001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * https://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.codec.digest; 019 020import org.apache.commons.codec.binary.StringUtils; 021 022/** 023 * Implements the MurmurHash3 32-bit and 128-bit hash functions. 024 * 025 * <p> 026 * MurmurHash is a non-cryptographic hash function suitable for general hash-based lookup. The name comes from two basic 027 * operations, multiply (MU) and rotate (R), used in its inner loop. Unlike cryptographic hash functions, it is not 028 * specifically designed to be difficult to reverse by an adversary, making it unsuitable for cryptographic purposes. 029 * </p> 030 * 031 * <p> 032 * This contains a Java port of the 32-bit hash function {@code MurmurHash3_x86_32} and the 128-bit hash function 033 * {@code MurmurHash3_x64_128} from Austin Appleby's original {@code c++} code in SMHasher. 034 * </p> 035 * 036 * <p> 037 * This is public domain code with no copyrights. From home page of 038 * <a href="https://github.com/aappleby/smhasher">SMHasher</a>: 039 * </p> 040 * 041 * <blockquote> 042 * "All MurmurHash versions are public domain software, and the author disclaims all copyright to their 043 * code." 044 * </blockquote> 045 * 046 * <p> 047 * Original adaption from <a href="https://hive.apache.org/">Apache Hive</a>. 048 * That adaption contains a {@code hash64} method that is not part of the original 049 * MurmurHash3 code. It is not recommended to use these methods. They will be removed in a future release. To obtain a 050 * 64-bit hash use half of the bits from the {@code hash128x64} methods using the input data converted to bytes. 051 * </p> 052 * 053 * @see <a href="https://en.wikipedia.org/wiki/MurmurHash">MurmurHash</a> 054 * @see <a href="https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp"> Original MurmurHash3 C++ 055 * code</a> 056 * @see <a href= 057 * "https://github.com/apache/hive/blob/master/storage-api/src/java/org/apache/hive/common/util/Murmur3.java"> 058 * Apache Hive Murmer3</a> 059 * @since 1.13 060 */ 061public final class MurmurHash3 { 062 063 /** 064 * Generates 32-bit hash from input bytes. Bytes can be added incrementally and the new 065 * hash computed. 066 * 067 * <p> 068 * This is an implementation of the 32-bit hash function {@code MurmurHash3_x86_32} 069 * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher. 070 * </p> 071 * 072 * <p> 073 * This implementation contains a sign-extension bug in the finalization step of 074 * any bytes left over from dividing the length by 4. This manifests if any of these 075 * bytes are negative. 076 * </p> 077 * 078 * @deprecated Use IncrementalHash32x86. This corrects the processing of trailing bytes. 079 */ 080 @Deprecated 081 public static class IncrementalHash32 extends IncrementalHash32x86 { 082 083 /** 084 * Constructs a new instance. 085 */ 086 public IncrementalHash32() { 087 // empty 088 } 089 090 /** 091 * {@inheritDoc} 092 * 093 * <p> 094 * This implementation contains a sign-extension bug in the finalization step of 095 * any bytes left over from dividing the length by 4. This manifests if any of these 096 * bytes are negative. 097 * <p> 098 * 099 * @deprecated Use IncrementalHash32x86. This corrects the processing of trailing bytes. 100 */ 101 @Override 102 @Deprecated 103 int finalise(final int hash, final int unprocessedLength, final byte[] unprocessed, final int totalLen) { 104 int result = hash; 105 // Note: This fails to apply masking using 0xff to the 3 remaining bytes. 106 int k1 = 0; 107 switch (unprocessedLength) { 108 case 3: 109 k1 ^= unprocessed[2] << 16; 110 // falls-through 111 case 2: 112 k1 ^= unprocessed[1] << 8; 113 // falls-through 114 case 1: 115 k1 ^= unprocessed[0]; 116 // mix functions 117 k1 *= C1_32; 118 k1 = Integer.rotateLeft(k1, R1_32); 119 k1 *= C2_32; 120 result ^= k1; 121 } 122 // finalization 123 result ^= totalLen; 124 return fmix32(result); 125 } 126 } 127 128 /** 129 * Generates 32-bit hash from input bytes. Bytes can be added incrementally and the new 130 * hash computed. 131 * 132 * <p> 133 * This is an implementation of the 32-bit hash function {@code MurmurHash3_x86_32} 134 * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher. 135 * </p> 136 * 137 * @since 1.14 138 */ 139 public static class IncrementalHash32x86 { 140 141 /** The size of byte blocks that are processed together. */ 142 private static final int BLOCK_SIZE = 4; 143 144 /** 145 * Combines the bytes using an Or operation ({@code | } in a little-endian representation 146 * of a 32-bit integer; byte 1 will be the least significant byte, byte 4 the most 147 * significant. 148 * 149 * @param b1 The first byte. 150 * @param b2 The second byte. 151 * @param b3 The third byte. 152 * @param b4 The fourth byte. 153 * @return The 32-bit integer. 154 */ 155 private static int orBytes(final byte b1, final byte b2, final byte b3, final byte b4) { 156 return b1 & 0xff | (b2 & 0xff) << 8 | (b3 & 0xff) << 16 | (b4 & 0xff) << 24; 157 } 158 159 /** Up to 3 unprocessed bytes from input data. */ 160 private final byte[] unprocessed = new byte[3]; 161 162 /** The number of unprocessed bytes in the tail data. */ 163 private int unprocessedLength; 164 165 /** The total number of input bytes added since the start. */ 166 private int totalLen; 167 168 /** 169 * The current running hash. 170 * This must be finalized to generate the 32-bit hash value. 171 */ 172 private int hash; 173 174 /** 175 * Constructs a new instance. 176 */ 177 public IncrementalHash32x86() { 178 // empty 179 } 180 181 /** 182 * Adds the byte array to the current incremental hash. 183 * 184 * @param data The input byte array. 185 * @param offset The offset of data. 186 * @param length The length of array. 187 */ 188 public final void add(final byte[] data, final int offset, final int length) { 189 if (length <= 0) { 190 // Nothing to add 191 return; 192 } 193 totalLen += length; 194 // Process the bytes in blocks of 4. 195 // New bytes must be added to any current unprocessed bytes, 196 // then processed in blocks of 4 and the remaining bytes saved: 197 // 198 // |--|---------------------------|--| 199 // unprocessed 200 // main block 201 // remaining 202 203 // Check if the unprocessed bytes and new bytes can fill a block of 4. 204 // Make this overflow safe in the event that length is Integer.MAX_VALUE. 205 // Equivalent to: (unprocessedLength + length < BLOCK_SIZE) 206 if (unprocessedLength + length - BLOCK_SIZE < 0) { 207 // Not enough so add to the unprocessed bytes 208 System.arraycopy(data, offset, unprocessed, unprocessedLength, length); 209 unprocessedLength += length; 210 return; 211 } 212 // Combine unprocessed bytes with new bytes. 213 final int newOffset; 214 final int newLength; 215 if (unprocessedLength > 0) { 216 int k = -1; 217 switch (unprocessedLength) { 218 case 1: 219 k = orBytes(unprocessed[0], data[offset], data[offset + 1], data[offset + 2]); 220 break; 221 case 2: 222 k = orBytes(unprocessed[0], unprocessed[1], data[offset], data[offset + 1]); 223 break; 224 case 3: 225 k = orBytes(unprocessed[0], unprocessed[1], unprocessed[2], data[offset]); 226 break; 227 default: 228 throw new IllegalStateException("Unprocessed length should be 1, 2, or 3: " + unprocessedLength); 229 } 230 hash = mix32(k, hash); 231 // Update the offset and length 232 final int consumed = BLOCK_SIZE - unprocessedLength; 233 newOffset = offset + consumed; 234 newLength = length - consumed; 235 } else { 236 newOffset = offset; 237 newLength = length; 238 } 239 // Main processing of blocks of 4 bytes 240 final int nblocks = newLength >> 2; 241 242 for (int i = 0; i < nblocks; i++) { 243 final int index = newOffset + (i << 2); 244 final int k = MurmurHash.getLittleEndianInt(data, index); 245 hash = mix32(k, hash); 246 } 247 // Save left-over unprocessed bytes 248 final int consumed = nblocks << 2; 249 unprocessedLength = newLength - consumed; 250 if (unprocessedLength != 0) { 251 System.arraycopy(data, newOffset + consumed, unprocessed, 0, unprocessedLength); 252 } 253 } 254 255 /** 256 * Generates the 32-bit hash value. Repeat calls to this method with no additional data 257 * will generate the same hash value. 258 * 259 * @return The 32-bit hash 260 */ 261 public final int end() { 262 // Allow calling end() again after adding no data to return the same result. 263 return finalise(hash, unprocessedLength, unprocessed, totalLen); 264 } 265 266 /** 267 * Finalizes the running hash to the output 32-bit hash by processing remaining bytes 268 * and performing final mixing. 269 * 270 * @param hash The running hash. 271 * @param unprocessedLength The number of unprocessed bytes in the tail data. 272 * @param unprocessed Up to 3 unprocessed bytes from input data. 273 * @param totalLen The total number of input bytes added since the start. 274 * @return The 32-bit hash. 275 */ 276 int finalise(final int hash, final int unprocessedLength, final byte[] unprocessed, final int totalLen) { 277 int result = hash; 278 int k1 = 0; 279 switch (unprocessedLength) { 280 case 3: 281 k1 ^= (unprocessed[2] & 0xff) << 16; 282 // falls-through 283 case 2: 284 k1 ^= (unprocessed[1] & 0xff) << 8; 285 // falls-through 286 case 1: 287 k1 ^= unprocessed[0] & 0xff; 288 // mix functions 289 k1 *= C1_32; 290 k1 = Integer.rotateLeft(k1, R1_32); 291 k1 *= C2_32; 292 result ^= k1; 293 } 294 // finalization 295 result ^= totalLen; 296 return fmix32(result); 297 } 298 299 /** 300 * Starts a new incremental hash. 301 * 302 * @param seed The initial seed value. 303 */ 304 public final void start(final int seed) { 305 // Reset 306 unprocessedLength = totalLen = 0; 307 hash = seed; 308 } 309 } 310 311 /** 312 * A random number to use for a hash code. 313 * 314 * @deprecated This is not used internally and will be removed in a future release. 315 */ 316 @Deprecated 317 public static final long NULL_HASHCODE = 2862933555777941757L; 318 /** 319 * A default seed to use for the murmur hash algorithm. 320 * Has the value {@code 104729}. 321 */ 322 public static final int DEFAULT_SEED = 104729; 323 // Constants for 32-bit variant 324 private static final int C1_32 = 0xcc9e2d51; 325 private static final int C2_32 = 0x1b873593; 326 private static final int R1_32 = 15; 327 private static final int R2_32 = 13; 328 329 private static final int M_32 = 5; 330 private static final int N_32 = 0xe6546b64; 331 // Constants for 128-bit variant 332 private static final long C1 = 0x87c37b91114253d5L; 333 private static final long C2 = 0x4cf5ad432745937fL; 334 private static final int R1 = 31; 335 private static final int R2 = 27; 336 private static final int R3 = 33; 337 private static final int M = 5; 338 339 private static final int N1 = 0x52dce729; 340 341 private static final int N2 = 0x38495ab5; 342 343 /** 344 * Performs the final avalanche mix step of the 32-bit hash function {@code MurmurHash3_x86_32}. 345 * 346 * @param hash The current hash. 347 * @return The final hash. 348 */ 349 private static int fmix32(int hash) { 350 hash ^= hash >>> 16; 351 hash *= 0x85ebca6b; 352 hash ^= hash >>> 13; 353 hash *= 0xc2b2ae35; 354 hash ^= hash >>> 16; 355 return hash; 356 } 357 358 /** 359 * Performs the final avalanche mix step of the 64-bit hash function {@code MurmurHash3_x64_128}. 360 * 361 * @param hash The current hash. 362 * @return The final hash. 363 */ 364 private static long fmix64(long hash) { 365 hash ^= hash >>> 33; 366 hash *= 0xff51afd7ed558ccdL; 367 hash ^= hash >>> 33; 368 hash *= 0xc4ceb9fe1a85ec53L; 369 hash ^= hash >>> 33; 370 return hash; 371 } 372 373 /** 374 * Generates 128-bit hash from the byte array with a default seed. 375 * This is a helper method that will produce the same result as: 376 * 377 * <pre> 378 * int offset = 0; 379 * int seed = 104729; 380 * int hash = MurmurHash3.hash128(data, offset, data.length, seed); 381 * </pre> 382 * 383 * <p> 384 * Note: The sign extension bug in {@link #hash128(byte[], int, int, int)} does not effect 385 * this result as the default seed is positive. 386 * </p> 387 * 388 * @param data The input byte array. 389 * @return The 128-bit hash (2 longs). 390 * @see #hash128(byte[], int, int, int) 391 */ 392 public static long[] hash128(final byte[] data) { 393 return hash128(data, 0, data.length, DEFAULT_SEED); 394 } 395 396 /** 397 * Generates 128-bit hash from the byte array with the given offset, length and seed. 398 * 399 * <p> 400 * This is an implementation of the 128-bit hash function {@code MurmurHash3_x64_128} 401 * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher. 402 * </p> 403 * 404 * <p> 405 * This implementation contains a sign-extension bug in the seed initialization. 406 * This manifests if the seed is negative. 407 * </p> 408 * 409 * @param data The input byte array. 410 * @param offset The first element of array. 411 * @param length The length of array. 412 * @param seed The initial seed value. 413 * @return The 128-bit hash (2 longs). 414 * @deprecated Use {@link #hash128x64(byte[], int, int, int)}. This corrects the seed initialization. 415 */ 416 @Deprecated 417 public static long[] hash128(final byte[] data, final int offset, final int length, final int seed) { 418 // Note: This deliberately fails to apply masking using 0xffffffffL to the seed 419 // to maintain behavioral compatibility with the original version. 420 // The implicit conversion to a long will extend a negative sign 421 // bit through the upper 32-bits of the long seed. These should be zero. 422 return hash128x64Internal(data, offset, length, seed); 423 } 424 425 /** 426 * Generates 128-bit hash from a string with a default seed. 427 * 428 * <p> 429 * Before 1.14 the string was converted using default encoding. Since 1.14 the string is converted to bytes using UTF-8 encoding. 430 * </p> 431 * <p> 432 * This is a helper method that will produce the same result as: 433 * </p> 434 * 435 * <pre> 436 * int offset = 0; 437 * int seed = 104729; 438 * byte[] bytes = data.getBytes(StandardCharsets.UTF_8); 439 * int hash = MurmurHash3.hash128(bytes, offset, bytes.length, seed); 440 * </pre> 441 * 442 * <p> 443 * Note: The sign extension bug in {@link #hash128(byte[], int, int, int)} does not effect this result as the default seed is positive. 444 * </p> 445 * 446 * @param data The input String. 447 * @return The 128-bit hash (2 longs). 448 * @see #hash128(byte[], int, int, int) 449 * @deprecated Use {@link #hash128x64(byte[])} using the bytes returned from {@link String#getBytes(java.nio.charset.Charset)}. 450 */ 451 @Deprecated 452 public static long[] hash128(final String data) { 453 final byte[] bytes = StringUtils.getBytesUtf8(data); 454 return hash128(bytes, 0, bytes.length, DEFAULT_SEED); 455 } 456 457 /** 458 * Generates 128-bit hash from the byte array with a seed of zero. 459 * This is a helper method that will produce the same result as: 460 * 461 * <pre> 462 * int offset = 0; 463 * int seed = 0; 464 * int hash = MurmurHash3.hash128x64(data, offset, data.length, seed); 465 * </pre> 466 * 467 * @param data The input byte array. 468 * @return The 128-bit hash (2 longs). 469 * @see #hash128x64(byte[], int, int, int) 470 * @since 1.14 471 */ 472 public static long[] hash128x64(final byte[] data) { 473 return hash128x64(data, 0, data.length, 0); 474 } 475 476 /** 477 * Generates 128-bit hash from the byte array with the given offset, length and seed. 478 * 479 * <p> 480 * This is an implementation of the 128-bit hash function {@code MurmurHash3_x64_128} 481 * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher. 482 * </p> 483 * 484 * @param data The input byte array. 485 * @param offset The first element of array. 486 * @param length The length of array. 487 * @param seed The initial seed value. 488 * @return The 128-bit hash (2 longs). 489 * @since 1.14 490 */ 491 public static long[] hash128x64(final byte[] data, final int offset, final int length, final int seed) { 492 // Use an unsigned 32-bit integer as the seed 493 return hash128x64Internal(data, offset, length, seed & 0xffffffffL); 494 } 495 496 /** 497 * Generates 128-bit hash from the byte array with the given offset, length and seed. 498 * 499 * <p> 500 * This is an implementation of the 128-bit hash function {@code MurmurHash3_x64_128} 501 * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher. 502 * </p> 503 * 504 * @param data The input byte array. 505 * @param offset The first element of array. 506 * @param length The length of array. 507 * @param seed The initial seed value. 508 * @return The 128-bit hash (2 longs). 509 */ 510 private static long[] hash128x64Internal(final byte[] data, final int offset, final int length, final long seed) { 511 long h1 = seed; 512 long h2 = seed; 513 final int nblocks = length >> 4; 514 // body 515 for (int i = 0; i < nblocks; i++) { 516 final int index = offset + (i << 4); 517 long k1 = MurmurHash.getLittleEndianLong(data, index); 518 long k2 = MurmurHash.getLittleEndianLong(data, index + 8); 519 // mix functions for k1 520 k1 *= C1; 521 k1 = Long.rotateLeft(k1, R1); 522 k1 *= C2; 523 h1 ^= k1; 524 h1 = Long.rotateLeft(h1, R2); 525 h1 += h2; 526 h1 = h1 * M + N1; 527 // mix functions for k2 528 k2 *= C2; 529 k2 = Long.rotateLeft(k2, R3); 530 k2 *= C1; 531 h2 ^= k2; 532 h2 = Long.rotateLeft(h2, R1); 533 h2 += h1; 534 h2 = h2 * M + N2; 535 } 536 // tail 537 long k1 = 0; 538 long k2 = 0; 539 final int index = offset + (nblocks << 4); 540 switch (offset + length - index) { 541 case 15: 542 k2 ^= ((long) data[index + 14] & 0xff) << 48; 543 // falls-through 544 case 14: 545 k2 ^= ((long) data[index + 13] & 0xff) << 40; 546 // falls-through 547 case 13: 548 k2 ^= ((long) data[index + 12] & 0xff) << 32; 549 // falls-through 550 case 12: 551 k2 ^= ((long) data[index + 11] & 0xff) << 24; 552 // falls-through 553 case 11: 554 k2 ^= ((long) data[index + 10] & 0xff) << 16; 555 // falls-through 556 case 10: 557 k2 ^= ((long) data[index + 9] & 0xff) << 8; 558 // falls-through 559 case 9: 560 k2 ^= data[index + 8] & 0xff; 561 k2 *= C2; 562 k2 = Long.rotateLeft(k2, R3); 563 k2 *= C1; 564 h2 ^= k2; 565 // falls-through 566 case 8: 567 k1 ^= ((long) data[index + 7] & 0xff) << 56; 568 // falls-through 569 case 7: 570 k1 ^= ((long) data[index + 6] & 0xff) << 48; 571 // falls-through 572 case 6: 573 k1 ^= ((long) data[index + 5] & 0xff) << 40; 574 // falls-through 575 case 5: 576 k1 ^= ((long) data[index + 4] & 0xff) << 32; 577 // falls-through 578 case 4: 579 k1 ^= ((long) data[index + 3] & 0xff) << 24; 580 // falls-through 581 case 3: 582 k1 ^= ((long) data[index + 2] & 0xff) << 16; 583 // falls-through 584 case 2: 585 k1 ^= ((long) data[index + 1] & 0xff) << 8; 586 // falls-through 587 case 1: 588 k1 ^= data[index] & 0xff; 589 k1 *= C1; 590 k1 = Long.rotateLeft(k1, R1); 591 k1 *= C2; 592 h1 ^= k1; 593 } 594 // finalization 595 h1 ^= length; 596 h2 ^= length; 597 598 h1 += h2; 599 h2 += h1; 600 601 h1 = fmix64(h1); 602 h2 = fmix64(h2); 603 604 h1 += h2; 605 h2 += h1; 606 return new long[] { h1, h2 }; 607 } 608 609 /** 610 * Generates 32-bit hash from the byte array with a default seed. 611 * This is a helper method that will produce the same result as: 612 * 613 * <pre> 614 * int offset = 0; 615 * int seed = 104729; 616 * int hash = MurmurHash3.hash32(data, offset, data.length, seed); 617 * </pre> 618 * 619 * <p> 620 * This implementation contains a sign-extension bug in the finalization step of 621 * any bytes left over from dividing the length by 4. This manifests if any of these 622 * bytes are negative. 623 * </p> 624 * 625 * @param data The input byte array. 626 * @return The 32-bit hash. 627 * @see #hash32(byte[], int, int, int) 628 * @deprecated Use {@link #hash32x86(byte[], int, int, int)}. This corrects the processing of trailing bytes. 629 */ 630 @Deprecated 631 public static int hash32(final byte[] data) { 632 return hash32(data, 0, data.length, DEFAULT_SEED); 633 } 634 635 /** 636 * Generates 32-bit hash from the byte array with the given length and a default seed. 637 * This is a helper method that will produce the same result as: 638 * 639 * <pre> 640 * int offset = 0; 641 * int seed = 104729; 642 * int hash = MurmurHash3.hash32(data, offset, length, seed); 643 * </pre> 644 * 645 * <p> 646 * This implementation contains a sign-extension bug in the finalization step of 647 * any bytes left over from dividing the length by 4. This manifests if any of these 648 * bytes are negative. 649 * </p> 650 * 651 * @param data The input byte array. 652 * @param length The length of array. 653 * @return The 32-bit hash. 654 * @see #hash32(byte[], int, int, int) 655 * @deprecated Use {@link #hash32x86(byte[], int, int, int)}. This corrects the processing of trailing bytes. 656 */ 657 @Deprecated 658 public static int hash32(final byte[] data, final int length) { 659 return hash32(data, length, DEFAULT_SEED); 660 } 661 662 /** 663 * Generates 32-bit hash from the byte array with the given length and seed. This is a 664 * helper method that will produce the same result as: 665 * 666 * <pre> 667 * int offset = 0; 668 * int hash = MurmurHash3.hash32(data, offset, length, seed); 669 * </pre> 670 * 671 * <p> 672 * This implementation contains a sign-extension bug in the finalization step of 673 * any bytes left over from dividing the length by 4. This manifests if any of these 674 * bytes are negative. 675 * </p> 676 * 677 * @param data The input byte array. 678 * @param length The length of array. 679 * @param seed The initial seed value. 680 * @return The 32-bit hash. 681 * @see #hash32(byte[], int, int, int) 682 * @deprecated Use {@link #hash32x86(byte[], int, int, int)}. This corrects the processing of trailing bytes. 683 */ 684 @Deprecated 685 public static int hash32(final byte[] data, final int length, final int seed) { 686 return hash32(data, 0, length, seed); 687 } 688 689 /** 690 * Generates 32-bit hash from the byte array with the given offset, length and seed. 691 * 692 * <p> 693 * This is an implementation of the 32-bit hash function {@code MurmurHash3_x86_32} 694 * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher. 695 * </p> 696 * 697 * <p> 698 * This implementation contains a sign-extension bug in the finalization step of 699 * any bytes left over from dividing the length by 4. This manifests if any of these 700 * bytes are negative. 701 * </p> 702 * 703 * @param data The input byte array. 704 * @param offset The offset of data. 705 * @param length The length of array. 706 * @param seed The initial seed value. 707 * @return The 32-bit hash 708 * @deprecated Use {@link #hash32x86(byte[], int, int, int)}. This corrects the processing of trailing bytes. 709 */ 710 @Deprecated 711 public static int hash32(final byte[] data, final int offset, final int length, final int seed) { 712 int hash = seed; 713 final int nblocks = length >> 2; 714 // body 715 for (int i = 0; i < nblocks; i++) { 716 final int index = offset + (i << 2); 717 final int k = MurmurHash.getLittleEndianInt(data, index); 718 hash = mix32(k, hash); 719 } 720 // tail 721 // Note: This fails to apply masking using 0xff to the 3 remaining bytes. 722 final int index = offset + (nblocks << 2); 723 int k1 = 0; 724 switch (offset + length - index) { 725 case 3: 726 k1 ^= data[index + 2] << 16; 727 // falls-through 728 case 2: 729 k1 ^= data[index + 1] << 8; 730 // falls-through 731 case 1: 732 k1 ^= data[index]; 733 // mix functions 734 k1 *= C1_32; 735 k1 = Integer.rotateLeft(k1, R1_32); 736 k1 *= C2_32; 737 hash ^= k1; 738 } 739 hash ^= length; 740 return fmix32(hash); 741 } 742 743 /** 744 * Generates 32-bit hash from a long with a default seed value. 745 * This is a helper method that will produce the same result as: 746 * 747 * <pre> 748 * int offset = 0; 749 * int seed = 104729; 750 * int hash = MurmurHash3.hash32x86(ByteBuffer.allocate(8) 751 * .putLong(data) 752 * .array(), offset, 8, seed); 753 * </pre> 754 * 755 * @param data The long to hash. 756 * @return The 32-bit hash. 757 * @see #hash32x86(byte[], int, int, int) 758 */ 759 public static int hash32(final long data) { 760 return hash32(data, DEFAULT_SEED); 761 } 762 763 /** 764 * Generates 32-bit hash from a long with the given seed. 765 * This is a helper method that will produce the same result as: 766 * 767 * <pre> 768 * int offset = 0; 769 * int hash = MurmurHash3.hash32x86(ByteBuffer.allocate(8) 770 * .putLong(data) 771 * .array(), offset, 8, seed); 772 * </pre> 773 * 774 * @param data The long to hash. 775 * @param seed The initial seed value. 776 * @return The 32-bit hash. 777 * @see #hash32x86(byte[], int, int, int) 778 */ 779 public static int hash32(final long data, final int seed) { 780 int hash = seed; 781 final long r0 = Long.reverseBytes(data); 782 783 hash = mix32((int) r0, hash); 784 hash = mix32((int) (r0 >>> 32), hash); 785 786 hash ^= Long.BYTES; 787 return fmix32(hash); 788 } 789 790 /** 791 * Generates 32-bit hash from two longs with a default seed value. 792 * This is a helper method that will produce the same result as: 793 * 794 * <pre> 795 * int offset = 0; 796 * int seed = 104729; 797 * int hash = MurmurHash3.hash32x86(ByteBuffer.allocate(16) 798 * .putLong(data1) 799 * .putLong(data2) 800 * .array(), offset, 16, seed); 801 * </pre> 802 * 803 * @param data1 The first long to hash. 804 * @param data2 The second long to hash. 805 * @return The 32-bit hash. 806 * @see #hash32x86(byte[], int, int, int) 807 */ 808 public static int hash32(final long data1, final long data2) { 809 return hash32(data1, data2, DEFAULT_SEED); 810 } 811 812 /** 813 * Generates 32-bit hash from two longs with the given seed. 814 * This is a helper method that will produce the same result as: 815 * 816 * <pre> 817 * int offset = 0; 818 * int hash = MurmurHash3.hash32x86(ByteBuffer.allocate(16) 819 * .putLong(data1) 820 * .putLong(data2) 821 * .array(), offset, 16, seed); 822 * </pre> 823 * 824 * @param data1 The first long to hash. 825 * @param data2 The second long to hash. 826 * @param seed The initial seed value. 827 * @return The 32-bit hash. 828 * @see #hash32x86(byte[], int, int, int) 829 */ 830 public static int hash32(final long data1, final long data2, final int seed) { 831 int hash = seed; 832 final long r0 = Long.reverseBytes(data1); 833 final long r1 = Long.reverseBytes(data2); 834 835 hash = mix32((int) r0, hash); 836 hash = mix32((int) (r0 >>> 32), hash); 837 hash = mix32((int) r1, hash); 838 hash = mix32((int) (r1 >>> 32), hash); 839 840 hash ^= Long.BYTES * 2; 841 return fmix32(hash); 842 } 843 844 /** 845 * Generates 32-bit hash from a string with a default seed. 846 * <p> 847 * Before 1.14 the string was converted using default encoding. 848 * Since 1.14 the string is converted to bytes using UTF-8 encoding. 849 * </p> 850 * This is a helper method that will produce the same result as: 851 * 852 * <pre> 853 * int offset = 0; 854 * int seed = 104729; 855 * byte[] bytes = data.getBytes(StandardCharsets.UTF_8); 856 * int hash = MurmurHash3.hash32(bytes, offset, bytes.length, seed); 857 * </pre> 858 * 859 * <p> 860 * This implementation contains a sign-extension bug in the finalization step of 861 * any bytes left over from dividing the length by 4. This manifests if any of these 862 * bytes are negative. 863 * </p> 864 * 865 * @param data The input string 866 * @return The 32-bit hash 867 * @see #hash32(byte[], int, int, int) 868 * @deprecated Use {@link #hash32x86(byte[], int, int, int)} with the bytes returned from 869 * {@link String#getBytes(java.nio.charset.Charset)}. This corrects the processing of trailing bytes. 870 */ 871 @Deprecated 872 public static int hash32(final String data) { 873 final byte[] bytes = StringUtils.getBytesUtf8(data); 874 return hash32(bytes, 0, bytes.length, DEFAULT_SEED); 875 } 876 877 /** 878 * Generates 32-bit hash from the byte array with a seed of zero. 879 * This is a helper method that will produce the same result as: 880 * 881 * <pre> 882 * int offset = 0; 883 * int seed = 0; 884 * int hash = MurmurHash3.hash32x86(data, offset, data.length, seed); 885 * </pre> 886 * 887 * @param data The input byte array. 888 * @return The 32-bit hash. 889 * @see #hash32x86(byte[], int, int, int) 890 * @since 1.14 891 */ 892 public static int hash32x86(final byte[] data) { 893 return hash32x86(data, 0, data.length, 0); 894 } 895 896 /** 897 * Generates 32-bit hash from the byte array with the given offset, length and seed. 898 * 899 * <p> 900 * This is an implementation of the 32-bit hash function {@code MurmurHash3_x86_32} 901 * from Austin Appleby's original MurmurHash3 {@code c++} code in SMHasher. 902 * </p> 903 * 904 * @param data The input byte array. 905 * @param offset The offset of data. 906 * @param length The length of array. 907 * @param seed The initial seed value. 908 * @return The 32-bit hash. 909 * @since 1.14 910 */ 911 public static int hash32x86(final byte[] data, final int offset, final int length, final int seed) { 912 int hash = seed; 913 final int nblocks = length >> 2; 914 // body 915 for (int i = 0; i < nblocks; i++) { 916 final int index = offset + (i << 2); 917 final int k = MurmurHash.getLittleEndianInt(data, index); 918 hash = mix32(k, hash); 919 } 920 // tail 921 final int index = offset + (nblocks << 2); 922 int k1 = 0; 923 switch (offset + length - index) { 924 case 3: 925 k1 ^= (data[index + 2] & 0xff) << 16; 926 // falls-through 927 case 2: 928 // falls-through 929 k1 ^= (data[index + 1] & 0xff) << 8; 930 // falls-through 931 case 1: 932 k1 ^= data[index] & 0xff; 933 // mix functions 934 k1 *= C1_32; 935 k1 = Integer.rotateLeft(k1, R1_32); 936 k1 *= C2_32; 937 hash ^= k1; 938 } 939 hash ^= length; 940 return fmix32(hash); 941 } 942 943 /** 944 * Generates 64-bit hash from a byte array with a default seed. 945 * 946 * <p> 947 * <strong>This is not part of the original MurmurHash3 {@code c++} implementation.</strong> 948 * </p> 949 * 950 * <p> 951 * This is a Murmur3-like 64-bit variant. The method does not produce the same result as either half of the hash bytes from {@linkplain #hash128x64(byte[])} 952 * with the same byte data. This method will be removed in a future release. 953 * </p> 954 * 955 * <p> 956 * Note: The sign extension bug in {@link #hash64(byte[], int, int, int)} does not effect this result as the default seed is positive. 957 * </p> 958 * 959 * <p> 960 * This is a helper method that will produce the same result as: 961 * </p> 962 * 963 * <pre> 964 * 965 * int offset = 0; 966 * int seed = 104729; 967 * long hash = MurmurHash3.hash64(data, offset, data.length, seed); 968 * </pre> 969 * 970 * @param data The input byte array. 971 * @return The 64-bit hash. 972 * @see #hash64(byte[], int, int, int) 973 * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[])}. 974 */ 975 @Deprecated 976 public static long hash64(final byte[] data) { 977 return hash64(data, 0, data.length, DEFAULT_SEED); 978 } 979 980 /** 981 * Generates 64-bit hash from a byte array with the given offset and length and a default seed. 982 * 983 * <p> 984 * <strong> This is not part of the original MurmurHash3 {@code c++} implementation. </strong> 985 * </p> 986 * 987 * <p> 988 * This is a Murmur3-like 64-bit variant. The method does not produce the same result as either half of the hash bytes from {@linkplain #hash128x64(byte[])} 989 * with the same byte data. This method will be removed in a future release. 990 * </p> 991 * 992 * <p> 993 * Note: The sign extension bug in {@link #hash64(byte[], int, int, int)} does not effect this result as the default seed is positive. 994 * </p> 995 * 996 * <p> 997 * This is a helper method that will produce the same result as: 998 * </p> 999 * 1000 * <pre> 1001 * 1002 * int seed = 104729; 1003 * long hash = MurmurHash3.hash64(data, offset, length, seed); 1004 * </pre> 1005 * 1006 * @param data The input byte array. 1007 * @param offset The offset of data. 1008 * @param length The length of array. 1009 * @return The 64-bit hash. 1010 * @see #hash64(byte[], int, int, int) 1011 * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[], int, int, int)}. 1012 */ 1013 @Deprecated 1014 public static long hash64(final byte[] data, final int offset, final int length) { 1015 return hash64(data, offset, length, DEFAULT_SEED); 1016 } 1017 1018 /** 1019 * Generates 64-bit hash from a byte array with the given offset, length and seed. 1020 * 1021 * <p> 1022 * <strong>This is not part of the original MurmurHash3 {@code c++} implementation.</strong> 1023 * </p> 1024 * 1025 * <p> 1026 * This is a Murmur3-like 64-bit variant. This method will be removed in a future release. 1027 * </p> 1028 * 1029 * <p> 1030 * This implementation contains a sign-extension bug in the seed initialization. This manifests if the seed is negative. 1031 * </p> 1032 * 1033 * <p> 1034 * This algorithm processes 8 bytes chunks of data in a manner similar to the 16 byte chunks of data processed in the MurmurHash3 1035 * {@code MurmurHash3_x64_128} method. However the hash is not mixed with a hash chunk from the next 8 bytes of data. The method will not return the same 1036 * value as the first or second 64-bits of the function {@link #hash128(byte[], int, int, int)}. 1037 * </p> 1038 * 1039 * <p> 1040 * Use of this method is not advised. Use the first long returned from {@link #hash128x64(byte[], int, int, int)}. 1041 * </p> 1042 * 1043 * @param data The input byte array. 1044 * @param offset The offset of data. 1045 * @param length The length of array. 1046 * @param seed The initial seed value. 1047 * @return The 64-bit hash. 1048 * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[], int, int, int)}. 1049 */ 1050 @Deprecated 1051 public static long hash64(final byte[] data, final int offset, final int length, final int seed) { 1052 // Note: This fails to apply masking using 0xffffffffL to the seed. 1053 long hash = seed; 1054 final int nblocks = length >> 3; 1055 // body 1056 for (int i = 0; i < nblocks; i++) { 1057 final int index = offset + (i << 3); 1058 long k = MurmurHash.getLittleEndianLong(data, index); 1059 // mix functions 1060 k *= C1; 1061 k = Long.rotateLeft(k, R1); 1062 k *= C2; 1063 hash ^= k; 1064 hash = Long.rotateLeft(hash, R2) * M + N1; 1065 } 1066 // tail 1067 long k1 = 0; 1068 final int index = offset + (nblocks << 3); 1069 switch (offset + length - index) { 1070 case 7: 1071 k1 ^= ((long) data[index + 6] & 0xff) << 48; 1072 // falls-through 1073 case 6: 1074 k1 ^= ((long) data[index + 5] & 0xff) << 40; 1075 // falls-through 1076 case 5: 1077 k1 ^= ((long) data[index + 4] & 0xff) << 32; 1078 // falls-through 1079 case 4: 1080 k1 ^= ((long) data[index + 3] & 0xff) << 24; 1081 // falls-through 1082 case 3: 1083 k1 ^= ((long) data[index + 2] & 0xff) << 16; 1084 // falls-through 1085 case 2: 1086 k1 ^= ((long) data[index + 1] & 0xff) << 8; 1087 // falls-through 1088 case 1: 1089 k1 ^= (long) data[index] & 0xff; 1090 k1 *= C1; 1091 k1 = Long.rotateLeft(k1, R1); 1092 k1 *= C2; 1093 hash ^= k1; 1094 } 1095 // finalization 1096 hash ^= length; 1097 return fmix64(hash); 1098 } 1099 1100 /** 1101 * Generates 64-bit hash from an int with a default seed. 1102 * 1103 * <p> 1104 * <strong> This is not part of the original MurmurHash3 {@code c++} implementation. </strong> 1105 * </p> 1106 * 1107 * <p> 1108 * This is a Murmur3-like 64-bit variant. The method does not produce the same result as either half of the hash bytes from {@linkplain #hash128x64(byte[])} 1109 * with the same byte data from the {@code int}. This method will be removed in a future release. 1110 * </p> 1111 * 1112 * <p> 1113 * Note: The sign extension bug in {@link #hash64(byte[], int, int, int)} does not effect this result as the default seed is positive. 1114 * </p> 1115 * 1116 * <p> 1117 * This is a helper method that will produce the same result as: 1118 * </p> 1119 * 1120 * <pre> 1121 * 1122 * int offset = 0; 1123 * int seed = 104729; 1124 * long hash = MurmurHash3.hash64(ByteBuffer.allocate(4).putInt(data).array(), offset, 4, seed); 1125 * </pre> 1126 * 1127 * @param data The int to hash. 1128 * @return The 64-bit hash. 1129 * @see #hash64(byte[], int, int, int) 1130 * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[])} with the bytes from the {@code int}. 1131 */ 1132 @Deprecated 1133 public static long hash64(final int data) { 1134 long k1 = Integer.reverseBytes(data) & -1L >>> 32; 1135 long hash = DEFAULT_SEED; 1136 k1 *= C1; 1137 k1 = Long.rotateLeft(k1, R1); 1138 k1 *= C2; 1139 hash ^= k1; 1140 // finalization 1141 hash ^= Integer.BYTES; 1142 return fmix64(hash); 1143 } 1144 1145 /** 1146 * Generates 64-bit hash from a long with a default seed. 1147 * 1148 * <p> 1149 * <strong> This is not part of the original MurmurHash3 {@code c++} implementation. </strong> 1150 * </p> 1151 * 1152 * <p> 1153 * This is a Murmur3-like 64-bit variant. The method does not produce the same result as either half of the hash bytes from {@linkplain #hash128x64(byte[])} 1154 * with the same byte data from the {@code long}. This method will be removed in a future release. 1155 * </p> 1156 * 1157 * <p> 1158 * Note: The sign extension bug in {@link #hash64(byte[], int, int, int)} does not effect this result as the default seed is positive. 1159 * </p> 1160 * 1161 * <p> 1162 * This is a helper method that will produce the same result as: 1163 * </p> 1164 * 1165 * <pre> 1166 * 1167 * int offset = 0; 1168 * int seed = 104729; 1169 * long hash = MurmurHash3.hash64(ByteBuffer.allocate(8).putLong(data).array(), offset, 8, seed); 1170 * </pre> 1171 * 1172 * @param data The long to hash. 1173 * @return The 64-bit hash. 1174 * @see #hash64(byte[], int, int, int) 1175 * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[])} with the bytes from the {@code long}. 1176 */ 1177 @Deprecated 1178 public static long hash64(final long data) { 1179 long hash = DEFAULT_SEED; 1180 long k = Long.reverseBytes(data); 1181 // mix functions 1182 k *= C1; 1183 k = Long.rotateLeft(k, R1); 1184 k *= C2; 1185 hash ^= k; 1186 hash = Long.rotateLeft(hash, R2) * M + N1; 1187 // finalization 1188 hash ^= Long.BYTES; 1189 return fmix64(hash); 1190 } 1191 1192 /** 1193 * Generates 64-bit hash from a short with a default seed. 1194 * 1195 * <p> 1196 * <strong>This is not part of the original MurmurHash3 {@code c++} implementation.</strong> 1197 * </p> 1198 * 1199 * <p> 1200 * This is a Murmur3-like 64-bit variant. The method does not produce the same result as either half of the hash bytes from {@linkplain #hash128x64(byte[])} 1201 * with the same byte data from the {@code short}. This method will be removed in a future release. 1202 * </p> 1203 * 1204 * <p> 1205 * Note: The sign extension bug in {@link #hash64(byte[], int, int, int)} does not effect this result as the default seed is positive. 1206 * </p> 1207 * 1208 * <p> 1209 * This is a helper method that will produce the same result as: 1210 * </p> 1211 * 1212 * <pre> 1213 * 1214 * int offset = 0; 1215 * int seed = 104729; 1216 * long hash = MurmurHash3.hash64(ByteBuffer.allocate(2).putShort(data).array(), offset, 2, seed); 1217 * </pre> 1218 * 1219 * @param data The short to hash. 1220 * @return The 64-bit hash. 1221 * @see #hash64(byte[], int, int, int) 1222 * @deprecated Not part of the MurmurHash3 implementation. Use half of the hash bytes from {@link #hash128x64(byte[])} with the bytes from the 1223 * {@code short}. 1224 */ 1225 @Deprecated 1226 public static long hash64(final short data) { 1227 long hash = DEFAULT_SEED; 1228 long k1 = 0; 1229 k1 ^= ((long) data & 0xff) << 8; 1230 k1 ^= (long) ((data & 0xFF00) >> 8) & 0xff; 1231 k1 *= C1; 1232 k1 = Long.rotateLeft(k1, R1); 1233 k1 *= C2; 1234 hash ^= k1; 1235 // finalization 1236 hash ^= Short.BYTES; 1237 return fmix64(hash); 1238 } 1239 1240 /** 1241 * Performs the intermediate mix step of the 32-bit hash function {@code MurmurHash3_x86_32}. 1242 * 1243 * @param k The data to add to the hash. 1244 * @param hash The current hash. 1245 * @return The new hash. 1246 */ 1247 private static int mix32(int k, int hash) { 1248 k *= C1_32; 1249 k = Integer.rotateLeft(k, R1_32); 1250 k *= C2_32; 1251 hash ^= k; 1252 return Integer.rotateLeft(hash, R2_32) * M_32 + N_32; 1253 } 1254 1255 /** No instance methods. */ 1256 private MurmurHash3() { 1257 } 1258}