytes must be added to any current unprocessed bytes,
196            // then processed in blocks of 4 and the remaining bytes saved:
197            //
198            //    |--|---------------------------|--|
199            // unprocessed
200            //                main block
201            //                                remaining
202
203            // Check if the unprocessed bytes and new bytes can fill a block of 4.
204            // Make this overflow safe in the event that length is Integer.MAX_VALUE.
205            // Equivalent to: (unprocessedLength + length < BLOCK_SIZE)
206            if (unprocessedLength + length - BLOCK_SIZE < 0) {
207                // Not enough so add to the unprocessed bytes
208                System.arraycopy(data, offset, unprocessed, unprocessedLength, length);
209                unprocessedLength += length;
210                return;
211            }
212            // Combine unprocessed bytes with new bytes.
213            final int newOffset;
214            final int newLength;
215            if (unprocessedLength > 0) {
216                int k = -1;
217                switch (unprocessedLength) {
218                case 1:
219                    k = orBytes(unprocessed[0], data[offset], data[offset + 1], data[offset + 2]);
220                    break;
221                case 2:
222                    k = orBytes(unprocessed[0], unprocessed[1], data[offset], data[offset + 1]);
223                    break;
224                case 3:
225                    k = orBytes(unprocessed[0], unprocessed[1], unprocessed[2], data[offset]);
226                    break;
227                default:
228                    throw new IllegalStateException("Unprocessed length should be 1, 2, or 3: " + unprocessedLength);
229                }
230                hash = mix32(k, hash);
231                // Update the offset and length
232                final int consumed = BLOCK_SIZE - unprocessedLength;
233                newOffset = offset + consumed;
234                newLength = length - consumed;
235            } else {
236                newOffset = offset;
237                newLength = length;
238            }
239            // Main processing of blocks of 4 bytes
240            final int nblocks = newLength >> 2;
241
242            for (int i = 0; i < nblocks; i++) {
243                final int index = newOffset + (i << 2);
244                final int k = MurmurHash.getLittleEndianInt(data, index);
245                hash = mix32(k, hash);
246            }
247            // Save left-over unprocessed bytes
248            final int consumed = nblocks << 2;
249            unprocessedLength = newLength - consumed;
250            if (unprocessedLength != 0) {
251                System.arraycopy(data, newOffset + consumed, unprocessed, 0, unprocessedLength);
252            }
253        }
254
255        /**
256         * Generates the 32-bit hash value. Repeat calls to this method with no additional data
257         * will generate the same hash value.
258         *
259         * @return The 32-bit hash
260         */
261        public final int end() {
262            // Allow calling end() again after adding no data to return the same result.
263            return finalise(hash, unprocessedLength, unprocessed, totalLen);
264        }
265
266        /**
267         * Finalizes the running hash to the output 32-bit hash by processing remaining bytes
268         * and performing final mixing.
269         *
270         * @param hash The running hash.
271         * @param unprocessedLength The number of unprocessed bytes in the tail data.
272         * @param unprocessed Up to 3 unprocessed bytes from input data.
273         * @param totalLen The total number of input bytes added since the start.
274         * @return The 32-bit hash.
275         */
276        int finalise(final int hash, final int unprocessedLength, final byte[] unprocessed, final int totalLen) {
277            int result = hash;
278            int k1 = 0;
279            switch (unprocessedLength) {
280            case 3:
281                k1 ^= (unprocessed[2] & 0xff) << 16;
282                // falls-through
283            case 2:
284                k1 ^= (unprocessed[1] & 0xff) << 8;
285                // falls-through
286            case 1:
287                k1 ^= unprocessed[0] & 0xff;
288                // mix functions
289                k1 *= C1_32;
290                k1 = Integer.rotateLeft(k1, R1_32);
291                k1 *= C2_32;
292                result ^= k1;
293            }
294            // finalization
295            result ^= totalLen;
296            return fmix32(result);
297        }
298
299        /**
300         * Starts a new incremental hash.
301         *
302         * @param seed The initial seed value.
303         */
304        public final void start(final int seed) {
305            // Reset
306            unprocessedLength = totalLen = 0;
307            hash = seed;
308        }
309    }
310
311    /**
312     * A random number to use for a hash code.
313     *
314     * @deprecated This is not used internally and will be removed in a future release.
315     */
316    @Deprecated
317    public static final long NULL_HASHCODE = 2862933555777941757L;
318    /**
319     * A default seed to use for the murmur hash algorithm.
320     * Has the value {@code 104729}.
321     */
322    public static final int DEFAULT_SEED = 104729;
323    // Constants for 32-bit variant
324    private static final int C1_32 = 0xcc9e2d51;
325    private static final int C2_32 = 0x1b873593;
326    private static final int R1_32 = 15;
327    private static final int R2_32 = 13;
328
329    private static final int M_32 = 5;
330    private static final int N_32 = 0xe6546b64;
331    // Constants for 128-bit variant
332    private static final long C1 = 0x87c37b91114253d5L;
333    private static final long C2 = 0x4cf5ad432745937fL;
334    private static final int R1 = 31;
335    private static final int R2 = 27;
336    private static final int R3 = 33;
337    private static final int M = 5;
338
339    private static final int N1 = 0x52dce729;
340
341    private static final int N2 = 0x38495ab5;
342
343    /**
344     * Performs the final avalanche mix step of the 32-bit hash function {@code MurmurHash3_x86_32}.
345     *
346     * @param hash The current hash.
347     * @return The final hash.
348     */
349    private static int fmix32(int hash) {
350        hash ^= hash >>> 16;
351        hash *= 0x85ebca6b;
352        hash ^= hash >>> 13;
353        hash *= 0xc2b2ae35;
354        hash ^= hash >>> 16;
355        return hash;
356    }
357
358    /**
359     * Performs the final avalanche mix step of the 64-bit hash function {@code MurmurHash3_x64_128}.
360     *
361     * @param hash The current hash.
362     * @return The final hash.
363     */
364    private static long fmix64(long hash) {
365        hash ^= hash >>> 33;
366        hash *= 0xff51afd7ed558ccdL;
367        hash ^= hash >>> 33;
368        hash *= 0xc4ceb9fe1a85ec53L;
369        hash ^= hash >>> 33;
370        return hash;
371    }
372
373    /**
374     * Generates 128-bit hash from the byte array with a default seed.
375     * This is a helper method that will produce the same result as:
376     *
377     * <pre>
378     * int offset = 0;
379     * int seed = 104729;
380     * int hash = MurmurHash3.hash128(data, offset, data.length, seed);
381     * </pre>
382     *
383     * <p>
384     * Note: The sign extension bug in {@link #hash128(byte[], int, int, int)} does not effect
385     * this result as the default seed is positive.
386     * </p>
387     *
388     * @param data The input byte array.
389     * @return The 128-bit hash (2 longs).
390     * @see #hash128(byte[], int, int, int)
391     */
392    public static long[] hash128(final byte[] data) {
393        return hash128(data, 0, data.length, DEFAULT_SEED);
394    }
395
396    /**
397     * Generates 128-bit hash from the byte array with the given offset, length and seed.
398     *
399     * <p>
400     * This is an implementation of the 128-bit hash function {@code MurmurHash3_x64_128}
401     * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher.
402     * </p>
403     *
404     * <p>
405     * This implementation contains a sign-extension bug in the seed initialization.
406     * This manifests if the seed is negative.
407     * </p>
408     *
409     * @param data The input byte array.
410     * @param offset The first element of array.
411     * @param length The length of array.
412     * @param seed The initial seed value.
413     * @return The 128-bit hash (2 longs).
414     * @deprecated Use {@link #hash128x64(byte[], int, int, int)}. This corrects the seed initialization.
415     */
416    @Deprecated
417    public static long[] hash128(final byte[] data, final int offset, final int length, final int seed) {
418        // Note: This deliberately fails to apply masking using 0xffffffffL to the seed
419        // to maintain behavioral compatibility with the original version.
420        // The implicit conversion to a long will extend a negative sign
421        // bit through the upper 32-bits of the long seed. These should be zero.
422        return hash128x64Internal(data, offset, length, seed);
423    }
424
425    /**
426     * Generates 128-bit hash from a string with a default seed.
427     *
428     * <p>
429     * Before 1.14 the string was converted using default encoding. Since 1.14 the string is converted to bytes using UTF-8 encoding.
430     * </p>
431     * <p>
432     * This is a helper method that will produce the same result as:
433     * </p>
434     *
435     * <pre>
436     * int offset = 0;
437     * int seed = 104729;
438     * byte[] bytes = data.getBytes(StandardCharsets.UTF_8);
439     * int hash = MurmurHash3.hash128(bytes, offset, bytes.length, seed);
440     * </pre>
441     *
442     * <p>
443     * Note: The sign extension bug in {@link #hash128(byte[], int, int, int)} does not effect this result as the default seed is positive.
444     * </p>
445     *
446     * @param data The input String.
447     * @return The 128-bit hash (2 longs).
448     * @see #hash128(byte[], int, int, int)
449     * @deprecated Use {@link #hash128x64(byte[])} using the bytes returned from {@link String#getBytes(java.nio.charset.Charset)}.
450     */
451    @Deprecated
452    public static long[] hash128(final String data) {
453        final byte[] bytes = StringUtils.getBytesUtf8(data);
454        return hash128(bytes, 0, bytes.length, DEFAULT_SEED);
455    }
456
457    /**
458     * Generates 128-bit hash from the byte array with a seed of zero.
459     * This is a helper method that will produce the same result as:
460     *
461     * <pre>
462     * int offset = 0;
463     * int seed = 0;
464     * int hash = MurmurHash3.hash128x64(data, offset, data.length, seed);
465     * </pre>
466     *
467     * @param data The input byte array.
468     * @return The 128-bit hash (2 longs).
469     * @see #hash128x64(byte[], int, int, int)
470     * @since 1.14
471     */
472    public static long[] hash128x64(final byte[] data) {
473        return hash128x64(data, 0, data.length, 0);
474    }
475
476    /**
477     * Generates 128-bit hash from the byte array with the given offset, length and seed.
478     *
479     * <p>
480     * This is an implementation of the 128-bit hash function {@code MurmurHash3_x64_128}
481     * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher.
482     * </p>
483     *
484     * @param data The input byte array.
485     * @param offset The first element of array.
486     * @param length The length of array.
487     * @param seed The initial seed value.
488     * @return The 128-bit hash (2 longs).
489     * @since 1.14
490     */
491    public static long[] hash128x64(final byte[] data, final int offset, final int length, final int seed) {
492        // Use an unsigned 32-bit integer as the seed
493        return hash128x64Internal(data, offset, length, seed & 0xffffffffL);
494    }
495
496    /**
497     * Generates 128-bit hash from the byte array with the given offset, length and seed.
498     *
499     * <p>
500     * This is an implementation of the 128-bit hash function {@code MurmurHash3_x64_128}
501     * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher.
502     * </p>
503     *
504     * @param data The input byte array.
505     * @param offset The first element of array.
506     * @param length The length of array.
507     * @param seed The initial seed value.
508     * @return The 128-bit hash (2 longs).
509     */
510    private static long[] hash128x64Internal(final byte[] data, final int offset, final int length, final long seed) {
511        long h1 = seed;
512        long h2 = seed;
513        final int nblocks = length >> 4;
514        // body
515        for (int i = 0; i < nblocks; i++) {
516            final int index = offset + (i << 4);
517            long k1 = MurmurHash.getLittleEndianLong(data, index);
518            long k2 = MurmurHash.getLittleEndianLong(data, index + 8);
519            // mix functions for k1
520            k1 *= C1;
521            k1 = Long.rotateLeft(k1, R1);
522            k1 *= C2;
523            h1 ^= k1;
524            h1 = Long.rotateLeft(h1, R2);
525            h1 += h2;
526            h1 = h1 * M + N1;
527            // mix functions for k2
528            k2 *= C2;
529            k2 = Long.rotateLeft(k2, R3);
530            k2 *= C1;
531            h2 ^= k2;
532            h2 = Long.rotateLeft(h2, R1);
533            h2 += h1;
534            h2 = h2 * M + N2;
535        }
536        // tail
537        long k1 = 0;
538        long k2 = 0;
539        final int index = offset + (nblocks << 4);
540        switch (offset + length - index) {
541        case 15:
542            k2 ^= ((long) data[index + 14] & 0xff) << 48;
543            // falls-through
544        case 14:
545            k2 ^= ((long) data[index + 13] & 0xff) << 40;
546            // falls-through
547        case 13:
548            k2 ^= ((long) data[index + 12] & 0xff) << 32;
549            // falls-through
550        case 12:
551            k2 ^= ((long) data[index + 11] & 0xff) << 24;
552            // falls-through
553        case 11:
554            k2 ^= ((long) data[index + 10] & 0xff) << 16;
555            // falls-through
556        case 10:
557            k2 ^= ((long) data[index + 9] & 0xff) << 8;
558            // falls-through
559        case 9:
560            k2 ^= data[index + 8] & 0xff;
561            k2 *= C2;
562            k2 = Long.rotateLeft(k2, R3);
563            k2 *= C1;
564            h2 ^= k2;
565            // falls-through
566        case 8:
567            k1 ^= ((long) data[index + 7] & 0xff) << 56;
568            // falls-through
569        case 7:
570            k1 ^= ((long) data[index + 6] & 0xff) << 48;
571            // falls-through
572        case 6:
573            k1 ^= ((long) data[index + 5] & 0xff) << 40;
574            // falls-through
575        case 5:
576            k1 ^= ((long) data[index + 4] & 0xff) << 32;
577            // falls-through
578        case 4:
579            k1 ^= ((long) data[index + 3] & 0xff) << 24;
580            // falls-through
581        case 3:
582            k1 ^= ((long) data[index + 2] & 0xff) << 16;
583            // falls-through
584        case 2:
585            k1 ^= ((long) data[index + 1] & 0xff) << 8;
586            // falls-through
587        case 1:
588            k1 ^= data[index] & 0xff;
589            k1 *= C1;
590            k1 = Long.rotateLeft(k1, R1);
591            k1 *= C2;
592            h1 ^= k1;
593        }
594        // finalization
595        h1 ^= length;
596        h2 ^= length;
597
598        h1 += h2;
599        h2 += h1;
600
601        h1 = fmix64(h1);
602        h2 = fmix64(h2);
603
604        h1 += h2;
605        h2 += h1;
606        return new long[] { h1, h2 };
607    }
608
609    /**
610     * Generates 32-bit hash from the byte array with a default seed.
611     * This is a helper method that will produce the same result as:
612     *
613     * <pre>
614     * int offset = 0;
615     * int seed = 104729;
616     * int hash = MurmurHash3.hash32(data, offset, data.length, seed);
617     * </pre>
618     *
619     * <p>
620     * This implementation contains a sign-extension bug in the finalization step of
621     * any bytes left over from dividing the length by 4. This manifests if any of these
622     * bytes are negative.
623     * </p>
624     *
625     * @param data The input byte array.
626     * @return The 32-bit hash.
627     * @see #hash32(byte[], int, int, int)
628     * @deprecated Use {@link #hash32x86(byte[], int, int, int)}. This corrects the processing of trailing bytes.
629     */
630    @Deprecated
631    public static int hash32(final byte[] data) {
632        return hash32(data, 0, data.length, DEFAULT_SEED);
633    }
634
635    /**
636     * Generates 32-bit hash from the byte array with the given length and a default seed.
637     * This is a helper method that will produce the same result as:
638     *
639     * <pre>
640     * int offset = 0;
641     * int seed = 104729;
642     * int hash = MurmurHash3.hash32(data, offset, length, seed);
643     * </pre>
644     *
645     * <p>
646     * This implementation contains a sign-extension bug in the finalization step of
647     * any bytes left over from dividing the length by 4. This manifests if any of these
648     * bytes are negative.
649     * </p>
650     *
651     * @param data The input byte array.
652     * @param length The length of array.
653     * @return The 32-bit hash.
654     * @see #hash32(byte[], int, int, int)
655     * @deprecated Use {@link #hash32x86(byte[], int, int, int)}. This corrects the processing of trailing bytes.
656     */
657    @Deprecated
658    public static int hash32(final byte[] data, final int length) {
659        return hash32(data, length, DEFAULT_SEED);
660    }
661
662    /**
663     * Generates 32-bit hash from the byte array with the given length and seed. This is a
664     * helper method that will produce the same result as:
665     *
666     * <pre>
667     * int offset = 0;
668     * int hash = MurmurHash3.hash32(data, offset, length, seed);
669     * </pre>
670     *
671     * <p>
672     * This implementation contains a sign-extension bug in the finalization step of
673     * any bytes left over from dividing the length by 4. This manifests if any of these
674     * bytes are negative.
675     * </p>
676     *
677     * @param data The input byte array.
678     * @param length The length of array.
679     * @param seed The initial seed value.
680     * @return The 32-bit hash.
681     * @see #hash32(byte[], int, int, int)
682     * @deprecated Use {@link #hash32x86(byte[], int, int, int)}. This corrects the processing of trailing bytes.
683     */
684    @Deprecated
685    public static int hash32(final byte[] data, final int length, final int seed) {
686        return hash32(data, 0, length, seed);
687    }
688
689    /**
690     * Generates 32-bit hash from the byte array with the given offset, length and seed.
691     *
692     * <p>
693     * This is an implementation of the 32-bit hash function {@code MurmurHash3_x86_32}
694     * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher.
695     * </p>
696     *
697     * <p>
698     * This implementation contains a sign-extension bug in the finalization step of
699     * any bytes left over from dividing the length by 4. This manifests if any of these
700     * bytes are negative.
701     * </p>
702     *
703     * @param data The input byte array.
704     * @param offset The offset of data.
705     * @param length The length of array.
706     * @param seed The initial seed value.
707     * @return The 32-bit hash
708     * @deprecated Use {@link #hash32x86(byte[], int, int, int)}. This corrects the processing of trailing bytes.
709     */
710    @Deprecated
711    public static int hash32(final byte[] data, final int offset, final int length, final int seed) {
712        int hash = seed;
713        final int nblocks = length >> 2;
714        // body
715        for (int i = 0; i < nblocks; i++) {
716            final int index = offset + (i << 2);
717            final int k = MurmurHash.getLittleEndianInt(data, index);
718            hash = mix32(k, hash);
719        }
720        // tail
721        // Note: This fails to apply masking using 0xff to the 3 remaining bytes.
722        final int index = offset + (nblocks << 2);
723        int k1 = 0;
724        switch (offset + length - index) {
725        case 3:
726            k1 ^= data[index + 2] << 16;
727            // falls-through
728        case 2:
729            k1 ^= data[index + 1] << 8;
730            // falls-through
731        case 1:
732            k1 ^= data[index];
733            // mix functions
734            k1 *= C1_32;
735            k1 = Integer.rotateLeft(k1, R1_32);
736            k1 *= C2_32;
737            hash ^= k1;
738        }
739        hash ^= length;
740        return fmix32(hash);
741    }
742
743    /**
744     * Generates 32-bit hash from a long with a default seed value.
745     * This is a helper method that will produce the same result as:
746     *
747     * <pre>
748     * int offset = 0;
749     * int seed = 104729;
750     * int hash = MurmurHash3.hash32x86(ByteBuffer.allocate(8)
751     *                                            .putLong(data)
752     *                                            .array(), offset, 8, seed);
753     * </pre>
754     *
755     * @param data The long to hash.
756     * @return The 32-bit hash.
757     * @see #hash32x86(byte[], int, int, int)
758     */
759    public static int hash32(final long data) {
760        return hash32(data, DEFAULT_SEED);
761    }
762
763    /**
764     * Generates 32-bit hash from a long with the given seed.
765     * This is a helper method that will produce the same result as:
766     *
767     * <pre>
768     * int offset = 0;
769     * int hash = MurmurHash3.hash32x86(ByteBuffer.allocate(8)
770     *                                            .putLong(data)
771     *                                            .array(), offset, 8, seed);
772     * </pre>
773     *
774     * @param data The long to hash.
775     * @param seed The initial seed value.
776     * @return The 32-bit hash.
777     * @see #hash32x86(byte[], int, int, int)
778     */
779    public static int hash32(final long data, final int seed) {
780        int hash = seed;
781        final long r0 = Long.reverseBytes(data);
782
783        hash = mix32((int) r0, hash);
784        hash = mix32((int) (r0 >>> 32), hash);
785
786        hash ^= Long.BYTES;
787        return fmix32(hash);
788    }
789
790    /**
791     * Generates 32-bit hash from two longs with a default seed value.
792     * This is a helper method that will produce the same result as:
793     *
794     * <pre>
795     * int offset = 0;
796     * int seed = 104729;
797     * int hash = MurmurHash3.hash32x86(ByteBuffer.allocate(16)
798     *                                            .putLong(data1)
799     *                                            .putLong(data2)
800     *                                            .array(), offset, 16, seed);
801     * </pre>
802     *
803     * @param data1 The first long to hash.
804     * @param data2 The second long to hash.
805     * @return The 32-bit hash.
806     * @see #hash32x86(byte[], int, int, int)
807     */
808    public static int hash32(final long data1, final long data2) {
809        return hash32(data1, data2, DEFAULT_SEED);
810    }
811
812    /**
813     * Generates 32-bit hash from two longs with the given seed.
814     * This is a helper method that will produce the same result as:
815     *
816     * <pre>
817     * int offset = 0;
818     * int hash = MurmurHash3.hash32x86(ByteBuffer.allocate(16)
819     *                                            .putLong(data1)
820     *                                            .putLong(data2)
821     *                                            .array(), offset, 16, seed);
822     * </pre>
823     *
824     * @param data1 The first long to hash.
825     * @param data2 The second long to hash.
826     * @param seed The initial seed value.
827     * @return The 32-bit hash.
828     * @see #hash32x86(byte[], int, int, int)
829     */
830    public static int hash32(final long data1, final long data2, final int seed) {
831        int hash = seed;
832        final long r0 = Long.reverseBytes(data1);
833        final long r1 = Long.reverseBytes(data2);
834
835        hash = mix32((int) r0, hash);
836        hash = mix32((int) (r0 >>> 32), hash);
837        hash = mix32((int) r1, hash);
838        hash = mix32((int) (r1 >>> 32), hash);
839
840        hash ^= Long.BYTES * 2;
841        return fmix32(hash);
842    }
843
844    /**
845     * Generates 32-bit hash from a string with a default seed.
846     * <p>
847     * Before 1.14 the string was converted using default encoding.
848     * Since 1.14 the string is converted to bytes using UTF-8 encoding.
849     * </p>
850     * This is a helper method that will produce the same result as:
851     *
852     * <pre>
853     * int offset = 0;
854     * int seed = 104729;
855     * byte[] bytes = data.getBytes(StandardCharsets.UTF_8);
856     * int hash = MurmurHash3.hash32(bytes, offset, bytes.length, seed);
857     * </pre>
858     *
859     * <p>
860     * This implementation contains a sign-extension bug in the finalization step of
861     * any bytes left over from dividing the length by 4. This manifests if any of these
862     * bytes are negative.
863     * </p>
864     *
865     * @param data The input string
866     * @return The 32-bit hash
867     * @see #hash32(byte[], int, int, int)
868     * @deprecated Use {@link #hash32x86(byte[], int, int, int)} with the bytes returned from
869     * {@link String#getBytes(java.nio.charset.Charset)}. This corrects the processing of trailing bytes.
870     */
871    @Deprecated
872    public static int hash32(final String data) {
873        final byte[] bytes = StringUtils.getBytesUtf8(data);
874        return hash32(bytes, 0, bytes.length, DEFAULT_SEED);
875    }
876
877    /**
878     * Generates 32-bit hash from the byte array with a seed of zero.
879     * This is a helper method that will produce the same result as:
880     *
881     * <pre>
882     * int offset = 0;
883     * int seed = 0;
884     * int hash = MurmurHash3.hash32x86(data, offset, data.length, seed);
885     * </pre>
886     *
887     * @param data The input byte array.
888     * @return The 32-bit hash.
889     * @see #hash32x86(byte[], int, int, int)
890     * @since 1.14
891     */
892    public static int hash32x86(final byte[] data) {
893        return hash32x86(data, 0, data.length, 0);
894    }
895
896    /**
897     * Generates 32-bit hash from the byte array with the given offset, length and seed.
898     *
899     * <p>
900     * This is an implementation of the 32-bit hash function {@code MurmurHash3_x86_32}
901     * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher.
902     * </p>
903     *
904     * @param data The input byte array.
905     * @param offset The offset of data.
906     * @param length The length of array.
907     * @param seed The initial seed value.
908     * @return The 32-bit hash.
909     * @since 1.14
910     */
911    public static int hash32x86(final byte[] data, final int offset, final int length, final int seed) {
912        int hash = seed;
913        final int nblocks = length >> 2;
914        // body
915        for (int i = 0; i < nblocks; i++) {
916            final int index = offset + (i << 2);
917            final int k = MurmurHash.getLittleEndianInt(data, index);
918            hash = mix32(k, hash);
919        }
920        // tail
921        final int index = offset + (nblocks << 2);
922        int k1 = 0;
923        switch (offset + length - index) {
924        case 3:
925            k1 ^= (data[index + 2] & 0xff) << 16;
926            // falls-through
927        case 2:
928            // falls-through
929            k1 ^= (data[index + 1] & 0xff) << 8;
930            // falls-through
931        case 1:
932            k1 ^= data[index] & 0xff;
933            // mix functions
934            k1 *= C1_32;
935            k1 = Integer.rotateLeft(k1, R1_32);
936            k1 *= C2_32;
937            hash ^= k1;
938        }
939        hash ^= length;
940        return fmix32(hash);
941    }
942
943    /**
944     * Generates 64-bit hash from a byte array with a default seed.
945     *
946     * <p>
947     * <strong>This is not part of the original MurmurHash3 {@code c++} implementation.</strong>
948     * </p>
949     *
950     * <p>
951     * This is a Murmur3-like 64-bit variant. The method does not produce the same result as either half of the hash bytes from {@linkplain #hash128x64(byte[])}
952     * with the same byte data. This method will be removed in a future release.
953     * </p>
954     *
955     * <p>
956     * Note: The sign extension bug in {@link #hash64(byte[], int, int, int)} does not effect this result as the default seed is positive.
957     * </p>
958     *
959     * <p>
960     * This is a helper method that will produce the same result as:
961     * </p>
962     *
963     * <pre>
964     *
965     * int offset = 0;
966     * int seed = 104729;
967     * long hash = MurmurHash3.hash64(data, offset, data.length, seed);
968     * </pre>
969     *
970     * @param data The input byte array.
971     * @return The 64-bit hash.
972     * @see #hash64(byte[], int, int, int)
973     * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[])}.
974     */
975    @Deprecated
976    public static long hash64(final byte[] data) {
977        return hash64(data, 0, data.length, DEFAULT_SEED);
978    }
979
980    /**
981     * Generates 64-bit hash from a byte array with the given offset and length and a default seed.
982     *
983     * <p>
984     * <strong> This is not part of the original MurmurHash3 {@code c++} implementation. </strong>
985     * </p>
986     *
987     * <p>
988     * This is a Murmur3-like 64-bit variant. The method does not produce the same result as either half of the hash bytes from {@linkplain #hash128x64(byte[])}
989     * with the same byte data. This method will be removed in a future release.
990     * </p>
991     *
992     * <p>
993     * Note: The sign extension bug in {@link #hash64(byte[], int, int, int)} does not effect this result as the default seed is positive.
994     * </p>
995     *
996     * <p>
997     * This is a helper method that will produce the same result as:
998     * </p>
999     *
1000     * <pre>
1001     *
1002     * int seed = 104729;
1003     * long hash = MurmurHash3.hash64(data, offset, length, seed);
1004     * </pre>
1005     *
1006     * @param data   The input byte array.
1007     * @param offset The offset of data.
1008     * @param length The length of array.
1009     * @return The 64-bit hash.
1010     * @see #hash64(byte[], int, int, int)
1011     * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[], int, int, int)}.
1012     */
1013    @Deprecated
1014    public static long hash64(final byte[] data, final int offset, final int length) {
1015        return hash64(data, offset, length, DEFAULT_SEED);
1016    }
1017
1018    /**
1019     * Generates 64-bit hash from a byte array with the given offset, length and seed.
1020     *
1021     * <p>
1022     * <strong>This is not part of the original MurmurHash3 {@code c++} implementation.</strong>
1023     * </p>
1024     *
1025     * <p>
1026     * This is a Murmur3-like 64-bit variant. This method will be removed in a future release.
1027     * </p>
1028     *
1029     * <p>
1030     * This implementation contains a sign-extension bug in the seed initialization. This manifests if the seed is negative.
1031     * </p>
1032     *
1033     * <p>
1034     * This algorithm processes 8 bytes chunks of data in a manner similar to the 16 byte chunks of data processed in the MurmurHash3
1035     * {@code MurmurHash3_x64_128} method. However the hash is not mixed with a hash chunk from the next 8 bytes of data. The method will not return the same
1036     * value as the first or second 64-bits of the function {@link #hash128(byte[], int, int, int)}.
1037     * </p>
1038     *
1039     * <p>
1040     * Use of this method is not advised. Use the first long returned from {@link #hash128x64(byte[], int, int, int)}.
1041     * </p>
1042     *
1043     * @param data   The input byte array.
1044     * @param offset The offset of data.
1045     * @param length The length of array.
1046     * @param seed   The initial seed value.
1047     * @return The 64-bit hash.
1048     * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[], int, int, int)}.
1049     */
1050    @Deprecated
1051    public static long hash64(final byte[] data, final int offset, final int length, final int seed) {
1052        // Note: This fails to apply masking using 0xffffffffL to the seed.
1053        long hash = seed;
1054        final int nblocks = length >> 3;
1055        // body
1056        for (int i = 0; i < nblocks; i++) {
1057            final int index = offset + (i << 3);
1058            long k = MurmurHash.getLittleEndianLong(data, index);
1059            // mix functions
1060            k *= C1;
1061            k = Long.rotateLeft(k, R1);
1062            k *= C2;
1063            hash ^= k;
1064            hash = Long.rotateLeft(hash, R2) * M + N1;
1065        }
1066        // tail
1067        long k1 = 0;
1068        final int index = offset + (nblocks << 3);
1069        switch (offset + length - index) {
1070        case 7:
1071            k1 ^= ((long) data[index + 6] & 0xff) << 48;
1072            // falls-through
1073        case 6:
1074            k1 ^= ((long) data[index + 5] & 0xff) << 40;
1075            // falls-through
1076        case 5:
1077            k1 ^= ((long) data[index + 4] & 0xff) << 32;
1078            // falls-through
1079        case 4:
1080            k1 ^= ((long) data[index + 3] & 0xff) << 24;
1081            // falls-through
1082        case 3:
1083            k1 ^= ((long) data[index + 2] & 0xff) << 16;
1084            // falls-through
1085        case 2:
1086            k1 ^= ((long) data[index + 1] & 0xff) << 8;
1087            // falls-through
1088        case 1:
1089            k1 ^= (long) data[index] & 0xff;
1090            k1 *= C1;
1091            k1 = Long.rotateLeft(k1, R1);
1092            k1 *= C2;
1093            hash ^= k1;
1094        }
1095        // finalization
1096        hash ^= length;
1097        return fmix64(hash);
1098    }
1099
1100    /**
1101     * Generates 64-bit hash from an int with a default seed.
1102     *
1103     * <p>
1104     * <strong> This is not part of the original MurmurHash3 {@code c++} implementation. </strong>
1105     * </p>
1106     *
1107     * <p>
1108     * This is a Murmur3-like 64-bit variant. The method does not produce the same result as either half of the hash bytes from {@linkplain #hash128x64(byte[])}
1109     * with the same byte data from the {@code int}. This method will be removed in a future release.
1110     * </p>
1111     *
1112     * <p>
1113     * Note: The sign extension bug in {@link #hash64(byte[], int, int, int)} does not effect this result as the default seed is positive.
1114     * </p>
1115     *
1116     * <p>
1117     * This is a helper method that will produce the same result as:
1118     * </p>
1119     *
1120     * <pre>
1121     *
1122     * int offset = 0;
1123     * int seed = 104729;
1124     * long hash = MurmurHash3.hash64(ByteBuffer.allocate(4).putInt(data).array(), offset, 4, seed);
1125     * </pre>
1126     *
1127     * @param data The int to hash.
1128     * @return The 64-bit hash.
1129     * @see #hash64(byte[], int, int, int)
1130     * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[])} with the bytes from the {@code int}.
1131     */
1132    @Deprecated
1133    public static long hash64(final int data) {
1134        long k1 = Integer.reverseBytes(data) & -1L >>> 32;
1135        long hash = DEFAULT_SEED;
1136        k1 *= C1;
1137        k1 = Long.rotateLeft(k1, R1);
1138        k1 *= C2;
1139        hash ^= k1;
1140        // finalization
1141        hash ^= Integer.BYTES;
1142        return fmix64(hash);
1143    }
1144
1145    /**
1146     * Generates 64-bit hash from a long with a default seed.
1147     *
1148     * <p>
1149     * <strong> This is not part of the original MurmurHash3 {@code c++} implementation. </strong>
1150     * </p>
1151     *
1152     * <p>
1153     * This is a Murmur3-like 64-bit variant. The method does not produce the same result as either half of the hash bytes from {@linkplain #hash128x64(byte[])}
1154     * with the same byte data from the {@code long}. This method will be removed in a future release.
1155     * </p>
1156     *
1157     * <p>
1158     * Note: The sign extension bug in {@link #hash64(byte[], int, int, int)} does not effect this result as the default seed is positive.
1159     * </p>
1160     *
1161     * <p>
1162     * This is a helper method that will produce the same result as:
1163     * </p>
1164     *
1165     * <pre>
1166     *
1167     * int offset = 0;
1168     * int seed = 104729;
1169     * long hash = MurmurHash3.hash64(ByteBuffer.allocate(8).putLong(data).array(), offset, 8, seed);
1170     * </pre>
1171     *
1172     * @param data The long to hash.
1173     * @return The 64-bit hash.
1174     * @see #hash64(byte[], int, int, int)
1175     * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[])} with the bytes from the {@code long}.
1176     */
1177    @Deprecated
1178    public static long hash64(final long data) {
1179        long hash = DEFAULT_SEED;
1180        long k = Long.reverseBytes(data);
1181        // mix functions
1182        k *= C1;
1183        k = Long.rotateLeft(k, R1);
1184        k *= C2;
1185        hash ^= k;
1186        hash = Long.rotateLeft(hash, R2) * M + N1;
1187        // finalization
1188        hash ^= Long.BYTES;
1189        return fmix64(hash);
1190    }
1191
1192    /**
1193     * Generates 64-bit hash from a short with a default seed.
1194     *
1195     * <p>
1196     * <strong>This is not part of the original MurmurHash3 {@code c++} implementation.</strong>
1197     * </p>
1198     *
1199     * <p>
1200     * This is a Murmur3-like 64-bit variant. The method does not produce the same result as either half of the hash bytes from {@linkplain #hash128x64(byte[])}
1201     * with the same byte data from the {@code short}. This method will be removed in a future release.
1202     * </p>
1203     *
1204     * <p>
1205     * Note: The sign extension bug in {@link #hash64(byte[], int, int, int)} does not effect this result as the default seed is positive.
1206     * </p>
1207     *
1208     * <p>
1209     * This is a helper method that will produce the same result as:
1210     * </p>
1211     *
1212     * <pre>
1213     *
1214     * int offset = 0;
1215     * int seed = 104729;
1216     * long hash = MurmurHash3.hash64(ByteBuffer.allocate(2).putShort(data).array(), offset, 2, seed);
1217     * </pre>
1218     *
1219     * @param data The short to hash.
1220     * @return The 64-bit hash.
1221     * @see #hash64(byte[], int, int, int)
1222     * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[])} with the bytes from the
1223     *             {@code short}.
1224     */
1225    @Deprecated
1226    public static long hash64(final short data) {
1227        long hash = DEFAULT_SEED;
1228        long k1 = 0;
1229        k1 ^= ((long) data & 0xff) << 8;
1230        k1 ^= (long) ((data & 0xFF00) >> 8) & 0xff;
1231        k1 *= C1;
1232        k1 = Long.rotateLeft(k1, R1);
1233        k1 *= C2;
1234        hash ^= k1;
1235        // finalization
1236        hash ^= Short.BYTES;
1237        return fmix64(hash);
1238    }
1239
1240    /**
1241     * Performs the intermediate mix step of the 32-bit hash function {@code MurmurHash3_x86_32}.
1242     *
1243     * @param k The data to add to the hash.
1244     * @param hash The current hash.
1245     * @return The new hash.
1246     */
1247    private static int mix32(int k, int hash) {
1248        k *= C1_32;
1249        k = Integer.rotateLeft(k, R1_32);
1250        k *= C2_32;
1251        hash ^= k;
1252        return Integer.rotateLeft(hash, R2_32) * M_32 + N_32;
1253    }
1254
1255    /** No instance methods. */
1256    private MurmurHash3() {
1257    }
1258}