001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.codec.digest; 018 019 import java.security.MessageDigest; 020 import java.security.NoSuchAlgorithmException; 021 import java.util.Arrays; 022 import java.util.regex.Matcher; 023 import java.util.regex.Pattern; 024 025 import org.apache.commons.codec.Charsets; 026 027 /** 028 * SHA2-based Unix crypt implementation. 029 * <p> 030 * Based on the C implementation released into the Public Domain by Ulrich Drepper <drepper@redhat.com> 031 * http://www.akkadia.org/drepper/SHA-crypt.txt 032 * <p> 033 * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers <ch@lathspell.de> and likewise put 034 * into the Public Domain. 035 * <p> 036 * This class is immutable and thread-safe. 037 * 038 * @version $Id: Sha2Crypt.html 889935 2013-12-11 05:05:13Z ggregory $ 039 * @since 1.7 040 */ 041 public class Sha2Crypt { 042 043 /** Default number of rounds if not explicitly specified. */ 044 private static final int ROUNDS_DEFAULT = 5000; 045 046 /** Maximum number of rounds. */ 047 private static final int ROUNDS_MAX = 999999999; 048 049 /** Minimum number of rounds. */ 050 private static final int ROUNDS_MIN = 1000; 051 052 /** Prefix for optional rounds specification. */ 053 private static final String ROUNDS_PREFIX = "rounds="; 054 055 /** The number of bytes the final hash value will have (SHA-256 variant). */ 056 private static final int SHA256_BLOCKSIZE = 32; 057 058 /** The prefixes that can be used to identify this crypt() variant (SHA-256). */ 059 static final String SHA256_PREFIX = "$5$"; 060 061 /** The number of bytes the final hash value will have (SHA-512 variant). */ 062 private static final int SHA512_BLOCKSIZE = 64; 063 064 /** The prefixes that can be used to identify this crypt() variant (SHA-512). */ 065 static final String SHA512_PREFIX = "$6$"; 066 067 /** The pattern to match valid salt values. */ 068 private static final Pattern SALT_PATTERN = Pattern 069 .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*"); 070 071 /** 072 * Generates a libc crypt() compatible "$5$" hash value with random salt. 073 * <p> 074 * See {@link Crypt#crypt(String, String)} for details. 075 * 076 * @throws RuntimeException 077 * when a {@link java.security.NoSuchAlgorithmException} is caught. 078 */ 079 public static String sha256Crypt(byte[] keyBytes) { 080 return sha256Crypt(keyBytes, null); 081 } 082 083 /** 084 * Generates a libc6 crypt() compatible "$5$" hash value. 085 * <p> 086 * See {@link Crypt#crypt(String, String)} for details. 087 * 088 * @throws IllegalArgumentException 089 * if the salt does not match the allowed pattern 090 * @throws RuntimeException 091 * when a {@link java.security.NoSuchAlgorithmException} is caught. 092 */ 093 public static String sha256Crypt(byte[] keyBytes, String salt) { 094 if (salt == null) { 095 salt = SHA256_PREFIX + B64.getRandomSalt(8); 096 } 097 return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256); 098 } 099 100 /** 101 * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value. 102 * <p> 103 * This is a nearly line by line conversion of the original C function. The numbered comments are from the 104 * algorithm description, the short C-style ones from the original C code and the ones with "Remark" from me. 105 * <p> 106 * See {@link Crypt#crypt(String, String)} for details. 107 * 108 * @param keyBytes 109 * plaintext that should be hashed 110 * @param salt 111 * real salt value without prefix or "rounds=" 112 * @param saltPrefix 113 * either $5$ or $6$ 114 * @param blocksize 115 * a value that differs between $5$ and $6$ 116 * @param algorithm 117 * {@link MessageDigest} algorithm identifier string 118 * @return complete hash value including prefix and salt 119 * @throws IllegalArgumentException 120 * if the given salt is {@code null} or does not match the allowed pattern 121 * @throws IllegalArgumentException 122 * when a {@link NoSuchAlgorithmException} is caught 123 * @see MessageDigestAlgorithms 124 */ 125 private static String sha2Crypt(byte[] keyBytes, String salt, String saltPrefix, int blocksize, String algorithm) { 126 127 int keyLen = keyBytes.length; 128 129 // Extracts effective salt and the number of rounds from the given salt. 130 int rounds = ROUNDS_DEFAULT; 131 boolean roundsCustom = false; 132 if (salt == null) { 133 throw new IllegalArgumentException("Salt must not be null"); 134 } 135 136 Matcher m = SALT_PATTERN.matcher(salt); 137 if (m == null || !m.find()) { 138 throw new IllegalArgumentException("Invalid salt value: " + salt); 139 } 140 if (m.group(3) != null) { 141 rounds = Integer.parseInt(m.group(3)); 142 rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds)); 143 roundsCustom = true; 144 } 145 String saltString = m.group(4); 146 byte[] saltBytes = saltString.getBytes(Charsets.UTF_8); 147 int saltLen = saltBytes.length; 148 149 // 1. start digest A 150 // Prepare for the real work. 151 MessageDigest ctx = DigestUtils.getDigest(algorithm); 152 153 // 2. the password string is added to digest A 154 /* 155 * Add the key string. 156 */ 157 ctx.update(keyBytes); 158 159 // 3. the salt string is added to digest A. This is just the salt string 160 // itself without the enclosing '$', without the magic salt_prefix $5$ and 161 // $6$ respectively and without the rounds=<N> specification. 162 // 163 // NB: the MD5 algorithm did add the $1$ salt_prefix. This is not deemed 164 // necessary since it is a constant string and does not add security 165 // and /possibly/ allows a plain text attack. Since the rounds=<N> 166 // specification should never be added this would also create an 167 // inconsistency. 168 /* 169 * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character 170 * (for compatibility with existing implementations). 171 */ 172 ctx.update(saltBytes); 173 174 // 4. start digest B 175 /* 176 * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first 177 * context. 178 */ 179 MessageDigest altCtx = DigestUtils.getDigest(algorithm); 180 181 // 5. add the password to digest B 182 /* 183 * Add key. 184 */ 185 altCtx.update(keyBytes); 186 187 // 6. add the salt string to digest B 188 /* 189 * Add salt. 190 */ 191 altCtx.update(saltBytes); 192 193 // 7. add the password again to digest B 194 /* 195 * Add key again. 196 */ 197 altCtx.update(keyBytes); 198 199 // 8. finish digest B 200 /* 201 * Now get result of this (32 bytes) and add it to the other context. 202 */ 203 byte[] altResult = altCtx.digest(); 204 205 // 9. For each block of 32 or 64 bytes in the password string (excluding 206 // the terminating NUL in the C representation), add digest B to digest A 207 /* 208 * Add for any character in the key one byte of the alternate sum. 209 */ 210 /* 211 * (Remark: the C code comment seems wrong for key length > 32!) 212 */ 213 int cnt = keyBytes.length; 214 while (cnt > blocksize) { 215 ctx.update(altResult, 0, blocksize); 216 cnt -= blocksize; 217 } 218 219 // 10. For the remaining N bytes of the password string add the first 220 // N bytes of digest B to digest A 221 ctx.update(altResult, 0, cnt); 222 223 // 11. For each bit of the binary representation of the length of the 224 // password string up to and including the highest 1-digit, starting 225 // from to lowest bit position (numeric value 1): 226 // 227 // a) for a 1-digit add digest B to digest A 228 // 229 // b) for a 0-digit add the password string 230 // 231 // NB: this step differs significantly from the MD5 algorithm. It 232 // adds more randomness. 233 /* 234 * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0 235 * the key. 236 */ 237 cnt = keyBytes.length; 238 while (cnt > 0) { 239 if ((cnt & 1) != 0) { 240 ctx.update(altResult, 0, blocksize); 241 } else { 242 ctx.update(keyBytes); 243 } 244 cnt >>= 1; 245 } 246 247 // 12. finish digest A 248 /* 249 * Create intermediate result. 250 */ 251 altResult = ctx.digest(); 252 253 // 13. start digest DP 254 /* 255 * Start computation of P byte sequence. 256 */ 257 altCtx = DigestUtils.getDigest(algorithm); 258 259 // 14. for every byte in the password (excluding the terminating NUL byte 260 // in the C representation of the string) 261 // 262 // add the password to digest DP 263 /* 264 * For every character in the password add the entire password. 265 */ 266 for (int i = 1; i <= keyLen; i++) { 267 altCtx.update(keyBytes); 268 } 269 270 // 15. finish digest DP 271 /* 272 * Finish the digest. 273 */ 274 byte[] tempResult = altCtx.digest(); 275 276 // 16. produce byte sequence P of the same length as the password where 277 // 278 // a) for each block of 32 or 64 bytes of length of the password string 279 // the entire digest DP is used 280 // 281 // b) for the remaining N (up to 31 or 63) bytes use the first N 282 // bytes of digest DP 283 /* 284 * Create byte sequence P. 285 */ 286 byte[] pBytes = new byte[keyLen]; 287 int cp = 0; 288 while (cp < keyLen - blocksize) { 289 System.arraycopy(tempResult, 0, pBytes, cp, blocksize); 290 cp += blocksize; 291 } 292 System.arraycopy(tempResult, 0, pBytes, cp, keyLen - cp); 293 294 // 17. start digest DS 295 /* 296 * Start computation of S byte sequence. 297 */ 298 altCtx = DigestUtils.getDigest(algorithm); 299 300 // 18. repeast the following 16+A[0] times, where A[0] represents the first 301 // byte in digest A interpreted as an 8-bit unsigned value 302 // 303 // add the salt to digest DS 304 /* 305 * For every character in the password add the entire password. 306 */ 307 for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) { 308 altCtx.update(saltBytes); 309 } 310 311 // 19. finish digest DS 312 /* 313 * Finish the digest. 314 */ 315 tempResult = altCtx.digest(); 316 317 // 20. produce byte sequence S of the same length as the salt string where 318 // 319 // a) for each block of 32 or 64 bytes of length of the salt string 320 // the entire digest DS is used 321 // 322 // b) for the remaining N (up to 31 or 63) bytes use the first N 323 // bytes of digest DS 324 /* 325 * Create byte sequence S. 326 */ 327 // Remark: The salt is limited to 16 chars, how does this make sense? 328 byte[] sBytes = new byte[saltLen]; 329 cp = 0; 330 while (cp < saltLen - blocksize) { 331 System.arraycopy(tempResult, 0, sBytes, cp, blocksize); 332 cp += blocksize; 333 } 334 System.arraycopy(tempResult, 0, sBytes, cp, saltLen - cp); 335 336 // 21. repeat a loop according to the number specified in the rounds=<N> 337 // specification in the salt (or the default value if none is 338 // present). Each round is numbered, starting with 0 and up to N-1. 339 // 340 // The loop uses a digest as input. In the first round it is the 341 // digest produced in step 12. In the latter steps it is the digest 342 // produced in step 21.h. The following text uses the notation 343 // "digest A/C" to describe this behavior. 344 /* 345 * Repeatedly run the collected hash value through sha512 to burn CPU cycles. 346 */ 347 for (int i = 0; i <= rounds - 1; i++) { 348 // a) start digest C 349 /* 350 * New context. 351 */ 352 ctx = DigestUtils.getDigest(algorithm); 353 354 // b) for odd round numbers add the byte sequense P to digest C 355 // c) for even round numbers add digest A/C 356 /* 357 * Add key or last result. 358 */ 359 if ((i & 1) != 0) { 360 ctx.update(pBytes, 0, keyLen); 361 } else { 362 ctx.update(altResult, 0, blocksize); 363 } 364 365 // d) for all round numbers not divisible by 3 add the byte sequence S 366 /* 367 * Add salt for numbers not divisible by 3. 368 */ 369 if (i % 3 != 0) { 370 ctx.update(sBytes, 0, saltLen); 371 } 372 373 // e) for all round numbers not divisible by 7 add the byte sequence P 374 /* 375 * Add key for numbers not divisible by 7. 376 */ 377 if (i % 7 != 0) { 378 ctx.update(pBytes, 0, keyLen); 379 } 380 381 // f) for odd round numbers add digest A/C 382 // g) for even round numbers add the byte sequence P 383 /* 384 * Add key or last result. 385 */ 386 if ((i & 1) != 0) { 387 ctx.update(altResult, 0, blocksize); 388 } else { 389 ctx.update(pBytes, 0, keyLen); 390 } 391 392 // h) finish digest C. 393 /* 394 * Create intermediate result. 395 */ 396 altResult = ctx.digest(); 397 } 398 399 // 22. Produce the output string. This is an ASCII string of the maximum 400 // size specified above, consisting of multiple pieces: 401 // 402 // a) the salt salt_prefix, $5$ or $6$ respectively 403 // 404 // b) the rounds=<N> specification, if one was present in the input 405 // salt string. A trailing '$' is added in this case to separate 406 // the rounds specification from the following text. 407 // 408 // c) the salt string truncated to 16 characters 409 // 410 // d) a '$' character 411 /* 412 * Now we can construct the result string. It consists of three parts. 413 */ 414 StringBuilder buffer = new StringBuilder(saltPrefix); 415 if (roundsCustom) { 416 buffer.append(ROUNDS_PREFIX); 417 buffer.append(rounds); 418 buffer.append("$"); 419 } 420 buffer.append(saltString); 421 buffer.append("$"); 422 423 // e) the base-64 encoded final C digest. The encoding used is as 424 // follows: 425 // [...] 426 // 427 // Each group of three bytes from the digest produces four 428 // characters as output: 429 // 430 // 1. character: the six low bits of the first byte 431 // 2. character: the two high bits of the first byte and the 432 // four low bytes from the second byte 433 // 3. character: the four high bytes from the second byte and 434 // the two low bits from the third byte 435 // 4. character: the six high bits from the third byte 436 // 437 // The groups of three bytes are as follows (in this sequence). 438 // These are the indices into the byte array containing the 439 // digest, starting with index 0. For the last group there are 440 // not enough bytes left in the digest and the value zero is used 441 // in its place. This group also produces only three or two 442 // characters as output for SHA-512 and SHA-512 respectively. 443 444 // This was just a safeguard in the C implementation: 445 // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1; 446 447 if (blocksize == 32) { 448 B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer); 449 B64.b64from24bit(altResult[21], altResult[1], altResult[11], 4, buffer); 450 B64.b64from24bit(altResult[12], altResult[22], altResult[2], 4, buffer); 451 B64.b64from24bit(altResult[3], altResult[13], altResult[23], 4, buffer); 452 B64.b64from24bit(altResult[24], altResult[4], altResult[14], 4, buffer); 453 B64.b64from24bit(altResult[15], altResult[25], altResult[5], 4, buffer); 454 B64.b64from24bit(altResult[6], altResult[16], altResult[26], 4, buffer); 455 B64.b64from24bit(altResult[27], altResult[7], altResult[17], 4, buffer); 456 B64.b64from24bit(altResult[18], altResult[28], altResult[8], 4, buffer); 457 B64.b64from24bit(altResult[9], altResult[19], altResult[29], 4, buffer); 458 B64.b64from24bit((byte) 0, altResult[31], altResult[30], 3, buffer); 459 } else { 460 B64.b64from24bit(altResult[0], altResult[21], altResult[42], 4, buffer); 461 B64.b64from24bit(altResult[22], altResult[43], altResult[1], 4, buffer); 462 B64.b64from24bit(altResult[44], altResult[2], altResult[23], 4, buffer); 463 B64.b64from24bit(altResult[3], altResult[24], altResult[45], 4, buffer); 464 B64.b64from24bit(altResult[25], altResult[46], altResult[4], 4, buffer); 465 B64.b64from24bit(altResult[47], altResult[5], altResult[26], 4, buffer); 466 B64.b64from24bit(altResult[6], altResult[27], altResult[48], 4, buffer); 467 B64.b64from24bit(altResult[28], altResult[49], altResult[7], 4, buffer); 468 B64.b64from24bit(altResult[50], altResult[8], altResult[29], 4, buffer); 469 B64.b64from24bit(altResult[9], altResult[30], altResult[51], 4, buffer); 470 B64.b64from24bit(altResult[31], altResult[52], altResult[10], 4, buffer); 471 B64.b64from24bit(altResult[53], altResult[11], altResult[32], 4, buffer); 472 B64.b64from24bit(altResult[12], altResult[33], altResult[54], 4, buffer); 473 B64.b64from24bit(altResult[34], altResult[55], altResult[13], 4, buffer); 474 B64.b64from24bit(altResult[56], altResult[14], altResult[35], 4, buffer); 475 B64.b64from24bit(altResult[15], altResult[36], altResult[57], 4, buffer); 476 B64.b64from24bit(altResult[37], altResult[58], altResult[16], 4, buffer); 477 B64.b64from24bit(altResult[59], altResult[17], altResult[38], 4, buffer); 478 B64.b64from24bit(altResult[18], altResult[39], altResult[60], 4, buffer); 479 B64.b64from24bit(altResult[40], altResult[61], altResult[19], 4, buffer); 480 B64.b64from24bit(altResult[62], altResult[20], altResult[41], 4, buffer); 481 B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer); 482 } 483 484 /* 485 * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps 486 * cannot get any information. 487 */ 488 // Is there a better way to do this with the JVM? 489 Arrays.fill(tempResult, (byte) 0); 490 Arrays.fill(pBytes, (byte) 0); 491 Arrays.fill(sBytes, (byte) 0); 492 ctx.reset(); 493 altCtx.reset(); 494 Arrays.fill(keyBytes, (byte) 0); 495 Arrays.fill(saltBytes, (byte) 0); 496 497 return buffer.toString(); 498 } 499 500 /** 501 * Generates a libc crypt() compatible "$6$" hash value with random salt. 502 * <p> 503 * See {@link Crypt#crypt(String, String)} for details. 504 * 505 * @throws RuntimeException 506 * when a {@link java.security.NoSuchAlgorithmException} is caught. 507 */ 508 public static String sha512Crypt(byte[] keyBytes) { 509 return sha512Crypt(keyBytes, null); 510 } 511 512 /** 513 * Generates a libc6 crypt() compatible "$6$" hash value. 514 * <p> 515 * See {@link Crypt#crypt(String, String)} for details. 516 * 517 * @throws IllegalArgumentException 518 * if the salt does not match the allowed pattern 519 * @throws RuntimeException 520 * when a {@link java.security.NoSuchAlgorithmException} is caught. 521 */ 522 public static String sha512Crypt(byte[] keyBytes, String salt) { 523 if (salt == null) { 524 salt = SHA512_PREFIX + B64.getRandomSalt(8); 525 } 526 return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512); 527 } 528 }