Shape.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.collections4.bloomfilter;
- /**
- * The definition of a Bloom filter shape.
- *
- * <p>This class contains the values for the filter configuration and is used to
- * convert a Hasher into a BloomFilter as well as verify that two Bloom filters are
- * compatible. (i.e. can be compared or merged)</p>
- *
- * <h2>Interrelatedness of values</h2>
- *
- * <dl>
- * <dt>Number of Items ({@code n})</dt>
- * <dd>{@code n = ceil(m / (-k / ln(1 - exp(ln(p) / k))))}</dd>
- * <dt>Probability of False Positives ({@code p})</dt>
- * <dd>{@code p = pow(1 - exp(-k / (m / n)), k)}</dd>
- * <dt>Number of Bits ({@code m})</dt>
- * <dd>{@code m = ceil((n * ln(p)) / ln(1 / pow(2, ln(2))))}</dd>
- * <dt>Number of Functions ({@code k})</dt>
- * <dd>{@code k = round((m / n) * ln(2))}</dd>
- * </dl>
- *
- * <h2>Estimations from cardinality based on shape</h2>
- *
- * <p>Several estimates can be calculated from the Shape and the cardinality of a Bloom filter.</p>
- *
- * <p>In the calculation below the following values are used:</p>
- * <ul>
- * <li>double c = the cardinality of the Bloom filter.</li>
- * <li>double m = numberOfBits as specified in the shape.</li>
- * <li>double k = numberOfHashFunctions as specified in the shape.</li>
- * </ul>
- *
- * <h3>Estimate N - n()</h3>
- *
- * <p>The calculation for the estimate of N is: {@code -(m/k) * ln(1 - (c/m))}. This is the calculation
- * performed by the {@code Shape.estimateN(cardinality)} method below. This estimate is roughly equivalent to the
- * number of hashers that have been merged into a filter to create the cardinality specified.</p>
- *
- * <p><em>Note:</em></p>
- * <ul>
- * <li>if cardinality == numberOfBits, then result is infinity.</li>
- * <li>if cardinality > numberOfBits, then result is NaN.</li>
- * </ul>
- *
- * <h3>Estimate N of Union - n(A ∪ B)</h3>
- *
- * <p>To estimate the number of items in the union of two Bloom filters with the same shape, merge them together and
- * calculate the estimated N from the result.</p>
- *
- * <h3>Estimate N of the Intersection - n(A ∩ B)</h3>
- *
- * <p>To estimate the number of items in the intersection of two Bloom filters A and B with the same shape the calculation is:
- * n(A) + n(b) - n(A ∪ B).</p>
- *
- * <p>Care must be taken when any of the n(x) returns infinity. In general the following assumptions are true:
- *
- * <ul>
- * <li>If n(A) = ∞ and n(B) < ∞ then n(A ∩ B) = n(B)</li>
- * <li>If n(A) < ∞ and n(B) = ∞ then n(A ∩ B) = n(A)</li>
- * <li>If n(A) = ∞ and n(B) = ∞ then n(A ∩ B) = ∞</li>
- * <li>If n(A) < ∞ and n(B) < ∞ and n(A ∪ B) = ∞ then n(A ∩ B) is undefined.</li>
- * </ul>
- *
- * @see <a href="https://hur.st/bloomfilter">Bloom Filter calculator</a>
- * @see <a href="https://en.wikipedia.org/wiki/Bloom_filter">Bloom filter
- * [Wikipedia]</a>
- * @since 4.5.0-M1
- */
- public final class Shape {
- /**
- * The natural logarithm of 2. Used in several calculations. Approximately 0.693147180559945.
- */
- private static final double LN_2 = Math.log(2.0);
- /**
- * ln(1 / 2^ln(2)). Used in calculating the number of bits. Approximately -0.480453013918201.
- *
- * <p>ln(1 / 2^ln(2)) = ln(1) - ln(2^ln(2)) = -ln(2) * ln(2)</p>
- */
- private static final double DENOMINATOR = -LN_2 * LN_2;
- /**
- * Calculates the number of hash functions given numberOfItems and numberOfBits.
- * This is a method so that the calculation is consistent across all constructors.
- *
- * @param numberOfItems the number of items in the filter.
- * @param numberOfBits the number of bits in the filter.
- * @return the optimal number of hash functions.
- * @throws IllegalArgumentException if the calculated number of hash function is {@code < 1}
- */
- private static int calculateNumberOfHashFunctions(final int numberOfItems, final int numberOfBits) {
- // k = round((m / n) * ln(2)) We change order so that we use real math rather
- // than integer math.
- final long k = Math.round(LN_2 * numberOfBits / numberOfItems);
- if (k < 1) {
- throw new IllegalArgumentException(String.format("Filter too small: Calculated number of hash functions (%s) was less than 1", k));
- }
- // Normally we would check that numberOfHashFunctions <= Integer.MAX_VALUE but
- // since numberOfBits is at most Integer.MAX_VALUE the numerator of
- // numberOfHashFunctions is ln(2) * Integer.MAX_VALUE = 646456992.9449 the
- // value of k cannot be above Integer.MAX_VALUE.
- return (int) k;
- }
- /**
- * Checks the calculated probability is {@code < 1.0}.
- *
- * <p>
- * This function is used to verify that the dynamically calculated probability for the Shape is in the valid range 0 to 1 exclusive. This need only be
- * performed once upon construction.
- * </p>
- *
- * @param probability the probability
- * @throws IllegalArgumentException if the probability is {@code >= 1.0}.
- */
- private static void checkCalculatedProbability(final double probability) {
- // We do not need to check for p <= 0.0 since we only allow positive values for
- // parameters and the closest we can come to exp(-kn/m) == 1 is
- // exp(-1/Integer.MAX_INT) approx 0.9999999995343387 so Math.pow(x, y) will
- // always be 0<x<1 and y>0
- if (probability >= 1.0) {
- throw new IllegalArgumentException("Calculated probability is greater than or equal to 1: " + probability);
- }
- }
- /**
- * Checks number of bits is strictly positive.
- *
- * @param numberOfBits the number of bits
- * @return the number of bits
- * @throws IllegalArgumentException if the number of bits is {@code < 1}.
- */
- private static int checkNumberOfBits(final int numberOfBits) {
- if (numberOfBits < 1) {
- throw new IllegalArgumentException("Number of bits must be greater than 0: " + numberOfBits);
- }
- return numberOfBits;
- }
- /**
- * Checks number of hash functions is strictly positive.
- *
- * @param numberOfHashFunctions the number of hash functions
- * @return the number of hash functions
- * @throws IllegalArgumentException if the number of hash functions is {@code < 1}.
- */
- private static int checkNumberOfHashFunctions(final int numberOfHashFunctions) {
- if (numberOfHashFunctions < 1) {
- throw new IllegalArgumentException("Number of hash functions must be greater than 0: " + numberOfHashFunctions);
- }
- return numberOfHashFunctions;
- }
- /**
- * Checks number of items is strictly positive.
- *
- * @param numberOfItems the number of items
- * @return the number of items
- * @throws IllegalArgumentException if the number of items is {@code < 1}.
- */
- private static int checkNumberOfItems(final int numberOfItems) {
- if (numberOfItems < 1) {
- throw new IllegalArgumentException("Number of items must be greater than 0: " + numberOfItems);
- }
- return numberOfItems;
- }
- /**
- * Checks the probability is in the range 0.0, exclusive, to 1.0, exclusive.
- *
- * @param probability the probability
- * @throws IllegalArgumentException if the probability is not in the range {@code (0, 1)}
- */
- private static void checkProbability(final double probability) {
- // Using the negation of within the desired range will catch NaN
- if (!(probability > 0.0 && probability < 1.0)) {
- throw new IllegalArgumentException("Probability must be greater than 0 and less than 1: " + probability);
- }
- }
- /**
- * Constructs a filter configuration with the specified number of hashFunctions ({@code k}) and
- * bits ({@code m}).
- *
- * @param numberOfHashFunctions Number of hash functions to use for each item placed in the filter.
- * @param numberOfBits The number of bits in the filter
- * @return a valid Shape.
- * @throws IllegalArgumentException if {@code numberOfHashFunctions < 1} or {@code numberOfBits < 1}
- */
- public static Shape fromKM(final int numberOfHashFunctions, final int numberOfBits) {
- return new Shape(numberOfHashFunctions, numberOfBits);
- }
- /**
- * Constructs a filter configuration with the specified number of items ({@code n}) and
- * bits ({@code m}).
- *
- * <p>The optimal number of hash functions ({@code k}) is computed.
- * <pre>k = round((m / n) * ln(2))</pre>
- *
- * <p>The false-positive probability is computed using the number of items, bits and hash
- * functions. An exception is raised if this is greater than or equal to 1 (i.e. the
- * shape is invalid for use as a Bloom filter).
- *
- * @param numberOfItems Number of items to be placed in the filter
- * @param numberOfBits The number of bits in the filter
- * @return a valid Shape.
- * @throws IllegalArgumentException if {@code numberOfItems < 1}, {@code numberOfBits < 1},
- * the calculated number of hash function is {@code < 1}, or if the actual probability is {@code >= 1.0}
- */
- public static Shape fromNM(final int numberOfItems, final int numberOfBits) {
- checkNumberOfItems(numberOfItems);
- checkNumberOfBits(numberOfBits);
- final int numberOfHashFunctions = calculateNumberOfHashFunctions(numberOfItems, numberOfBits);
- final Shape shape = new Shape(numberOfHashFunctions, numberOfBits);
- // check that probability is within range
- checkCalculatedProbability(shape.getProbability(numberOfItems));
- return shape;
- }
- /**
- * Constructs a filter configuration with the specified number of items, bits
- * and hash functions.
- *
- * <p>The false-positive probability is computed using the number of items, bits and hash
- * functions. An exception is raised if this is greater than or equal to 1 (i.e. the
- * shape is invalid for use as a Bloom filter).
- *
- * @param numberOfItems Number of items to be placed in the filter
- * @param numberOfBits The number of bits in the filter.
- * @param numberOfHashFunctions The number of hash functions in the filter
- * @return a valid Shape.
- * @throws IllegalArgumentException if {@code numberOfItems < 1}, {@code numberOfBits < 1},
- * {@code numberOfHashFunctions < 1}, or if the actual probability is {@code >= 1.0}.
- */
- public static Shape fromNMK(final int numberOfItems, final int numberOfBits, final int numberOfHashFunctions) {
- checkNumberOfItems(numberOfItems);
- checkNumberOfBits(numberOfBits);
- checkNumberOfHashFunctions(numberOfHashFunctions);
- // check that probability is within range
- final Shape shape = new Shape(numberOfHashFunctions, numberOfBits);
- // check that probability is within range
- checkCalculatedProbability(shape.getProbability(numberOfItems));
- return shape;
- }
- /**
- * Constructs a filter configuration with the specified number of items ({@code n}) and
- * desired false-positive probability ({@code p}).
- *
- * <p>The number of bits ({@code m}) for the filter is computed.
- * <pre>m = ceil(n * ln(p) / ln(1 / 2^ln(2)))</pre>
- *
- * <p>The optimal number of hash functions ({@code k}) is computed.
- * <pre>k = round((m / n) * ln(2))</pre>
- *
- * <p>The actual probability will be approximately equal to the
- * desired probability but will be dependent upon the calculated number of bits and hash
- * functions. An exception is raised if this is greater than or equal to 1 (i.e. the
- * shape is invalid for use as a Bloom filter).
- *
- * @param numberOfItems Number of items to be placed in the filter
- * @param probability The desired false-positive probability in the range {@code (0, 1)}
- * @return a valid Shape
- * @throws IllegalArgumentException if {@code numberOfItems < 1}, if the desired probability
- * is not in the range {@code (0, 1)} or if the actual probability is {@code >= 1.0}.
- */
- public static Shape fromNP(final int numberOfItems, final double probability) {
- checkNumberOfItems(numberOfItems);
- checkProbability(probability);
- // Number of bits (m)
- final double m = Math.ceil(numberOfItems * Math.log(probability) / DENOMINATOR);
- if (m > Integer.MAX_VALUE) {
- throw new IllegalArgumentException("Resulting filter has more than " + Integer.MAX_VALUE + " bits: " + m);
- }
- final int numberOfBits = (int) m;
- final int numberOfHashFunctions = calculateNumberOfHashFunctions(numberOfItems, numberOfBits);
- final Shape shape = new Shape(numberOfHashFunctions, numberOfBits);
- // check that probability is within range
- checkCalculatedProbability(shape.getProbability(numberOfItems));
- return shape;
- }
- /**
- * Constructs a filter configuration with a desired false-positive probability ({@code p}) and the
- * specified number of bits ({@code m}) and hash functions ({@code k}).
- *
- * <p>The number of items ({@code n}) to be stored in the filter is computed.
- * <pre>n = ceil(m / (-k / ln(1 - exp(ln(p) / k))))</pre>
- *
- * <p>The actual probability will be approximately equal to the
- * desired probability but will be dependent upon the calculated Bloom filter capacity
- * (number of items). An exception is raised if this is greater than or equal to 1 (i.e. the
- * shape is invalid for use as a Bloom filter).
- *
- * @param probability The desired false-positive probability in the range {@code (0, 1)}
- * @param numberOfBits The number of bits in the filter
- * @param numberOfHashFunctions The number of hash functions in the filter
- * @return a valid Shape.
- * @throws IllegalArgumentException if the desired probability is not in the range {@code (0, 1)},
- * {@code numberOfBits < 1}, {@code numberOfHashFunctions < 1}, or the actual
- * probability is {@code >= 1.0}
- */
- public static Shape fromPMK(final double probability, final int numberOfBits, final int numberOfHashFunctions) {
- checkProbability(probability);
- checkNumberOfBits(numberOfBits);
- checkNumberOfHashFunctions(numberOfHashFunctions);
- // Number of items (n):
- // n = ceil(m / (-k / ln(1 - exp(ln(p) / k))))
- final double n = Math.ceil(numberOfBits / (-numberOfHashFunctions / Math.log(-Math.expm1(Math.log(probability) / numberOfHashFunctions))));
- // log of probability is always < 0
- // number of hash functions is >= 1
- // e^x where x < 0 = [0,1)
- // log 1-e^x = [log1, log0) = <0 with an effective lower limit of -53
- // numberOfBits/ (-numberOfHashFunctions / [-53,0) ) >0
- // ceil( >0 ) >= 1
- // so we cannot produce a negative value thus we don't check for it.
- //
- // similarly we cannot produce a number greater than numberOfBits so we
- // do not have to check for Integer.MAX_VALUE either.
- final Shape shape = new Shape(numberOfHashFunctions, numberOfBits);
- // check that probability is within range
- checkCalculatedProbability(shape.getProbability((int) n));
- return shape;
- }
- /**
- * Number of hash functions to create a filter ({@code k}).
- */
- private final int numberOfHashFunctions;
- /**
- * Number of bits in the filter ({@code m}).
- */
- private final int numberOfBits;
- /**
- * Constructs a filter configuration with the specified number of hashFunctions ({@code k}) and
- * bits ({@code m}).
- *
- * @param numberOfHashFunctions Number of hash functions to use for each item placed in the filter.
- * @param numberOfBits The number of bits in the filter
- * @throws IllegalArgumentException if {@code numberOfHashFunctions < 1} or {@code numberOfBits < 1}
- */
- private Shape(final int numberOfHashFunctions, final int numberOfBits) {
- this.numberOfHashFunctions = checkNumberOfHashFunctions(numberOfHashFunctions);
- this.numberOfBits = checkNumberOfBits(numberOfBits);
- }
- @Override
- public boolean equals(final Object obj) {
- // Shape is final so no check for the same class as inheritance is not possible
- if (obj instanceof Shape) {
- final Shape other = (Shape) obj;
- return numberOfBits == other.numberOfBits && numberOfHashFunctions == other.numberOfHashFunctions;
- }
- return false;
- }
- /**
- * Estimates the maximum number of elements that can be merged into a filter of
- * this shape before the false positive rate exceeds the desired rate. <p> The
- * formula for deriving {@code k} when {@code m} and {@code n} are known is:
- *
- * <p>{@code k = ln2 * m / n}</p>
- *
- * <p>Solving for {@code n} yields:</p>
- *
- * <p>{@code n = ln2 * m / k}</p>
- *
- * @return An estimate of max N.
- */
- public double estimateMaxN() {
- return numberOfBits * LN_2 / numberOfHashFunctions;
- }
- /**
- * Estimate the number of items in a Bloom filter with this shape and the specified number of bits enabled.
- *
- * <p><em>Note:</em></p>
- * <ul>
- * <li> if cardinality == numberOfBits, then result is infinity.</li>
- * <li> if cardinality > numberOfBits, then result is NaN.</li>
- * </ul>
- *
- * @param cardinality the number of enabled bits also known as the hamming value.
- * @return An estimate of the number of items in the Bloom filter.
- */
- public double estimateN(final int cardinality) {
- final double c = cardinality;
- final double m = numberOfBits;
- final double k = numberOfHashFunctions;
- return -(m / k) * Math.log1p(-c / m);
- }
- /**
- * Gets the number of bits in the Bloom filter.
- * This is also known as {@code m}.
- *
- * @return the number of bits in the Bloom filter ({@code m}).
- */
- public int getNumberOfBits() {
- return numberOfBits;
- }
- /**
- * Gets the number of hash functions used to construct the filter.
- * This is also known as {@code k}.
- *
- * @return the number of hash functions used to construct the filter ({@code k}).
- */
- public int getNumberOfHashFunctions() {
- return numberOfHashFunctions;
- }
- /**
- * Calculates the probability of false positives ({@code p}) given
- * numberOfItems ({@code n}), numberOfBits ({@code m}) and numberOfHashFunctions ({@code k}).
- * <pre>p = pow(1 - exp(-k / (m / n)), k)</pre>
- *
- * <p>This is the probability that a Bloom filter will return true for the presence of an item
- * when it does not contain the item.</p>
- *
- * <p>The probability assumes that the Bloom filter is filled with the expected number of
- * items. If the filter contains fewer items then the actual probability will be lower.
- * Thus, this returns the worst-case false positive probability for a filter that has not
- * exceeded its expected number of items.</p>
- *
- * @param numberOfItems the number of items hashed into the Bloom filter.
- * @return the probability of false positives.
- */
- public double getProbability(final int numberOfItems) {
- if (numberOfItems < 0) {
- throw new IllegalArgumentException("Number of items must be greater than or equal to 0: " + numberOfItems);
- }
- if (numberOfItems == 0) {
- return 0;
- }
- return Math.pow(-Math.expm1(-1.0 * numberOfHashFunctions * numberOfItems / numberOfBits), numberOfHashFunctions);
- }
- @Override
- public int hashCode() {
- // Match Arrays.hashCode(new int[] {numberOfBits, numberOfHashFunctions})
- return (31 + numberOfBits) * 31 + numberOfHashFunctions;
- }
- /**
- * Determines if a cardinality is sparse based on the shape.
- * <p>This method assumes that bit maps are 64bits and indexes are 32bits. If the memory
- * necessary to store the cardinality as indexes is less than the estimated memory for bit maps,
- * the cardinality is determined to be {@code sparse}.</p>
- *
- * @param cardinality the cardinality to check.
- * @return true if the cardinality is sparse within the shape.
- */
- public boolean isSparse(final int cardinality) {
- /*
- * Since the size of a bit map is a long and the size of an index is an int,
- * there can be 2 indexes for each bit map. In Bloom filters indexes are evenly
- * distributed across the range of possible values, Thus if the cardinality
- * (number of indexes) is less than or equal to 2*number of bit maps the
- * cardinality is sparse within the shape.
- */
- return cardinality <= BitMaps.numberOfBitMaps(this) * 2;
- }
- @Override
- public String toString() {
- return String.format("Shape[k=%s m=%s]", numberOfHashFunctions, numberOfBits);
- }
- }