001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.codec.digest; 018 019import java.nio.charset.StandardCharsets; 020import java.security.MessageDigest; 021import java.security.NoSuchAlgorithmException; 022import java.security.SecureRandom; 023import java.util.Arrays; 024import java.util.Random; 025import java.util.regex.Matcher; 026import java.util.regex.Pattern; 027 028/** 029 * SHA2-based UNIX crypt implementation. 030 * <p> 031 * Based on the C implementation released into the Public Domain by Ulrich Drepper <drepper@redhat.com> 032 * http://www.akkadia.org/drepper/SHA-crypt.txt 033 * </p> 034 * <p> 035 * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers <ch@lathspell.de> and likewise put 036 * into the Public Domain. 037 * </p> 038 * <p> 039 * This class is immutable and thread-safe. 040 * </p> 041 * 042 * @since 1.7 043 */ 044public class Sha2Crypt { 045 046 /** Default number of rounds if not explicitly specified. */ 047 private static final int ROUNDS_DEFAULT = 5000; 048 049 /** Maximum number of rounds. */ 050 private static final int ROUNDS_MAX = 999_999_999; 051 052 /** Minimum number of rounds. */ 053 private static final int ROUNDS_MIN = 1000; 054 055 /** Prefix for optional rounds specification. */ 056 private static final String ROUNDS_PREFIX = "rounds="; 057 058 /** The number of bytes the final hash value will have (SHA-256 variant). */ 059 private static final int SHA256_BLOCKSIZE = 32; 060 061 /** The prefixes that can be used to identify this crypt() variant (SHA-256). */ 062 static final String SHA256_PREFIX = "$5$"; 063 064 /** The number of bytes the final hash value will have (SHA-512 variant). */ 065 private static final int SHA512_BLOCKSIZE = 64; 066 067 /** The prefixes that can be used to identify this crypt() variant (SHA-512). */ 068 static final String SHA512_PREFIX = "$6$"; 069 070 /** The pattern to match valid salt values. */ 071 private static final Pattern SALT_PATTERN = Pattern 072 .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*"); 073 074 /** 075 * Generates a libc crypt() compatible "$5$" hash value with random salt. 076 * <p> 077 * See {@link Crypt#crypt(String, String)} for details. 078 * </p> 079 * <p> 080 * A salt is generated for you using {@link SecureRandom}. 081 * </p> 082 * 083 * @param keyBytes 084 * plaintext to hash. Each array element is set to {@code 0} before returning. 085 * @return complete hash value 086 * @throws IllegalArgumentException 087 * when a {@link java.security.NoSuchAlgorithmException} is caught. 088 */ 089 public static String sha256Crypt(final byte[] keyBytes) { 090 return sha256Crypt(keyBytes, null); 091 } 092 093 /** 094 * Generates a libc6 crypt() compatible "$5$" hash value. 095 * <p> 096 * See {@link Crypt#crypt(String, String)} for details. 097 * </p> 098 * @param keyBytes 099 * plaintext to hash. Each array element is set to {@code 0} before returning. 100 * @param salt 101 * real salt value without prefix or "rounds=". The salt may be null, in which case a salt 102 * is generated for you using {@link SecureRandom}. If one does not want to use {@link SecureRandom}, 103 * you can pass your own {@link Random} in {@link #sha256Crypt(byte[], String, Random)}. 104 * @return complete hash value including salt 105 * @throws IllegalArgumentException 106 * if the salt does not match the allowed pattern 107 * @throws IllegalArgumentException 108 * when a {@link java.security.NoSuchAlgorithmException} is caught. 109 */ 110 public static String sha256Crypt(final byte[] keyBytes, String salt) { 111 if (salt == null) { 112 salt = SHA256_PREFIX + B64.getRandomSalt(8); 113 } 114 return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256); 115 } 116 117 /** 118 * Generates a libc6 crypt() compatible "$5$" hash value. 119 * <p> 120 * See {@link Crypt#crypt(String, String)} for details. 121 * </p> 122 * @param keyBytes 123 * plaintext to hash. Each array element is set to {@code 0} before returning. 124 * @param salt 125 * real salt value without prefix or "rounds=". 126 * @param random 127 * the instance of {@link Random} to use for generating the salt. 128 * Consider using {@link SecureRandom} for more secure salts. 129 * @return complete hash value including salt 130 * @throws IllegalArgumentException 131 * if the salt does not match the allowed pattern 132 * @throws IllegalArgumentException 133 * when a {@link java.security.NoSuchAlgorithmException} is caught. 134 * @since 1.12 135 */ 136 public static String sha256Crypt(final byte[] keyBytes, String salt, final Random random) { 137 if (salt == null) { 138 salt = SHA256_PREFIX + B64.getRandomSalt(8, random); 139 } 140 return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256); 141 } 142 143 /** 144 * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value. 145 * <p> 146 * This is a nearly line by line conversion of the original C function. The numbered comments are from the algorithm 147 * description, the short C-style ones from the original C code and the ones with "Remark" from me. 148 * </p> 149 * <p> 150 * See {@link Crypt#crypt(String, String)} for details. 151 * </p> 152 * 153 * @param keyBytes 154 * plaintext to hash. Each array element is set to {@code 0} before returning. 155 * @param salt 156 * real salt value without prefix or "rounds="; may not be null 157 * @param saltPrefix 158 * either $5$ or $6$ 159 * @param blocksize 160 * a value that differs between $5$ and $6$ 161 * @param algorithm 162 * {@link MessageDigest} algorithm identifier string 163 * @return complete hash value including prefix and salt 164 * @throws IllegalArgumentException 165 * if the given salt is {@code null} or does not match the allowed pattern 166 * @throws IllegalArgumentException 167 * when a {@link NoSuchAlgorithmException} is caught 168 * @see MessageDigestAlgorithms 169 */ 170 private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix, 171 final int blocksize, final String algorithm) { 172 173 final int keyLen = keyBytes.length; 174 175 // Extracts effective salt and the number of rounds from the given salt. 176 int rounds = ROUNDS_DEFAULT; 177 boolean roundsCustom = false; 178 if (salt == null) { 179 throw new IllegalArgumentException("Salt must not be null"); 180 } 181 182 final Matcher m = SALT_PATTERN.matcher(salt); 183 if (!m.find()) { 184 throw new IllegalArgumentException("Invalid salt value: " + salt); 185 } 186 if (m.group(3) != null) { 187 rounds = Integer.parseInt(m.group(3)); 188 rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds)); 189 roundsCustom = true; 190 } 191 final String saltString = m.group(4); 192 final byte[] saltBytes = saltString.getBytes(StandardCharsets.UTF_8); 193 final int saltLen = saltBytes.length; 194 195 // 1. start digest A 196 // Prepare for the real work. 197 MessageDigest ctx = DigestUtils.getDigest(algorithm); 198 199 // 2. the password string is added to digest A 200 /* 201 * Add the key string. 202 */ 203 ctx.update(keyBytes); 204 205 // 3. the salt string is added to digest A. This is just the salt string 206 // itself without the enclosing '$', without the magic salt_prefix $5$ and 207 // $6$ respectively and without the rounds=<N> specification. 208 // 209 // NB: the MD5 algorithm did add the $1$ salt_prefix. This is not deemed 210 // necessary since it is a constant string and does not add security 211 // and /possibly/ allows a plain text attack. Since the rounds=<N> 212 // specification should never be added this would also create an 213 // inconsistency. 214 /* 215 * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character 216 * (for compatibility with existing implementations). 217 */ 218 ctx.update(saltBytes); 219 220 // 4. start digest B 221 /* 222 * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first 223 * context. 224 */ 225 MessageDigest altCtx = DigestUtils.getDigest(algorithm); 226 227 // 5. add the password to digest B 228 /* 229 * Add key. 230 */ 231 altCtx.update(keyBytes); 232 233 // 6. add the salt string to digest B 234 /* 235 * Add salt. 236 */ 237 altCtx.update(saltBytes); 238 239 // 7. add the password again to digest B 240 /* 241 * Add key again. 242 */ 243 altCtx.update(keyBytes); 244 245 // 8. finish digest B 246 /* 247 * Now get result of this (32 bytes) and add it to the other context. 248 */ 249 byte[] altResult = altCtx.digest(); 250 251 // 9. For each block of 32 or 64 bytes in the password string (excluding 252 // the terminating NUL in the C representation), add digest B to digest A 253 /* 254 * Add for any character in the key one byte of the alternate sum. 255 */ 256 /* 257 * (Remark: the C code comment seems wrong for key length > 32!) 258 */ 259 int cnt = keyBytes.length; 260 while (cnt > blocksize) { 261 ctx.update(altResult, 0, blocksize); 262 cnt -= blocksize; 263 } 264 265 // 10. For the remaining N bytes of the password string add the first 266 // N bytes of digest B to digest A 267 ctx.update(altResult, 0, cnt); 268 269 // 11. For each bit of the binary representation of the length of the 270 // password string up to and including the highest 1-digit, starting 271 // from to the lowest bit position (numeric value 1): 272 // 273 // a) for a 1-digit add digest B to digest A 274 // 275 // b) for a 0-digit add the password string 276 // 277 // NB: this step differs significantly from the MD5 algorithm. It 278 // adds more randomness. 279 /* 280 * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0 281 * the key. 282 */ 283 cnt = keyBytes.length; 284 while (cnt > 0) { 285 if ((cnt & 1) != 0) { 286 ctx.update(altResult, 0, blocksize); 287 } else { 288 ctx.update(keyBytes); 289 } 290 cnt >>= 1; 291 } 292 293 // 12. finish digest A 294 /* 295 * Create intermediate result. 296 */ 297 altResult = ctx.digest(); 298 299 // 13. start digest DP 300 /* 301 * Start computation of P byte sequence. 302 */ 303 altCtx = DigestUtils.getDigest(algorithm); 304 305 // 14. for every byte in the password (excluding the terminating NUL byte 306 // in the C representation of the string) 307 // 308 // add the password to digest DP 309 /* 310 * For every character in the password add the entire password. 311 */ 312 for (int i = 1; i <= keyLen; i++) { 313 altCtx.update(keyBytes); 314 } 315 316 // 15. finish digest DP 317 /* 318 * Finish the digest. 319 */ 320 byte[] tempResult = altCtx.digest(); 321 322 // 16. produce byte sequence P of the same length as the password where 323 // 324 // a) for each block of 32 or 64 bytes of length of the password string 325 // the entire digest DP is used 326 // 327 // b) for the remaining N (up to 31 or 63) bytes use the first N 328 // bytes of digest DP 329 /* 330 * Create byte sequence P. 331 */ 332 final byte[] pBytes = new byte[keyLen]; 333 int cp = 0; 334 while (cp < keyLen - blocksize) { 335 System.arraycopy(tempResult, 0, pBytes, cp, blocksize); 336 cp += blocksize; 337 } 338 System.arraycopy(tempResult, 0, pBytes, cp, keyLen - cp); 339 340 // 17. start digest DS 341 /* 342 * Start computation of S byte sequence. 343 */ 344 altCtx = DigestUtils.getDigest(algorithm); 345 346 // 18. repeat the following 16+A[0] times, where A[0] represents the first 347 // byte in digest A interpreted as an 8-bit unsigned value 348 // 349 // add the salt to digest DS 350 /* 351 * For every character in the password add the entire password. 352 */ 353 for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) { 354 altCtx.update(saltBytes); 355 } 356 357 // 19. finish digest DS 358 /* 359 * Finish the digest. 360 */ 361 tempResult = altCtx.digest(); 362 363 // 20. produce byte sequence S of the same length as the salt string where 364 // 365 // a) for each block of 32 or 64 bytes of length of the salt string 366 // the entire digest DS is used 367 // 368 // b) for the remaining N (up to 31 or 63) bytes use the first N 369 // bytes of digest DS 370 /* 371 * Create byte sequence S. 372 */ 373 // Remark: The salt is limited to 16 chars, how does this make sense? 374 final byte[] sBytes = new byte[saltLen]; 375 cp = 0; 376 while (cp < saltLen - blocksize) { 377 System.arraycopy(tempResult, 0, sBytes, cp, blocksize); 378 cp += blocksize; 379 } 380 System.arraycopy(tempResult, 0, sBytes, cp, saltLen - cp); 381 382 // 21. repeat a loop according to the number specified in the rounds=<N> 383 // specification in the salt (or the default value if none is 384 // present). Each round is numbered, starting with 0 and up to N-1. 385 // 386 // The loop uses a digest as input. In the first round it is the 387 // digest produced in step 12. In the latter steps it is the digest 388 // produced in step 21.h. The following text uses the notation 389 // "digest A/C" to describe this behavior. 390 /* 391 * Repeatedly run the collected hash value through sha512 to burn CPU cycles. 392 */ 393 for (int i = 0; i <= rounds - 1; i++) { 394 // a) start digest C 395 /* 396 * New context. 397 */ 398 ctx = DigestUtils.getDigest(algorithm); 399 400 // b) for odd round numbers add the byte sequence P to digest C 401 // c) for even round numbers add digest A/C 402 /* 403 * Add key or last result. 404 */ 405 if ((i & 1) != 0) { 406 ctx.update(pBytes, 0, keyLen); 407 } else { 408 ctx.update(altResult, 0, blocksize); 409 } 410 411 // d) for all round numbers not divisible by 3 add the byte sequence S 412 /* 413 * Add salt for numbers not divisible by 3. 414 */ 415 if (i % 3 != 0) { 416 ctx.update(sBytes, 0, saltLen); 417 } 418 419 // e) for all round numbers not divisible by 7 add the byte sequence P 420 /* 421 * Add key for numbers not divisible by 7. 422 */ 423 if (i % 7 != 0) { 424 ctx.update(pBytes, 0, keyLen); 425 } 426 427 // f) for odd round numbers add digest A/C 428 // g) for even round numbers add the byte sequence P 429 /* 430 * Add key or last result. 431 */ 432 if ((i & 1) != 0) { 433 ctx.update(altResult, 0, blocksize); 434 } else { 435 ctx.update(pBytes, 0, keyLen); 436 } 437 438 // h) finish digest C. 439 /* 440 * Create intermediate result. 441 */ 442 altResult = ctx.digest(); 443 } 444 445 // 22. Produce the output string. This is an ASCII string of the maximum 446 // size specified above, consisting of multiple pieces: 447 // 448 // a) the salt salt_prefix, $5$ or $6$ respectively 449 // 450 // b) the rounds=<N> specification, if one was present in the input 451 // salt string. A trailing '$' is added in this case to separate 452 // the rounds specification from the following text. 453 // 454 // c) the salt string truncated to 16 characters 455 // 456 // d) a '$' character 457 /* 458 * Now we can construct the result string. It consists of three parts. 459 */ 460 final StringBuilder buffer = new StringBuilder(saltPrefix); 461 if (roundsCustom) { 462 buffer.append(ROUNDS_PREFIX); 463 buffer.append(rounds); 464 buffer.append("$"); 465 } 466 buffer.append(saltString); 467 buffer.append("$"); 468 469 // e) the base-64 encoded final C digest. The encoding used is as 470 // follows: 471 // [...] 472 // 473 // Each group of three bytes from the digest produces four 474 // characters as output: 475 // 476 // 1. character: the six low bits of the first byte 477 // 2. character: the two high bits of the first byte and the 478 // four low bytes from the second byte 479 // 3. character: the four high bytes from the second byte and 480 // the two low bits from the third byte 481 // 4. character: the six high bits from the third byte 482 // 483 // The groups of three bytes are as follows (in this sequence). 484 // These are the indices into the byte array containing the 485 // digest, starting with index 0. For the last group there are 486 // not enough bytes left in the digest and the value zero is used 487 // in its place. This group also produces only three or two 488 // characters as output for SHA-512 and SHA-512 respectively. 489 490 // This was just a safeguard in the C implementation: 491 // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1; 492 493 if (blocksize == 32) { 494 B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer); 495 B64.b64from24bit(altResult[21], altResult[1], altResult[11], 4, buffer); 496 B64.b64from24bit(altResult[12], altResult[22], altResult[2], 4, buffer); 497 B64.b64from24bit(altResult[3], altResult[13], altResult[23], 4, buffer); 498 B64.b64from24bit(altResult[24], altResult[4], altResult[14], 4, buffer); 499 B64.b64from24bit(altResult[15], altResult[25], altResult[5], 4, buffer); 500 B64.b64from24bit(altResult[6], altResult[16], altResult[26], 4, buffer); 501 B64.b64from24bit(altResult[27], altResult[7], altResult[17], 4, buffer); 502 B64.b64from24bit(altResult[18], altResult[28], altResult[8], 4, buffer); 503 B64.b64from24bit(altResult[9], altResult[19], altResult[29], 4, buffer); 504 B64.b64from24bit((byte) 0, altResult[31], altResult[30], 3, buffer); 505 } else { 506 B64.b64from24bit(altResult[0], altResult[21], altResult[42], 4, buffer); 507 B64.b64from24bit(altResult[22], altResult[43], altResult[1], 4, buffer); 508 B64.b64from24bit(altResult[44], altResult[2], altResult[23], 4, buffer); 509 B64.b64from24bit(altResult[3], altResult[24], altResult[45], 4, buffer); 510 B64.b64from24bit(altResult[25], altResult[46], altResult[4], 4, buffer); 511 B64.b64from24bit(altResult[47], altResult[5], altResult[26], 4, buffer); 512 B64.b64from24bit(altResult[6], altResult[27], altResult[48], 4, buffer); 513 B64.b64from24bit(altResult[28], altResult[49], altResult[7], 4, buffer); 514 B64.b64from24bit(altResult[50], altResult[8], altResult[29], 4, buffer); 515 B64.b64from24bit(altResult[9], altResult[30], altResult[51], 4, buffer); 516 B64.b64from24bit(altResult[31], altResult[52], altResult[10], 4, buffer); 517 B64.b64from24bit(altResult[53], altResult[11], altResult[32], 4, buffer); 518 B64.b64from24bit(altResult[12], altResult[33], altResult[54], 4, buffer); 519 B64.b64from24bit(altResult[34], altResult[55], altResult[13], 4, buffer); 520 B64.b64from24bit(altResult[56], altResult[14], altResult[35], 4, buffer); 521 B64.b64from24bit(altResult[15], altResult[36], altResult[57], 4, buffer); 522 B64.b64from24bit(altResult[37], altResult[58], altResult[16], 4, buffer); 523 B64.b64from24bit(altResult[59], altResult[17], altResult[38], 4, buffer); 524 B64.b64from24bit(altResult[18], altResult[39], altResult[60], 4, buffer); 525 B64.b64from24bit(altResult[40], altResult[61], altResult[19], 4, buffer); 526 B64.b64from24bit(altResult[62], altResult[20], altResult[41], 4, buffer); 527 B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer); 528 } 529 530 /* 531 * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps 532 * cannot get any information. 533 */ 534 // Is there a better way to do this with the JVM? 535 Arrays.fill(tempResult, (byte) 0); 536 Arrays.fill(pBytes, (byte) 0); 537 Arrays.fill(sBytes, (byte) 0); 538 ctx.reset(); 539 altCtx.reset(); 540 Arrays.fill(keyBytes, (byte) 0); 541 Arrays.fill(saltBytes, (byte) 0); 542 543 return buffer.toString(); 544 } 545 546 /** 547 * Generates a libc crypt() compatible "$6$" hash value with random salt. 548 * <p> 549 * See {@link Crypt#crypt(String, String)} for details. 550 * </p> 551 * <p> 552 * A salt is generated for you using {@link SecureRandom} 553 * </p> 554 * 555 * @param keyBytes 556 * plaintext to hash. Each array element is set to {@code 0} before returning. 557 * @return complete hash value 558 * @throws IllegalArgumentException 559 * when a {@link java.security.NoSuchAlgorithmException} is caught. 560 */ 561 public static String sha512Crypt(final byte[] keyBytes) { 562 return sha512Crypt(keyBytes, null); 563 } 564 565 /** 566 * Generates a libc6 crypt() compatible "$6$" hash value. 567 * <p> 568 * See {@link Crypt#crypt(String, String)} for details. 569 * </p> 570 * @param keyBytes 571 * plaintext to hash. Each array element is set to {@code 0} before returning. 572 * @param salt 573 * real salt value without prefix or "rounds=". The salt may be null, in which case a salt is generated 574 * for you using {@link SecureRandom}; if you want to use a {@link Random} object other than 575 * {@link SecureRandom} then we suggest you provide it using 576 * {@link #sha512Crypt(byte[], String, Random)}. 577 * @return complete hash value including salt 578 * @throws IllegalArgumentException 579 * if the salt does not match the allowed pattern 580 * @throws IllegalArgumentException 581 * when a {@link java.security.NoSuchAlgorithmException} is caught. 582 */ 583 public static String sha512Crypt(final byte[] keyBytes, String salt) { 584 if (salt == null) { 585 salt = SHA512_PREFIX + B64.getRandomSalt(8); 586 } 587 return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512); 588 } 589 590 /** 591 * Generates a libc6 crypt() compatible "$6$" hash value. 592 * <p> 593 * See {@link Crypt#crypt(String, String)} for details. 594 * </p> 595 * @param keyBytes 596 * plaintext to hash. Each array element is set to {@code 0} before returning. 597 * @param salt 598 * real salt value without prefix or "rounds=". The salt may be null, in which case a salt 599 * is generated for you using {@link SecureRandom}. 600 * @param random 601 * the instance of {@link Random} to use for generating the salt. 602 * Consider using {@link SecureRandom} for more secure salts. 603 * @return complete hash value including salt 604 * @throws IllegalArgumentException 605 * if the salt does not match the allowed pattern 606 * @throws IllegalArgumentException 607 * when a {@link java.security.NoSuchAlgorithmException} is caught. 608 * @since 1.12 609 */ 610 public static String sha512Crypt(final byte[] keyBytes, String salt, final Random random) { 611 if (salt == null) { 612 salt = SHA512_PREFIX + B64.getRandomSalt(8, random); 613 } 614 return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512); 615 } 616}