Sha2Crypt.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * https://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.codec.digest;
- import java.nio.charset.StandardCharsets;
- import java.security.MessageDigest;
- import java.security.NoSuchAlgorithmException;
- import java.security.SecureRandom;
- import java.util.Arrays;
- import java.util.Random;
- import java.util.regex.Matcher;
- import java.util.regex.Pattern;
- /**
- * SHA2-based Unix crypt implementation.
- * <p>
- * Based on the C implementation released into the Public Domain by Ulrich Drepper <drepper@redhat.com>
- * http://www.akkadia.org/drepper/SHA-crypt.txt
- * </p>
- * <p>
- * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers <ch@lathspell.de> and likewise put
- * into the Public Domain.
- * </p>
- * <p>
- * This class is immutable and thread-safe.
- * </p>
- *
- * @since 1.7
- */
- public class Sha2Crypt {
- /** Default number of rounds if not explicitly specified. */
- private static final int ROUNDS_DEFAULT = 5000;
- /** Maximum number of rounds. */
- private static final int ROUNDS_MAX = 999_999_999;
- /** Minimum number of rounds. */
- private static final int ROUNDS_MIN = 1000;
- /** Prefix for optional rounds specification. */
- private static final String ROUNDS_PREFIX = "rounds=";
- /** The number of bytes the final hash value will have (SHA-256 variant). */
- private static final int SHA256_BLOCKSIZE = 32;
- /** The prefixes that can be used to identify this crypt() variant (SHA-256). */
- static final String SHA256_PREFIX = "$5$";
- /** The number of bytes the final hash value will have (SHA-512 variant). */
- private static final int SHA512_BLOCKSIZE = 64;
- /** The prefixes that can be used to identify this crypt() variant (SHA-512). */
- static final String SHA512_PREFIX = "$6$";
- /** The pattern to match valid salt values. */
- private static final Pattern SALT_PATTERN = Pattern
- .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*");
- /**
- * Generates a libc crypt() compatible "$5$" hash value with random salt.
- * <p>
- * See {@link Crypt#crypt(String, String)} for details.
- * </p>
- * <p>
- * A salt is generated for you using {@link SecureRandom}.
- * </p>
- *
- * @param keyBytes
- * plaintext to hash. Each array element is set to {@code 0} before returning.
- * @return complete hash value
- * @throws IllegalArgumentException
- * when a {@link java.security.NoSuchAlgorithmException} is caught.
- */
- public static String sha256Crypt(final byte[] keyBytes) {
- return sha256Crypt(keyBytes, null);
- }
- /**
- * Generates a libc6 crypt() compatible "$5$" hash value.
- * <p>
- * See {@link Crypt#crypt(String, String)} for details.
- * </p>
- * @param keyBytes
- * plaintext to hash. Each array element is set to {@code 0} before returning.
- * @param salt
- * real salt value without prefix or "rounds=". The salt may be null, in which case a salt
- * is generated for you using {@link SecureRandom}. If one does not want to use {@link SecureRandom},
- * you can pass your own {@link Random} in {@link #sha256Crypt(byte[], String, Random)}.
- * @return complete hash value including salt
- * @throws IllegalArgumentException
- * if the salt does not match the allowed pattern
- * @throws IllegalArgumentException
- * when a {@link java.security.NoSuchAlgorithmException} is caught.
- */
- public static String sha256Crypt(final byte[] keyBytes, String salt) {
- if (salt == null) {
- salt = SHA256_PREFIX + B64.getRandomSalt(8);
- }
- return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256);
- }
- /**
- * Generates a libc6 crypt() compatible "$5$" hash value.
- * <p>
- * See {@link Crypt#crypt(String, String)} for details.
- * </p>
- * @param keyBytes
- * plaintext to hash. Each array element is set to {@code 0} before returning.
- * @param salt
- * real salt value without prefix or "rounds=".
- * @param random
- * the instance of {@link Random} to use for generating the salt.
- * Consider using {@link SecureRandom} for more secure salts.
- * @return complete hash value including salt
- * @throws IllegalArgumentException
- * if the salt does not match the allowed pattern
- * @throws IllegalArgumentException
- * when a {@link java.security.NoSuchAlgorithmException} is caught.
- * @since 1.12
- */
- public static String sha256Crypt(final byte[] keyBytes, String salt, final Random random) {
- if (salt == null) {
- salt = SHA256_PREFIX + B64.getRandomSalt(8, random);
- }
- return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, MessageDigestAlgorithms.SHA_256);
- }
- /**
- * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value.
- * <p>
- * This is a nearly line by line conversion of the original C function. The numbered comments are from the algorithm
- * description, the short C-style ones from the original C code and the ones with "Remark" from me.
- * </p>
- * <p>
- * See {@link Crypt#crypt(String, String)} for details.
- * </p>
- *
- * @param keyBytes
- * plaintext to hash. Each array element is set to {@code 0} before returning.
- * @param salt
- * real salt value without prefix or "rounds="; may not be null
- * @param saltPrefix
- * either $5$ or $6$
- * @param blocksize
- * a value that differs between $5$ and $6$
- * @param algorithm
- * {@link MessageDigest} algorithm identifier string
- * @return complete hash value including prefix and salt
- * @throws IllegalArgumentException
- * if the given salt is {@code null} or does not match the allowed pattern
- * @throws IllegalArgumentException
- * when a {@link NoSuchAlgorithmException} is caught
- * @see MessageDigestAlgorithms
- */
- private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix,
- final int blocksize, final String algorithm) {
- final int keyLen = keyBytes.length;
- // Extracts effective salt and the number of rounds from the given salt.
- int rounds = ROUNDS_DEFAULT;
- boolean roundsCustom = false;
- if (salt == null) {
- throw new IllegalArgumentException("Salt must not be null");
- }
- final Matcher m = SALT_PATTERN.matcher(salt);
- if (!m.find()) {
- throw new IllegalArgumentException("Invalid salt value: " + salt);
- }
- if (m.group(3) != null) {
- rounds = Integer.parseInt(m.group(3));
- rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds));
- roundsCustom = true;
- }
- final String saltString = m.group(4);
- final byte[] saltBytes = saltString.getBytes(StandardCharsets.UTF_8);
- final int saltLen = saltBytes.length;
- // 1. start digest A
- // Prepare for the real work.
- MessageDigest ctx = DigestUtils.getDigest(algorithm);
- // 2. the password string is added to digest A
- /*
- * Add the key string.
- */
- ctx.update(keyBytes);
- // 3. the salt string is added to digest A. This is just the salt string
- // itself without the enclosing '$', without the magic salt_prefix $5$ and
- // $6$ respectively and without the rounds=<N> specification.
- //
- // NB: the MD5 algorithm did add the $1$ salt_prefix. This is not deemed
- // necessary since it is a constant string and does not add security
- // and /possibly/ allows a plain text attack. Since the rounds=<N>
- // specification should never be added this would also create an
- // inconsistency.
- /*
- * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character
- * (for compatibility with existing implementations).
- */
- ctx.update(saltBytes);
- // 4. start digest B
- /*
- * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first
- * context.
- */
- MessageDigest altCtx = DigestUtils.getDigest(algorithm);
- // 5. add the password to digest B
- /*
- * Add key.
- */
- altCtx.update(keyBytes);
- // 6. add the salt string to digest B
- /*
- * Add salt.
- */
- altCtx.update(saltBytes);
- // 7. add the password again to digest B
- /*
- * Add key again.
- */
- altCtx.update(keyBytes);
- // 8. finish digest B
- /*
- * Now get result of this (32 bytes) and add it to the other context.
- */
- byte[] altResult = altCtx.digest();
- // 9. For each block of 32 or 64 bytes in the password string (excluding
- // the terminating NUL in the C representation), add digest B to digest A
- /*
- * Add for any character in the key one byte of the alternate sum.
- */
- /*
- * (Remark: the C code comment seems wrong for key length > 32!)
- */
- int cnt = keyBytes.length;
- while (cnt > blocksize) {
- ctx.update(altResult, 0, blocksize);
- cnt -= blocksize;
- }
- // 10. For the remaining N bytes of the password string add the first
- // N bytes of digest B to digest A
- ctx.update(altResult, 0, cnt);
- // 11. For each bit of the binary representation of the length of the
- // password string up to and including the highest 1-digit, starting
- // from to the lowest bit position (numeric value 1):
- //
- // a) for a 1-digit add digest B to digest A
- //
- // b) for a 0-digit add the password string
- //
- // NB: this step differs significantly from the MD5 algorithm. It
- // adds more randomness.
- /*
- * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0
- * the key.
- */
- cnt = keyBytes.length;
- while (cnt > 0) {
- if ((cnt & 1) != 0) {
- ctx.update(altResult, 0, blocksize);
- } else {
- ctx.update(keyBytes);
- }
- cnt >>= 1;
- }
- // 12. finish digest A
- /*
- * Create intermediate result.
- */
- altResult = ctx.digest();
- // 13. start digest DP
- /*
- * Start computation of P byte sequence.
- */
- altCtx = DigestUtils.getDigest(algorithm);
- // 14. for every byte in the password (excluding the terminating NUL byte
- // in the C representation of the string)
- //
- // add the password to digest DP
- /*
- * For every character in the password add the entire password.
- */
- for (int i = 1; i <= keyLen; i++) {
- altCtx.update(keyBytes);
- }
- // 15. finish digest DP
- /*
- * Finish the digest.
- */
- byte[] tempResult = altCtx.digest();
- // 16. produce byte sequence P of the same length as the password where
- //
- // a) for each block of 32 or 64 bytes of length of the password string
- // the entire digest DP is used
- //
- // b) for the remaining N (up to 31 or 63) bytes use the first N
- // bytes of digest DP
- /*
- * Create byte sequence P.
- */
- final byte[] pBytes = new byte[keyLen];
- int cp = 0;
- while (cp < keyLen - blocksize) {
- System.arraycopy(tempResult, 0, pBytes, cp, blocksize);
- cp += blocksize;
- }
- System.arraycopy(tempResult, 0, pBytes, cp, keyLen - cp);
- // 17. start digest DS
- /*
- * Start computation of S byte sequence.
- */
- altCtx = DigestUtils.getDigest(algorithm);
- // 18. repeat the following 16+A[0] times, where A[0] represents the first
- // byte in digest A interpreted as an 8-bit unsigned value
- //
- // add the salt to digest DS
- /*
- * For every character in the password add the entire password.
- */
- for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) {
- altCtx.update(saltBytes);
- }
- // 19. finish digest DS
- /*
- * Finish the digest.
- */
- tempResult = altCtx.digest();
- // 20. produce byte sequence S of the same length as the salt string where
- //
- // a) for each block of 32 or 64 bytes of length of the salt string
- // the entire digest DS is used
- //
- // b) for the remaining N (up to 31 or 63) bytes use the first N
- // bytes of digest DS
- /*
- * Create byte sequence S.
- */
- // Remark: The salt is limited to 16 chars, how does this make sense?
- final byte[] sBytes = new byte[saltLen];
- cp = 0;
- while (cp < saltLen - blocksize) {
- System.arraycopy(tempResult, 0, sBytes, cp, blocksize);
- cp += blocksize;
- }
- System.arraycopy(tempResult, 0, sBytes, cp, saltLen - cp);
- // 21. repeat a loop according to the number specified in the rounds=<N>
- // specification in the salt (or the default value if none is
- // present). Each round is numbered, starting with 0 and up to N-1.
- //
- // The loop uses a digest as input. In the first round it is the
- // digest produced in step 12. In the latter steps it is the digest
- // produced in step 21.h. The following text uses the notation
- // "digest A/C" to describe this behavior.
- /*
- * Repeatedly run the collected hash value through sha512 to burn CPU cycles.
- */
- for (int i = 0; i <= rounds - 1; i++) {
- // a) start digest C
- /*
- * New context.
- */
- ctx = DigestUtils.getDigest(algorithm);
- // b) for odd round numbers add the byte sequence P to digest C
- // c) for even round numbers add digest A/C
- /*
- * Add key or last result.
- */
- if ((i & 1) != 0) {
- ctx.update(pBytes, 0, keyLen);
- } else {
- ctx.update(altResult, 0, blocksize);
- }
- // d) for all round numbers not divisible by 3 add the byte sequence S
- /*
- * Add salt for numbers not divisible by 3.
- */
- if (i % 3 != 0) {
- ctx.update(sBytes, 0, saltLen);
- }
- // e) for all round numbers not divisible by 7 add the byte sequence P
- /*
- * Add key for numbers not divisible by 7.
- */
- if (i % 7 != 0) {
- ctx.update(pBytes, 0, keyLen);
- }
- // f) for odd round numbers add digest A/C
- // g) for even round numbers add the byte sequence P
- /*
- * Add key or last result.
- */
- if ((i & 1) != 0) {
- ctx.update(altResult, 0, blocksize);
- } else {
- ctx.update(pBytes, 0, keyLen);
- }
- // h) finish digest C.
- /*
- * Create intermediate result.
- */
- altResult = ctx.digest();
- }
- // 22. Produce the output string. This is an ASCII string of the maximum
- // size specified above, consisting of multiple pieces:
- //
- // a) the salt salt_prefix, $5$ or $6$ respectively
- //
- // b) the rounds=<N> specification, if one was present in the input
- // salt string. A trailing '$' is added in this case to separate
- // the rounds specification from the following text.
- //
- // c) the salt string truncated to 16 characters
- //
- // d) a '$' character
- /*
- * Now we can construct the result string. It consists of three parts.
- */
- final StringBuilder buffer = new StringBuilder(saltPrefix);
- if (roundsCustom) {
- buffer.append(ROUNDS_PREFIX);
- buffer.append(rounds);
- buffer.append("$");
- }
- buffer.append(saltString);
- buffer.append("$");
- // e) the base-64 encoded final C digest. The encoding used is as
- // follows:
- // [...]
- //
- // Each group of three bytes from the digest produces four
- // characters as output:
- //
- // 1. character: the six low bits of the first byte
- // 2. character: the two high bits of the first byte and the
- // four low bytes from the second byte
- // 3. character: the four high bytes from the second byte and
- // the two low bits from the third byte
- // 4. character: the six high bits from the third byte
- //
- // The groups of three bytes are as follows (in this sequence).
- // These are the indices into the byte array containing the
- // digest, starting with index 0. For the last group there are
- // not enough bytes left in the digest and the value zero is used
- // in its place. This group also produces only three or two
- // characters as output for SHA-512 and SHA-512 respectively.
- // This was just a safeguard in the C implementation:
- // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1;
- if (blocksize == 32) {
- B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer);
- B64.b64from24bit(altResult[21], altResult[1], altResult[11], 4, buffer);
- B64.b64from24bit(altResult[12], altResult[22], altResult[2], 4, buffer);
- B64.b64from24bit(altResult[3], altResult[13], altResult[23], 4, buffer);
- B64.b64from24bit(altResult[24], altResult[4], altResult[14], 4, buffer);
- B64.b64from24bit(altResult[15], altResult[25], altResult[5], 4, buffer);
- B64.b64from24bit(altResult[6], altResult[16], altResult[26], 4, buffer);
- B64.b64from24bit(altResult[27], altResult[7], altResult[17], 4, buffer);
- B64.b64from24bit(altResult[18], altResult[28], altResult[8], 4, buffer);
- B64.b64from24bit(altResult[9], altResult[19], altResult[29], 4, buffer);
- B64.b64from24bit((byte) 0, altResult[31], altResult[30], 3, buffer);
- } else {
- B64.b64from24bit(altResult[0], altResult[21], altResult[42], 4, buffer);
- B64.b64from24bit(altResult[22], altResult[43], altResult[1], 4, buffer);
- B64.b64from24bit(altResult[44], altResult[2], altResult[23], 4, buffer);
- B64.b64from24bit(altResult[3], altResult[24], altResult[45], 4, buffer);
- B64.b64from24bit(altResult[25], altResult[46], altResult[4], 4, buffer);
- B64.b64from24bit(altResult[47], altResult[5], altResult[26], 4, buffer);
- B64.b64from24bit(altResult[6], altResult[27], altResult[48], 4, buffer);
- B64.b64from24bit(altResult[28], altResult[49], altResult[7], 4, buffer);
- B64.b64from24bit(altResult[50], altResult[8], altResult[29], 4, buffer);
- B64.b64from24bit(altResult[9], altResult[30], altResult[51], 4, buffer);
- B64.b64from24bit(altResult[31], altResult[52], altResult[10], 4, buffer);
- B64.b64from24bit(altResult[53], altResult[11], altResult[32], 4, buffer);
- B64.b64from24bit(altResult[12], altResult[33], altResult[54], 4, buffer);
- B64.b64from24bit(altResult[34], altResult[55], altResult[13], 4, buffer);
- B64.b64from24bit(altResult[56], altResult[14], altResult[35], 4, buffer);
- B64.b64from24bit(altResult[15], altResult[36], altResult[57], 4, buffer);
- B64.b64from24bit(altResult[37], altResult[58], altResult[16], 4, buffer);
- B64.b64from24bit(altResult[59], altResult[17], altResult[38], 4, buffer);
- B64.b64from24bit(altResult[18], altResult[39], altResult[60], 4, buffer);
- B64.b64from24bit(altResult[40], altResult[61], altResult[19], 4, buffer);
- B64.b64from24bit(altResult[62], altResult[20], altResult[41], 4, buffer);
- B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer);
- }
- /*
- * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps
- * cannot get any information.
- */
- // Is there a better way to do this with the JVM?
- Arrays.fill(tempResult, (byte) 0);
- Arrays.fill(pBytes, (byte) 0);
- Arrays.fill(sBytes, (byte) 0);
- ctx.reset();
- altCtx.reset();
- Arrays.fill(keyBytes, (byte) 0);
- Arrays.fill(saltBytes, (byte) 0);
- return buffer.toString();
- }
- /**
- * Generates a libc crypt() compatible "$6$" hash value with random salt.
- * <p>
- * See {@link Crypt#crypt(String, String)} for details.
- * </p>
- * <p>
- * A salt is generated for you using {@link SecureRandom}
- * </p>
- *
- * @param keyBytes
- * plaintext to hash. Each array element is set to {@code 0} before returning.
- * @return complete hash value
- * @throws IllegalArgumentException
- * when a {@link java.security.NoSuchAlgorithmException} is caught.
- */
- public static String sha512Crypt(final byte[] keyBytes) {
- return sha512Crypt(keyBytes, null);
- }
- /**
- * Generates a libc6 crypt() compatible "$6$" hash value.
- * <p>
- * See {@link Crypt#crypt(String, String)} for details.
- * </p>
- * @param keyBytes
- * plaintext to hash. Each array element is set to {@code 0} before returning.
- * @param salt
- * real salt value without prefix or "rounds=". The salt may be null, in which case a salt is generated
- * for you using {@link SecureRandom}; if you want to use a {@link Random} object other than
- * {@link SecureRandom} then we suggest you provide it using
- * {@link #sha512Crypt(byte[], String, Random)}.
- * @return complete hash value including salt
- * @throws IllegalArgumentException
- * if the salt does not match the allowed pattern
- * @throws IllegalArgumentException
- * when a {@link java.security.NoSuchAlgorithmException} is caught.
- */
- public static String sha512Crypt(final byte[] keyBytes, String salt) {
- if (salt == null) {
- salt = SHA512_PREFIX + B64.getRandomSalt(8);
- }
- return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512);
- }
- /**
- * Generates a libc6 crypt() compatible "$6$" hash value.
- * <p>
- * See {@link Crypt#crypt(String, String)} for details.
- * </p>
- * @param keyBytes
- * plaintext to hash. Each array element is set to {@code 0} before returning.
- * @param salt
- * real salt value without prefix or "rounds=". The salt may be null, in which case a salt
- * is generated for you using {@link SecureRandom}.
- * @param random
- * the instance of {@link Random} to use for generating the salt.
- * Consider using {@link SecureRandom} for more secure salts.
- * @return complete hash value including salt
- * @throws IllegalArgumentException
- * if the salt does not match the allowed pattern
- * @throws IllegalArgumentException
- * when a {@link java.security.NoSuchAlgorithmException} is caught.
- * @since 1.12
- */
- public static String sha512Crypt(final byte[] keyBytes, String salt, final Random random) {
- if (salt == null) {
- salt = SHA512_PREFIX + B64.getRandomSalt(8, random);
- }
- return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, MessageDigestAlgorithms.SHA_512);
- }
- /**
- * Consider private.
- *
- * @deprecated Will be private in the next major version.
- */
- @Deprecated
- public Sha2Crypt() {
- // empty
- }
- }