001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     *
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     *
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    package org.apache.commons.codec.digest;
018    
019    import java.security.MessageDigest;
020    import java.security.NoSuchAlgorithmException;
021    import java.util.Arrays;
022    import java.util.regex.Matcher;
023    import java.util.regex.Pattern;
024    
025    import org.apache.commons.codec.Charsets;
026    
027    /**
028     * SHA2-based Unix crypt implementation.
029     * <p>
030     * Based on the C implementation released into the Public Domain by Ulrich Drepper &lt;drepper@redhat.com&gt;
031     * http://www.akkadia.org/drepper/SHA-crypt.txt
032     * <p>
033     * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers &lt;ch@lathspell.de&gt; and likewise put
034     * into the Public Domain.
035     * <p>
036     * This class is immutable and thread-safe.
037     *
038     * @version $Id: Sha2Crypt.html 889935 2013-12-11 05:05:13Z ggregory $
039     * @since 1.7
040     */
041    public class Sha2Crypt {
042    
043        /** Default number of rounds if not explicitly specified. */
044        private static final int ROUNDS_DEFAULT = 5000;
045    
046        /** Maximum number of rounds. */
047        private static final int ROUNDS_MAX = 999999999;
048    
049        /** Minimum number of rounds. */
050        private static final int ROUNDS_MIN = 1000;
051    
052        /** Prefix for optional rounds specification. */
053        private static final String ROUNDS_PREFIX = "rounds=";
054    
055        /** The number of bytes the final hash value will have (SHA-256 variant). */
056        private static final int SHA256_BLOCKSIZE = 32;
057    
058        /** The prefixes that can be used to identify this crypt() variant (SHA-256). */
059        static final String SHA256_PREFIX = "$5$";
060    
061        /** The number of bytes the final hash value will have (SHA-512 variant). */
062        private static final int SHA512_BLOCKSIZE = 64;
063    
064        /** The prefixes that can be used to identify this crypt() variant (SHA-512). */
065        static final String SHA512_PREFIX = "$6$";
066    
067        /** The pattern to match valid salt values. */
068        private static final Pattern SALT_PATTERN = Pattern
069                .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*");
070    
071        /**
072         * Generates a libc crypt() compatible "$5$" hash value with random salt.
073         * <p>
074         * See {@link Crypt#crypt(String, String)} for details.
075         *
076         * @throws RuntimeException
077         *             when a {@link java.security.NoSuchAlgorithmException} is caught.
078         */
079        public static String sha256Crypt(final byte[] keyBytes) {
080            return sha256Crypt(keyBytes, null);
081        }
082    
083        /**
084         * Generates a libc6 crypt() compatible "$5$" hash value.
085         * <p>
086         * See {@link Crypt#crypt(String, String)} for details.
087         *
088         * @throws IllegalArgumentException
089         *             if the salt does not match the allowed pattern
090         * @throws RuntimeException
091         *             when a {@link java.security.NoSuchAlgorithmException} is caught.
092         */
093        public static String sha256Crypt(final byte[] keyBytes, String salt) {
094            if (salt == null) {
095                salt = SHA256_PREFIX + B64.getRandomSalt(8);
096            }
097            return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256);
098        }
099    
100        /**
101         * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value.
102         * <p>
103         * This is a nearly line by line conversion of the original C function. The numbered comments are from the
104         * algorithm description, the short C-style ones from the original C code and the ones with "Remark" from me.
105         * <p>
106         * See {@link Crypt#crypt(String, String)} for details.
107         *
108         * @param keyBytes
109         *            plaintext that should be hashed
110         * @param salt
111         *            real salt value without prefix or "rounds="
112         * @param saltPrefix
113         *            either $5$ or $6$
114         * @param blocksize
115         *            a value that differs between $5$ and $6$
116         * @param algorithm
117         *            {@link MessageDigest} algorithm identifier string
118         * @return complete hash value including prefix and salt
119         * @throws IllegalArgumentException
120         *             if the given salt is {@code null} or does not match the allowed pattern
121         * @throws IllegalArgumentException
122         *             when a {@link NoSuchAlgorithmException} is caught
123         * @see MessageDigestAlgorithms
124         */
125        private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix,
126                                        final int blocksize, final String algorithm) {
127    
128            final int keyLen = keyBytes.length;
129    
130            // Extracts effective salt and the number of rounds from the given salt.
131            int rounds = ROUNDS_DEFAULT;
132            boolean roundsCustom = false;
133            if (salt == null) {
134                throw new IllegalArgumentException("Salt must not be null");
135            }
136    
137            final Matcher m = SALT_PATTERN.matcher(salt);
138            if (m == null || !m.find()) {
139                throw new IllegalArgumentException("Invalid salt value: " + salt);
140            }
141            if (m.group(3) != null) {
142                rounds = Integer.parseInt(m.group(3));
143                rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds));
144                roundsCustom = true;
145            }
146            final String saltString = m.group(4);
147            final byte[] saltBytes = saltString.getBytes(Charsets.UTF_8);
148            final int saltLen = saltBytes.length;
149    
150            // 1. start digest A
151            // Prepare for the real work.
152            MessageDigest ctx = DigestUtils.getDigest(algorithm);
153    
154            // 2. the password string is added to digest A
155            /*
156             * Add the key string.
157             */
158            ctx.update(keyBytes);
159    
160            // 3. the salt string is added to digest A. This is just the salt string
161            // itself without the enclosing '$', without the magic salt_prefix $5$ and
162            // $6$ respectively and without the rounds=<N> specification.
163            //
164            // NB: the MD5 algorithm did add the $1$ salt_prefix. This is not deemed
165            // necessary since it is a constant string and does not add security
166            // and /possibly/ allows a plain text attack. Since the rounds=<N>
167            // specification should never be added this would also create an
168            // inconsistency.
169            /*
170             * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character
171             * (for compatibility with existing implementations).
172             */
173            ctx.update(saltBytes);
174    
175            // 4. start digest B
176            /*
177             * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first
178             * context.
179             */
180            MessageDigest altCtx = DigestUtils.getDigest(algorithm);
181    
182            // 5. add the password to digest B
183            /*
184             * Add key.
185             */
186            altCtx.update(keyBytes);
187    
188            // 6. add the salt string to digest B
189            /*
190             * Add salt.
191             */
192            altCtx.update(saltBytes);
193    
194            // 7. add the password again to digest B
195            /*
196             * Add key again.
197             */
198            altCtx.update(keyBytes);
199    
200            // 8. finish digest B
201            /*
202             * Now get result of this (32 bytes) and add it to the other context.
203             */
204            byte[] altResult = altCtx.digest();
205    
206            // 9. For each block of 32 or 64 bytes in the password string (excluding
207            // the terminating NUL in the C representation), add digest B to digest A
208            /*
209             * Add for any character in the key one byte of the alternate sum.
210             */
211            /*
212             * (Remark: the C code comment seems wrong for key length > 32!)
213             */
214            int cnt = keyBytes.length;
215            while (cnt > blocksize) {
216                ctx.update(altResult, 0, blocksize);
217                cnt -= blocksize;
218            }
219    
220            // 10. For the remaining N bytes of the password string add the first
221            // N bytes of digest B to digest A
222            ctx.update(altResult, 0, cnt);
223    
224            // 11. For each bit of the binary representation of the length of the
225            // password string up to and including the highest 1-digit, starting
226            // from to lowest bit position (numeric value 1):
227            //
228            // a) for a 1-digit add digest B to digest A
229            //
230            // b) for a 0-digit add the password string
231            //
232            // NB: this step differs significantly from the MD5 algorithm. It
233            // adds more randomness.
234            /*
235             * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0
236             * the key.
237             */
238            cnt = keyBytes.length;
239            while (cnt > 0) {
240                if ((cnt & 1) != 0) {
241                    ctx.update(altResult, 0, blocksize);
242                } else {
243                    ctx.update(keyBytes);
244                }
245                cnt >>= 1;
246            }
247    
248            // 12. finish digest A
249            /*
250             * Create intermediate result.
251             */
252            altResult = ctx.digest();
253    
254            // 13. start digest DP
255            /*
256             * Start computation of P byte sequence.
257             */
258            altCtx = DigestUtils.getDigest(algorithm);
259    
260            // 14. for every byte in the password (excluding the terminating NUL byte
261            // in the C representation of the string)
262            //
263            // add the password to digest DP
264            /*
265             * For every character in the password add the entire password.
266             */
267            for (int i = 1; i <= keyLen; i++) {
268                altCtx.update(keyBytes);
269            }
270    
271            // 15. finish digest DP
272            /*
273             * Finish the digest.
274             */
275            byte[] tempResult = altCtx.digest();
276    
277            // 16. produce byte sequence P of the same length as the password where
278            //
279            // a) for each block of 32 or 64 bytes of length of the password string
280            // the entire digest DP is used
281            //
282            // b) for the remaining N (up to 31 or 63) bytes use the first N
283            // bytes of digest DP
284            /*
285             * Create byte sequence P.
286             */
287            final byte[] pBytes = new byte[keyLen];
288            int cp = 0;
289            while (cp < keyLen - blocksize) {
290                System.arraycopy(tempResult, 0, pBytes, cp, blocksize);
291                cp += blocksize;
292            }
293            System.arraycopy(tempResult, 0, pBytes, cp, keyLen - cp);
294    
295            // 17. start digest DS
296            /*
297             * Start computation of S byte sequence.
298             */
299            altCtx = DigestUtils.getDigest(algorithm);
300    
301            // 18. repeast the following 16+A[0] times, where A[0] represents the first
302            // byte in digest A interpreted as an 8-bit unsigned value
303            //
304            // add the salt to digest DS
305            /*
306             * For every character in the password add the entire password.
307             */
308            for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) {
309                altCtx.update(saltBytes);
310            }
311    
312            // 19. finish digest DS
313            /*
314             * Finish the digest.
315             */
316            tempResult = altCtx.digest();
317    
318            // 20. produce byte sequence S of the same length as the salt string where
319            //
320            // a) for each block of 32 or 64 bytes of length of the salt string
321            // the entire digest DS is used
322            //
323            // b) for the remaining N (up to 31 or 63) bytes use the first N
324            // bytes of digest DS
325            /*
326             * Create byte sequence S.
327             */
328            // Remark: The salt is limited to 16 chars, how does this make sense?
329            final byte[] sBytes = new byte[saltLen];
330            cp = 0;
331            while (cp < saltLen - blocksize) {
332                System.arraycopy(tempResult, 0, sBytes, cp, blocksize);
333                cp += blocksize;
334            }
335            System.arraycopy(tempResult, 0, sBytes, cp, saltLen - cp);
336    
337            // 21. repeat a loop according to the number specified in the rounds=<N>
338            // specification in the salt (or the default value if none is
339            // present). Each round is numbered, starting with 0 and up to N-1.
340            //
341            // The loop uses a digest as input. In the first round it is the
342            // digest produced in step 12. In the latter steps it is the digest
343            // produced in step 21.h. The following text uses the notation
344            // "digest A/C" to describe this behavior.
345            /*
346             * Repeatedly run the collected hash value through sha512 to burn CPU cycles.
347             */
348            for (int i = 0; i <= rounds - 1; i++) {
349                // a) start digest C
350                /*
351                 * New context.
352                 */
353                ctx = DigestUtils.getDigest(algorithm);
354    
355                // b) for odd round numbers add the byte sequense P to digest C
356                // c) for even round numbers add digest A/C
357                /*
358                 * Add key or last result.
359                 */
360                if ((i & 1) != 0) {
361                    ctx.update(pBytes, 0, keyLen);
362                } else {
363                    ctx.update(altResult, 0, blocksize);
364                }
365    
366                // d) for all round numbers not divisible by 3 add the byte sequence S
367                /*
368                 * Add salt for numbers not divisible by 3.
369                 */
370                if (i % 3 != 0) {
371                    ctx.update(sBytes, 0, saltLen);
372                }
373    
374                // e) for all round numbers not divisible by 7 add the byte sequence P
375                /*
376                 * Add key for numbers not divisible by 7.
377                 */
378                if (i % 7 != 0) {
379                    ctx.update(pBytes, 0, keyLen);
380                }
381    
382                // f) for odd round numbers add digest A/C
383                // g) for even round numbers add the byte sequence P
384                /*
385                 * Add key or last result.
386                 */
387                if ((i & 1) != 0) {
388                    ctx.update(altResult, 0, blocksize);
389                } else {
390                    ctx.update(pBytes, 0, keyLen);
391                }
392    
393                // h) finish digest C.
394                /*
395                 * Create intermediate result.
396                 */
397                altResult = ctx.digest();
398            }
399    
400            // 22. Produce the output string. This is an ASCII string of the maximum
401            // size specified above, consisting of multiple pieces:
402            //
403            // a) the salt salt_prefix, $5$ or $6$ respectively
404            //
405            // b) the rounds=<N> specification, if one was present in the input
406            // salt string. A trailing '$' is added in this case to separate
407            // the rounds specification from the following text.
408            //
409            // c) the salt string truncated to 16 characters
410            //
411            // d) a '$' character
412            /*
413             * Now we can construct the result string. It consists of three parts.
414             */
415            final StringBuilder buffer = new StringBuilder(saltPrefix);
416            if (roundsCustom) {
417                buffer.append(ROUNDS_PREFIX);
418                buffer.append(rounds);
419                buffer.append("$");
420            }
421            buffer.append(saltString);
422            buffer.append("$");
423    
424            // e) the base-64 encoded final C digest. The encoding used is as
425            // follows:
426            // [...]
427            //
428            // Each group of three bytes from the digest produces four
429            // characters as output:
430            //
431            // 1. character: the six low bits of the first byte
432            // 2. character: the two high bits of the first byte and the
433            // four low bytes from the second byte
434            // 3. character: the four high bytes from the second byte and
435            // the two low bits from the third byte
436            // 4. character: the six high bits from the third byte
437            //
438            // The groups of three bytes are as follows (in this sequence).
439            // These are the indices into the byte array containing the
440            // digest, starting with index 0. For the last group there are
441            // not enough bytes left in the digest and the value zero is used
442            // in its place. This group also produces only three or two
443            // characters as output for SHA-512 and SHA-512 respectively.
444    
445            // This was just a safeguard in the C implementation:
446            // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1;
447    
448            if (blocksize == 32) {
449                B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer);
450                B64.b64from24bit(altResult[21], altResult[1], altResult[11], 4, buffer);
451                B64.b64from24bit(altResult[12], altResult[22], altResult[2], 4, buffer);
452                B64.b64from24bit(altResult[3], altResult[13], altResult[23], 4, buffer);
453                B64.b64from24bit(altResult[24], altResult[4], altResult[14], 4, buffer);
454                B64.b64from24bit(altResult[15], altResult[25], altResult[5], 4, buffer);
455                B64.b64from24bit(altResult[6], altResult[16], altResult[26], 4, buffer);
456                B64.b64from24bit(altResult[27], altResult[7], altResult[17], 4, buffer);
457                B64.b64from24bit(altResult[18], altResult[28], altResult[8], 4, buffer);
458                B64.b64from24bit(altResult[9], altResult[19], altResult[29], 4, buffer);
459                B64.b64from24bit((byte) 0, altResult[31], altResult[30], 3, buffer);
460            } else {
461                B64.b64from24bit(altResult[0], altResult[21], altResult[42], 4, buffer);
462                B64.b64from24bit(altResult[22], altResult[43], altResult[1], 4, buffer);
463                B64.b64from24bit(altResult[44], altResult[2], altResult[23], 4, buffer);
464                B64.b64from24bit(altResult[3], altResult[24], altResult[45], 4, buffer);
465                B64.b64from24bit(altResult[25], altResult[46], altResult[4], 4, buffer);
466                B64.b64from24bit(altResult[47], altResult[5], altResult[26], 4, buffer);
467                B64.b64from24bit(altResult[6], altResult[27], altResult[48], 4, buffer);
468                B64.b64from24bit(altResult[28], altResult[49], altResult[7], 4, buffer);
469                B64.b64from24bit(altResult[50], altResult[8], altResult[29], 4, buffer);
470                B64.b64from24bit(altResult[9], altResult[30], altResult[51], 4, buffer);
471                B64.b64from24bit(altResult[31], altResult[52], altResult[10], 4, buffer);
472                B64.b64from24bit(altResult[53], altResult[11], altResult[32], 4, buffer);
473                B64.b64from24bit(altResult[12], altResult[33], altResult[54], 4, buffer);
474                B64.b64from24bit(altResult[34], altResult[55], altResult[13], 4, buffer);
475                B64.b64from24bit(altResult[56], altResult[14], altResult[35], 4, buffer);
476                B64.b64from24bit(altResult[15], altResult[36], altResult[57], 4, buffer);
477                B64.b64from24bit(altResult[37], altResult[58], altResult[16], 4, buffer);
478                B64.b64from24bit(altResult[59], altResult[17], altResult[38], 4, buffer);
479                B64.b64from24bit(altResult[18], altResult[39], altResult[60], 4, buffer);
480                B64.b64from24bit(altResult[40], altResult[61], altResult[19], 4, buffer);
481                B64.b64from24bit(altResult[62], altResult[20], altResult[41], 4, buffer);
482                B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer);
483            }
484    
485            /*
486             * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps
487             * cannot get any information.
488             */
489            // Is there a better way to do this with the JVM?
490            Arrays.fill(tempResult, (byte) 0);
491            Arrays.fill(pBytes, (byte) 0);
492            Arrays.fill(sBytes, (byte) 0);
493            ctx.reset();
494            altCtx.reset();
495            Arrays.fill(keyBytes, (byte) 0);
496            Arrays.fill(saltBytes, (byte) 0);
497    
498            return buffer.toString();
499        }
500    
501        /**
502         * Generates a libc crypt() compatible "$6$" hash value with random salt.
503         * <p>
504         * See {@link Crypt#crypt(String, String)} for details.
505         *
506         * @throws RuntimeException
507         *             when a {@link java.security.NoSuchAlgorithmException} is caught.
508         */
509        public static String sha512Crypt(final byte[] keyBytes) {
510            return sha512Crypt(keyBytes, null);
511        }
512    
513        /**
514         * Generates a libc6 crypt() compatible "$6$" hash value.
515         * <p>
516         * See {@link Crypt#crypt(String, String)} for details.
517         *
518         * @throws IllegalArgumentException
519         *             if the salt does not match the allowed pattern
520         * @throws RuntimeException
521         *             when a {@link java.security.NoSuchAlgorithmException} is caught.
522         */
523        public static String sha512Crypt(final byte[] keyBytes, String salt) {
524            if (salt == null) {
525                salt = SHA512_PREFIX + B64.getRandomSalt(8);
526            }
527            return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512);
528        }
529    }