- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * Copyright (c) 2008-2020, Hazelcast, Inc. All Rights Reserved.
- */
- package org.apache.commons.collections4.map;
- /*
- * Written by Doug Lea with assistance from members of JCP JSR-166
- * Expert Group and released to the public domain, as explained at
- * http://creativecommons.org/licenses/publicdomain
- */
- import java.lang.ref.Reference;
- import java.lang.ref.ReferenceQueue;
- import java.lang.ref.SoftReference;
- import java.lang.ref.WeakReference;
- import java.util.AbstractCollection;
- import java.util.AbstractMap;
- import java.util.AbstractSet;
- import java.util.Arrays;
- import java.util.Collection;
- import java.util.ConcurrentModificationException;
- import java.util.EnumSet;
- import java.util.Enumeration;
- import java.util.HashMap;
- import java.util.Hashtable;
- import java.util.IdentityHashMap;
- import java.util.Iterator;
- import java.util.Map;
- import java.util.NoSuchElementException;
- import java.util.Objects;
- import java.util.Set;
- import java.util.concurrent.ConcurrentMap;
- import java.util.concurrent.locks.ReentrantLock;
- import java.util.function.BiFunction;
- import java.util.function.Function;
- import java.util.function.Supplier;
- /**
- * An advanced hash map supporting configurable garbage collection semantics of keys and values, optional referential-equality, full concurrency of retrievals,
- * and adjustable expected concurrency for updates.
- * <p>
- * This map is designed around specific advanced use-cases. If there is any doubt whether this map is for you, you most likely should be using
- * {@link java.util.concurrent.ConcurrentHashMap} instead.
- * </p>
- * <p>
- * This map supports strong, weak, and soft keys and values. By default, keys are weak, and values are strong. Such a configuration offers similar behavior to
- * {@link java.util.WeakHashMap}, entries of this map are periodically removed once their corresponding keys are no longer referenced outside of this map. In
- * other words, this map will not prevent a key from being discarded by the garbage collector. Once a key has been discarded by the collector, the corresponding
- * entry is no longer visible to this map; however, the entry may occupy space until a future map operation decides to reclaim it. For this reason, summary
- * functions such as {@code size} and {@code isEmpty} might return a value greater than the observed number of entries. In order to support a high level of
- * concurrency, stale entries are only reclaimed during blocking (usually mutating) operations.
- * </p>
- * <p>
- * Enabling soft keys allows entries in this map to remain until their space is absolutely needed by the garbage collector. This is unlike weak keys which can
- * be reclaimed as soon as they are no longer referenced by a normal strong reference. The primary use case for soft keys is a cache, which ideally occupies
- * memory that is not in use for as long as possible.
- * </p>
- * <p>
- * By default, values are held using a normal strong reference. This provides the commonly desired guarantee that a value will always have at least the same
- * life-span as its key. For this reason, care should be taken to ensure that a value never refers, either directly or indirectly, to its key, thereby
- * preventing reclamation. If this is unavoidable, then it is recommended to use the same reference type in use for the key. However, it should be noted that
- * non-strong values may disappear before their corresponding key.
- * </p>
- * <p>
- * While this map does allow the use of both strong keys and values, it is recommended you use {@link java.util.concurrent.ConcurrentHashMap} for such a
- * configuration, since it is optimized for that case.
- * </p>
- * <p>
- * Just like {@link java.util.concurrent.ConcurrentHashMap}, this class obeys the same functional specification as {@link Hashtable}, and includes versions of
- * methods corresponding to each method of {@code Hashtable}. However, even though all operations are thread-safe, retrieval operations do <em>not</em> entail
- * locking, and there is <em>not</em> any support for locking the entire map in a way that prevents all access. This class is fully interoperable with
- * {@code Hashtable} in programs that rely on its thread safety but not on its synchronization details.
- * </p>
- * <p>
- * Retrieval operations (including {@code get}) generally do not block, so they may overlap with update operations (including {@code put} and {@code remove}).
- * Retrievals reflect the results of the most recently <em>completed</em> update operations holding upon their onset. For aggregate operations such as
- * {@code putAll} and {@code clear}, concurrent retrievals may reflect insertion or removal of only some entries. Similarly, Iterators and Enumerations return
- * elements reflecting the state of the hash map at some point at or since the creation of the iterator/enumeration. They do <em>not</em> throw
- * {@link ConcurrentModificationException}. However, iterators are designed to be used by only one thread at a time.
- * </p>
- * <p>
- * The allowed concurrency among update operations is guided by the optional {@code concurrencyLevel} constructor argument (default
- * {@value #DEFAULT_CONCURRENCY_LEVEL}), which is used as a hint for internal sizing. The map is internally partitioned to try to permit the indicated number of
- * concurrent updates without contention. Because placement in hash tables is essentially random, the actual concurrency will vary. Ideally, you should choose a
- * value to accommodate as many threads as will ever concurrently modify the map. Using a significantly higher value than you need can waste space and time, and
- * a significantly lower value can lead to thread contention. But overestimates and underestimates within an order of magnitude do not usually have much
- * noticeable impact. A value of one is appropriate when it is known that only one thread will modify and all others will only read. Also, resizing this or any
- * other kind of hash map is a relatively slow operation, so, when possible, it is a good idea that you provide estimates of expected map sizes in constructors.
- * </p>
- * <p>
- * This class and its views and iterators implement all of the <em>optional</em> methods of the {@link Map} and {@link Iterator} interfaces.
- * </p>
- * <p>
- * Like {@link Hashtable} but unlike {@link HashMap}, this class does <em>not</em> allow {@code null} to be used as a key or value.
- * </p>
- * <p>
- * Provenance: Copied and edited from Apache Groovy git master at commit 77dc80a7512ceb2168b1bc866c3d0c69b002fe11; via Doug Lea, Jason T. Greene, with
- * assistance from members of JCP JSR-166, and Hazelcast.
- * </p>
- *
- * @param <K> the type of keys maintained by this map.
- * @param <V> the type of mapped values.
- */
- public class ConcurrentReferenceHashMap<K, V> extends AbstractMap<K, V> implements ConcurrentMap<K, V> {
- /**
- * Builds new ConcurrentReferenceHashMap instances.
- * <p>
- * By default, keys are weak, and values are strong.
- * </p>
- * <p>
- * The default values are:
- * </p>
- * <ul>
- * <li>concurrency level: {@value #DEFAULT_CONCURRENCY_LEVEL}</li>
- * <li>initial capacity: {@value #DEFAULT_INITIAL_CAPACITY}</li>
- * <li>key reference type: {@link ReferenceType#WEAK}</li>
- * <li>load factor: {@value #DEFAULT_LOAD_FACTOR}</li>
- * <li>options: {@code null}</li>
- * <li>source map: {@code null}</li>
- * <li>value reference type: {@link ReferenceType#STRONG}</li>
- * </ul>
- *
- * @param <K> the type of keys.
- * @param <V> the type of values.
- */
- public static class Builder<K, V> implements Supplier<ConcurrentReferenceHashMap<K, V>> {
- private static final Map<?, ?> DEFAULT_SOURCE_MAP = null;
- private int initialCapacity = DEFAULT_INITIAL_CAPACITY;
- private float loadFactor = DEFAULT_LOAD_FACTOR;
- private int concurrencyLevel = DEFAULT_CONCURRENCY_LEVEL;
- private ReferenceType keyReferenceType = DEFAULT_KEY_TYPE;
- private ReferenceType valueReferenceType = DEFAULT_VALUE_TYPE;
- private EnumSet<Option> options = DEFAULT_OPTIONS;
- @SuppressWarnings("unchecked")
- private Map<? extends K, ? extends V> sourceMap = (Map<? extends K, ? extends V>) DEFAULT_SOURCE_MAP;
- /**
- * Constructs a new instances of {@link ConcurrentReferenceHashMap}.
- */
- public Builder() {
- // empty
- }
- /**
- * Builds a new {@link ConcurrentReferenceHashMap}.
- * <p>
- * By default, keys are weak, and values are strong.
- * </p>
- * <p>
- * The default values are:
- * </p>
- * <ul>
- * <li>concurrency level: {@value #DEFAULT_CONCURRENCY_LEVEL}</li>
- * <li>initial capacity: {@value #DEFAULT_INITIAL_CAPACITY}</li>
- * <li>key reference type: {@link ReferenceType#WEAK}</li>
- * <li>load factor: {@value #DEFAULT_LOAD_FACTOR}</li>
- * <li>options: {@code null}</li>
- * <li>source map: {@code null}</li>
- * <li>value reference type: {@link ReferenceType#STRONG}</li>
- * </ul>
- */
- @Override
- public ConcurrentReferenceHashMap<K, V> get() {
- final ConcurrentReferenceHashMap<K, V> map = new ConcurrentReferenceHashMap<>(initialCapacity, loadFactor, concurrencyLevel, keyReferenceType,
- valueReferenceType, options);
- if (sourceMap != null) {
- map.putAll(sourceMap);
- }
- return map;
- }
- /**
- * Sets the estimated number of concurrently updating threads. The implementation performs internal sizing to try to accommodate this many threads.
- *
- * @param concurrencyLevel estimated number of concurrently updating threads
- * @return this instance.
- */
- public Builder<K, V> setConcurrencyLevel(final int concurrencyLevel) {
- this.concurrencyLevel = concurrencyLevel;
- return this;
- }
- /**
- * Sets the initial capacity. The implementation performs internal sizing to accommodate this many elements.
- *
- * @param initialCapacity the initial capacity.
- * @return this instance.
- */
- public Builder<K, V> setInitialCapacity(final int initialCapacity) {
- this.initialCapacity = initialCapacity;
- return this;
- }
- /**
- * Sets the reference type to use for keys.
- *
- * @param keyReferenceType the reference type to use for keys.
- * @return this instance.
- */
- public Builder<K, V> setKeyReferenceType(final ReferenceType keyReferenceType) {
- this.keyReferenceType = keyReferenceType;
- return this;
- }
- /**
- * Sets the load factor factor, used to control resizing. Resizing may be performed when the average number of elements per bin exceeds this threshold.
- *
- * @param loadFactor the load factor factor, used to control resizing
- * @return this instance.
- */
- public Builder<K, V> setLoadFactor(final float loadFactor) {
- this.loadFactor = loadFactor;
- return this;
- }
- /**
- * Sets the behavioral options.
- *
- * @param options the behavioral options.
- * @return this instance.
- */
- public Builder<K, V> setOptions(final EnumSet<Option> options) {
- this.options = options;
- return this;
- }
- /**
- * Sets the values to load into a new map.
- *
- * @param sourceMap the values to load into a new map.
- * @return this instance.
- */
- public Builder<K, V> setSourceMap(final Map<? extends K, ? extends V> sourceMap) {
- this.sourceMap = sourceMap;
- return this;
- }
- /**
- * Sets the reference type to use for values.
- *
- * @param valueReferenceType the reference type to use for values.
- * @return this instance.
- */
- public Builder<K, V> setValueReferenceType(final ReferenceType valueReferenceType) {
- this.valueReferenceType = valueReferenceType;
- return this;
- }
- /**
- * Sets key reference type to {@link ReferenceType#SOFT}.
- *
- * @return this instance.
- */
- public Builder<K, V> softKeys() {
- setKeyReferenceType(ReferenceType.SOFT);
- return this;
- }
- /**
- * Sets value reference type to {@link ReferenceType#SOFT}.
- *
- * @return this instance.
- */
- public Builder<K, V> softValues() {
- setValueReferenceType(ReferenceType.SOFT);
- return this;
- }
- /**
- * Sets key reference type to {@link ReferenceType#STRONG}.
- *
- * @return this instance.
- */
- public Builder<K, V> strongKeys() {
- setKeyReferenceType(ReferenceType.STRONG);
- return this;
- }
- /**
- * Sets value reference type to {@link ReferenceType#STRONG}.
- *
- * @return this instance.
- */
- public Builder<K, V> strongValues() {
- setValueReferenceType(ReferenceType.STRONG);
- return this;
- }
- /**
- * Sets key reference type to {@link ReferenceType#WEAK}.
- *
- * @return this instance.
- */
- public Builder<K, V> weakKeys() {
- setKeyReferenceType(ReferenceType.WEAK);
- return this;
- }
- /**
- * Sets value reference type to {@link ReferenceType#WEAK}.
- *
- * @return this instance.
- */
- public Builder<K, V> weakValues() {
- setValueReferenceType(ReferenceType.WEAK);
- return this;
- }
- }
- /**
- * The basic strategy is to subdivide the table among Segments, each of which itself is a concurrently readable hash table.
- */
- private final class CachedEntryIterator extends HashIterator implements Iterator<Entry<K, V>> {
- private final InitializableEntry<K, V> entry = new InitializableEntry<>();
- @Override
- public Entry<K, V> next() {
- final HashEntry<K, V> e = super.nextEntry();
- return entry.init(e.key(), e.value());
- }
- }
- private final class EntryIterator extends HashIterator implements Iterator<Entry<K, V>> {
- @Override
- public Entry<K, V> next() {
- final HashEntry<K, V> e = super.nextEntry();
- return new WriteThroughEntry(e.key(), e.value());
- }
- }
- private final class EntrySet extends AbstractSet<Entry<K, V>> {
- private final boolean cached;
- private EntrySet(final boolean cached) {
- this.cached = cached;
- }
- @Override
- public void clear() {
- ConcurrentReferenceHashMap.this.clear();
- }
- @Override
- public boolean contains(final Object o) {
- if (!(o instanceof Map.Entry)) {
- return false;
- }
- final V v = ConcurrentReferenceHashMap.this.get(((Entry<?, ?>) o).getKey());
- return Objects.equals(v, ((Entry<?, ?>) o).getValue());
- }
- @Override
- public boolean isEmpty() {
- return ConcurrentReferenceHashMap.this.isEmpty();
- }
- @Override
- public Iterator<Entry<K, V>> iterator() {
- return cached ? new CachedEntryIterator() : new EntryIterator();
- }
- @Override
- public boolean remove(final Object o) {
- if (!(o instanceof Map.Entry)) {
- return false;
- }
- final Entry<?, ?> e = (Entry<?, ?>) o;
- return ConcurrentReferenceHashMap.this.remove(e.getKey(), e.getValue());
- }
- @Override
- public int size() {
- return ConcurrentReferenceHashMap.this.size();
- }
- }
- /**
- * ConcurrentReferenceHashMap list entry. Note that this is never exported out as a user-visible Map.Entry.
- * <p>
- * Because the value field is volatile, not final, it is legal wrt the Java Memory Model for an unsynchronized reader to see null instead of initial value
- * when read via a data race. Although a reordering leading to this is not likely to ever actually occur, the Segment.readValueUnderLock method is used as a
- * backup in case a null (pre-initialized) value is ever seen in an unsynchronized access method.
- * </p>
- */
- private static final class HashEntry<K, V> {
- @SuppressWarnings("unchecked")
- static <K, V> HashEntry<K, V>[] newArray(final int i) {
- return new HashEntry[i];
- }
- private final Object keyRef;
- private final int hash;
- private volatile Object valueRef;
- private final HashEntry<K, V> next;
- HashEntry(final K key, final int hash, final HashEntry<K, V> next, final V value, final ReferenceType keyType, final ReferenceType valueType,
- final ReferenceQueue<Object> refQueue) {
- this.hash = hash;
- this.next = next;
- this.keyRef = newKeyReference(key, keyType, refQueue);
- this.valueRef = newValueReference(value, valueType, refQueue);
- }
- @SuppressWarnings("unchecked")
- V dereferenceValue(final Object value) {
- if (value instanceof KeyReference) {
- return ((Reference<V>) value).get();
- }
- return (V) value;
- }
- @SuppressWarnings("unchecked")
- K key() {
- if (keyRef instanceof KeyReference) {
- return ((Reference<K>) keyRef).get();
- }
- return (K) keyRef;
- }
- Object newKeyReference(final K key, final ReferenceType keyType, final ReferenceQueue<Object> refQueue) {
- if (keyType == ReferenceType.WEAK) {
- return new WeakKeyReference<>(key, hash, refQueue);
- }
- if (keyType == ReferenceType.SOFT) {
- return new SoftKeyReference<>(key, hash, refQueue);
- }
- return key;
- }
- Object newValueReference(final V value, final ReferenceType valueType, final ReferenceQueue<Object> refQueue) {
- if (valueType == ReferenceType.WEAK) {
- return new WeakValueReference<>(value, keyRef, hash, refQueue);
- }
- if (valueType == ReferenceType.SOFT) {
- return new SoftValueReference<>(value, keyRef, hash, refQueue);
- }
- return value;
- }
- void setValue(final V value, final ReferenceType valueType, final ReferenceQueue<Object> refQueue) {
- this.valueRef = newValueReference(value, valueType, refQueue);
- }
- V value() {
- return dereferenceValue(valueRef);
- }
- }
- private abstract class HashIterator {
- private int nextSegmentIndex;
- private int nextTableIndex;
- private HashEntry<K, V>[] currentTable;
- private HashEntry<K, V> nextEntry;
- private HashEntry<K, V> lastReturned;
- // Strong reference to weak key (prevents gc)
- private K currentKey;
- private HashIterator() {
- nextSegmentIndex = segments.length - 1;
- nextTableIndex = -1;
- advance();
- }
- final void advance() {
- if (nextEntry != null && (nextEntry = nextEntry.next) != null) {
- return;
- }
- while (nextTableIndex >= 0) {
- if ((nextEntry = currentTable[nextTableIndex--]) != null) {
- return;
- }
- }
- while (nextSegmentIndex >= 0) {
- final Segment<K, V> seg = segments[nextSegmentIndex--];
- if (seg.count != 0) {
- currentTable = seg.table;
- for (int j = currentTable.length - 1; j >= 0; --j) {
- if ((nextEntry = currentTable[j]) != null) {
- nextTableIndex = j - 1;
- return;
- }
- }
- }
- }
- }
- public boolean hasMoreElements() {
- return hasNext();
- }
- public boolean hasNext() {
- while (nextEntry != null) {
- if (nextEntry.key() != null) {
- return true;
- }
- advance();
- }
- return false;
- }
- HashEntry<K, V> nextEntry() {
- do {
- if (nextEntry == null) {
- throw new NoSuchElementException();
- }
- lastReturned = nextEntry;
- currentKey = lastReturned.key();
- advance();
- } while /* Skip GC'd keys */ (currentKey == null);
- return lastReturned;
- }
- public void remove() {
- if (lastReturned == null) {
- throw new IllegalStateException();
- }
- ConcurrentReferenceHashMap.this.remove(currentKey);
- lastReturned = null;
- }
- }
- private static final class InitializableEntry<K, V> implements Entry<K, V> {
- private K key;
- private V value;
- @Override
- public K getKey() {
- return key;
- }
- @Override
- public V getValue() {
- return value;
- }
- public Entry<K, V> init(final K key, final V value) {
- this.key = key;
- this.value = value;
- return this;
- }
- @Override
- public V setValue(final V value) {
- throw new UnsupportedOperationException();
- }
- }
- private final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
- @Override
- public K next() {
- return super.nextEntry().key();
- }
- @Override
- public K nextElement() {
- return super.nextEntry().key();
- }
- }
- private interface KeyReference {
- int keyHash();
- Object keyRef();
- }
- private final class KeySet extends AbstractSet<K> {
- @Override
- public void clear() {
- ConcurrentReferenceHashMap.this.clear();
- }
- @Override
- public boolean contains(final Object o) {
- return ConcurrentReferenceHashMap.this.containsKey(o);
- }
- @Override
- public boolean isEmpty() {
- return ConcurrentReferenceHashMap.this.isEmpty();
- }
- @Override
- public Iterator<K> iterator() {
- return new KeyIterator();
- }
- @Override
- public boolean remove(final Object o) {
- return ConcurrentReferenceHashMap.this.remove(o) != null;
- }
- @Override
- public int size() {
- return ConcurrentReferenceHashMap.this.size();
- }
- }
- /**
- * Behavior-changing configuration options for the map
- */
- public enum Option {
- /**
- * Indicates that referential-equality (== instead of .equals()) should be used when locating keys. This offers similar behavior to
- * {@link IdentityHashMap}
- */
- IDENTITY_COMPARISONS
- }
- /**
- * An option specifying which Java reference type should be used to refer to a key and/or value.
- */
- public enum ReferenceType {
- /**
- * Indicates a normal Java strong reference should be used
- */
- STRONG,
- /**
- * Indicates a {@link WeakReference} should be used
- */
- WEAK,
- /**
- * Indicates a {@link SoftReference} should be used
- */
- SOFT
- }
- /**
- * Segments are specialized versions of hash tables. This subclasses from ReentrantLock opportunistically, just to simplify some locking and avoid separate
- * construction.
- * <p>
- * Segments maintain a table of entry lists that are ALWAYS kept in a consistent state, so they can be read without locking. Next fields of nodes are
- * immutable (final). All list additions are performed at the front of each bin. This makes it easy to check changes, and also fast to traverse. When nodes
- * would otherwise be changed, new nodes are created to replace them. This works well for hash tables since the bin lists tend to be short. (The average
- * length is less than two for the default load factor threshold.)
- * </p>
- * <p>
- * Read operations can thus proceed without locking, but rely on selected uses of volatiles to ensure that completed write operations performed by other
- * threads are noticed. For most purposes, the "count" field, tracking the number of elements, serves as that volatile variable ensuring visibility. This is
- * convenient because this field needs to be read in many read operations anyway:
- * </p>
- * <ul>
- * <li>All (unsynchronized) read operations must first read the "count" field, and should not look at table entries if it is 0.</li>
- * <li>All (synchronized) write operations should write to the "count" field after structurally changing any bin. The operations must not take any action
- * that could even momentarily cause a concurrent read operation to see inconsistent data. This is made easier by the nature of the read operations in Map.
- * For example, no operation can reveal that the table has grown but the threshold has not yet been updated, so there are no atomicity requirements for this
- * with respect to reads.</li>
- * </ul>
- * <p>
- * As a guide, all critical volatile reads and writes to the count field are marked in code comments.
- * </p>
- *
- * @param <K> the type of keys maintained by this Segment.
- * @param <V> the type of mapped values.
- */
- private static final class Segment<K, V> extends ReentrantLock {
- private static final long serialVersionUID = 1L;
- @SuppressWarnings("unchecked")
- static <K, V> Segment<K, V>[] newArray(final int i) {
- return new Segment[i];
- }
- /**
- * The number of elements in this segment's region.
- */
- // @SuppressFBWarnings(value = "SE_TRANSIENT_FIELD_NOT_RESTORED", justification =
- // "I trust Doug Lea's technical decision")
- private transient volatile int count;
- /**
- * Number of updates that alter the size of the table. This is used during bulk-read methods to make sure they see a consistent snapshot: If modCounts
- * change during a traversal of segments computing size or checking containsValue, then we might have an inconsistent view of state so (usually) we must
- * retry.
- */
- // @SuppressFBWarnings(value = "SE_TRANSIENT_FIELD_NOT_RESTORED", justification =
- // "I trust Doug Lea's technical decision")
- private transient int modCount;
- /**
- * The table is rehashed when its size exceeds this threshold. (The value of this field is always <code>(int)(capacity *
- * loadFactor)</code>.)
- */
- private transient int threshold;
- /**
- * The per-segment table.
- */
- private transient volatile HashEntry<K, V>[] table;
- /**
- * The load factor for the hash table. Even though this value is same for all segments, it is replicated to avoid needing links to outer object.
- */
- private final float loadFactor;
- /**
- * The collected weak-key reference queue for this segment. This should be (re)initialized whenever table is assigned,
- */
- private transient volatile ReferenceQueue<Object> refQueue;
- private final ReferenceType keyType;
- private final ReferenceType valueType;
- private final boolean identityComparisons;
- Segment(final int initialCapacity, final float loadFactor, final ReferenceType keyType, final ReferenceType valueType,
- final boolean identityComparisons) {
- this.loadFactor = loadFactor;
- this.keyType = keyType;
- this.valueType = valueType;
- this.identityComparisons = identityComparisons;
- setTable(HashEntry.<K, V>newArray(initialCapacity));
- }
- V apply(final K key, final int hash, final BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
- lock();
- try {
- final V oldValue = get(key, hash);
- final V newValue = remappingFunction.apply(key, oldValue);
- if (newValue == null) {
- // delete mapping
- if (oldValue != null) {
- // something to remove
- removeInternal(key, hash, oldValue, false);
- }
- return null;
- }
- // add or replace old mapping
- putInternal(key, hash, newValue, null, false);
- return newValue;
- } finally {
- unlock();
- }
- }
- V applyIfPresent(final K key, final int hash, final BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
- lock();
- try {
- final V oldValue = get(key, hash);
- if (oldValue == null) {
- return null;
- }
- final V newValue = remappingFunction.apply(key, oldValue);
- if (newValue == null) {
- removeInternal(key, hash, oldValue, false);
- return null;
- }
- putInternal(key, hash, newValue, null, false);
- return newValue;
- } finally {
- unlock();
- }
- }
- void clear() {
- if (count != 0) {
- lock();
- try {
- final HashEntry<K, V>[] tab = table;
- Arrays.fill(tab, null);
- ++modCount;
- // replace the reference queue to avoid unnecessary stale cleanups
- refQueue = new ReferenceQueue<>();
- // write-volatile
- count = 0;
- } finally {
- unlock();
- }
- }
- }
- boolean containsKey(final Object key, final int hash) {
- // read-volatile
- if (count != 0) {
- HashEntry<K, V> e = getFirst(hash);
- while (e != null) {
- if (e.hash == hash && keyEq(key, e.key())) {
- return true;
- }
- e = e.next;
- }
- }
- return false;
- }
- boolean containsValue(final Object value) {
- // read-volatile
- if (count != 0) {
- final HashEntry<K, V>[] tab = table;
- final int len = tab.length;
- for (int i = 0; i < len; i++) {
- for (HashEntry<K, V> e = tab[i]; e != null; e = e.next) {
- final Object opaque = e.valueRef;
- final V v;
- if (opaque == null) {
- // recheck
- v = readValueUnderLock(e);
- } else {
- v = e.dereferenceValue(opaque);
- }
- if (Objects.equals(value, v)) {
- return true;
- }
- }
- }
- }
- return false;
- }
- /* Specialized implementations of map methods */
- V get(final Object key, final int hash) {
- // read-volatile
- if (count != 0) {
- HashEntry<K, V> e = getFirst(hash);
- while (e != null) {
- if (e.hash == hash && keyEq(key, e.key())) {
- final Object opaque = e.valueRef;
- if (opaque != null) {
- return e.dereferenceValue(opaque);
- }
- // recheck
- return readValueUnderLock(e);
- }
- e = e.next;
- }
- }
- return null;
- }
- /**
- * Gets properly casted first entry of bin for given hash.
- */
- HashEntry<K, V> getFirst(final int hash) {
- final HashEntry<K, V>[] tab = table;
- return tab[hash & tab.length - 1];
- }
- V getValue(final K key, final V value, final Function<? super K, ? extends V> function) {
- return value != null ? value : function.apply(key);
- }
- private boolean keyEq(final Object src, final Object dest) {
- return identityComparisons ? src == dest : Objects.equals(src, dest);
- }
- HashEntry<K, V> newHashEntry(final K key, final int hash, final HashEntry<K, V> next, final V value) {
- return new HashEntry<>(key, hash, next, value, keyType, valueType, refQueue);
- }
- /**
- * This method must be called with exactly one of <code>value</code> and <code>function</code> non-null.
- **/
- V put(final K key, final int hash, final V value, final Function<? super K, ? extends V> function, final boolean onlyIfAbsent) {
- lock();
- try {
- return putInternal(key, hash, value, function, onlyIfAbsent);
- } finally {
- unlock();
- }
- }
- private V putInternal(final K key, final int hash, final V value, final Function<? super K, ? extends V> function, final boolean onlyIfAbsent) {
- removeStale();
- int c = count;
- // ensure capacity
- if (c++ > threshold) {
- final int reduced = rehash();
- // adjust from possible weak cleanups
- if (reduced > 0) {
- // write-volatile
- count = (c -= reduced) - 1;
- }
- }
- final HashEntry<K, V>[] tab = table;
- final int index = hash & tab.length - 1;
- final HashEntry<K, V> first = tab[index];
- HashEntry<K, V> e = first;
- while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
- e = e.next;
- }
- final V resultValue;
- if (e != null) {
- resultValue = e.value();
- if (!onlyIfAbsent) {
- e.setValue(getValue(key, value, function), valueType, refQueue);
- }
- } else {
- final V v = getValue(key, value, function);
- resultValue = function != null ? v : null;
- if (v != null) {
- ++modCount;
- tab[index] = newHashEntry(key, hash, first, v);
- // write-volatile
- count = c;
- }
- }
- return resultValue;
- }
- /**
- * Reads value field of an entry under lock. Called if value field ever appears to be null. This is possible only if a compiler happens to reorder a
- * HashEntry initialization with its table assignment, which is legal under memory model but is not known to ever occur.
- */
- V readValueUnderLock(final HashEntry<K, V> e) {
- lock();
- try {
- removeStale();
- return e.value();
- } finally {
- unlock();
- }
- }
- int rehash() {
- final HashEntry<K, V>[] oldTable = table;
- final int oldCapacity = oldTable.length;
- if (oldCapacity >= MAXIMUM_CAPACITY) {
- return 0;
- }
- //
- // Reclassify nodes in each list to new Map. Because we are using power-of-two expansion, the elements from each bin must either stay at the same
- // index, or move with a power of two offset. We eliminate unnecessary node creation by catching cases where old nodes can be reused because their
- // next fields won't change. Statistically, at the default threshold, only about one-sixth of them need cloning when a table doubles. The nodes they
- // replace will be garbage collectable as soon as they are no longer referenced by any reader thread that may be in the midst of traversing table
- // right now.
- //
- final HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1);
- threshold = (int) (newTable.length * loadFactor);
- final int sizeMask = newTable.length - 1;
- int reduce = 0;
- for (int i = 0; i < oldCapacity; i++) {
- // We need to guarantee that any existing reads of old Map can
- // proceed. So we cannot yet null out each bin.
- final HashEntry<K, V> e = oldTable[i];
- if (e != null) {
- final HashEntry<K, V> next = e.next;
- final int idx = e.hash & sizeMask;
- // Single node on list
- if (next == null) {
- newTable[idx] = e;
- } else {
- // Reuse trailing consecutive sequence at same slot
- HashEntry<K, V> lastRun = e;
- int lastIdx = idx;
- for (HashEntry<K, V> last = next; last != null; last = last.next) {
- final int k = last.hash & sizeMask;
- if (k != lastIdx) {
- lastIdx = k;
- lastRun = last;
- }
- }
- newTable[lastIdx] = lastRun;
- // Clone all remaining nodes
- for (HashEntry<K, V> p = e; p != lastRun; p = p.next) {
- // Skip GC'd weak refs
- final K key = p.key();
- if (key == null) {
- reduce++;
- continue;
- }
- final int k = p.hash & sizeMask;
- final HashEntry<K, V> n = newTable[k];
- newTable[k] = newHashEntry(key, p.hash, n, p.value());
- }
- }
- }
- }
- table = newTable;
- return reduce;
- }
- /**
- * Removes match on key only if value is null, else match both.
- */
- V remove(final Object key, final int hash, final Object value, final boolean refRemove) {
- lock();
- try {
- return removeInternal(key, hash, value, refRemove);
- } finally {
- unlock();
- }
- }
- private V removeInternal(final Object key, final int hash, final Object value, final boolean refRemove) {
- if (!refRemove) {
- removeStale();
- }
- int c = count - 1;
- final HashEntry<K, V>[] tab = table;
- final int index = hash & tab.length - 1;
- final HashEntry<K, V> first = tab[index];
- HashEntry<K, V> e = first;
- // a ref remove operation compares the Reference instance
- while (e != null && key != e.keyRef && (refRemove || hash != e.hash || !keyEq(key, e.key()))) {
- e = e.next;
- }
- V oldValue = null;
- if (e != null) {
- final V v = e.value();
- if (value == null || value.equals(v)) {
- oldValue = v;
- // All entries following removed node can stay
- // in list, but all preceding ones need to be
- // cloned.
- ++modCount;
- HashEntry<K, V> newFirst = e.next;
- for (HashEntry<K, V> p = first; p != e; p = p.next) {
- final K pKey = p.key();
- // Skip GC'd keys
- if (pKey == null) {
- c--;
- continue;
- }
- newFirst = newHashEntry(pKey, p.hash, newFirst, p.value());
- }
- tab[index] = newFirst;
- // write-volatile
- count = c;
- }
- }
- return oldValue;
- }
- void removeStale() {
- KeyReference ref;
- while ((ref = (KeyReference) refQueue.poll()) != null) {
- remove(ref.keyRef(), ref.keyHash(), null, true);
- }
- }
- V replace(final K key, final int hash, final V newValue) {
- lock();
- try {
- return replaceInternal(key, hash, newValue);
- } finally {
- unlock();
- }
- }
- boolean replace(final K key, final int hash, final V oldValue, final V newValue) {
- lock();
- try {
- return replaceInternal2(key, hash, oldValue, newValue);
- } finally {
- unlock();
- }
- }
- private V replaceInternal(final K key, final int hash, final V newValue) {
- removeStale();
- HashEntry<K, V> e = getFirst(hash);
- while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
- e = e.next;
- }
- V oldValue = null;
- if (e != null) {
- oldValue = e.value();
- e.setValue(newValue, valueType, refQueue);
- }
- return oldValue;
- }
- private boolean replaceInternal2(final K key, final int hash, final V oldValue, final V newValue) {
- removeStale();
- HashEntry<K, V> e = getFirst(hash);
- while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
- e = e.next;
- }
- boolean replaced = false;
- if (e != null && Objects.equals(oldValue, e.value())) {
- replaced = true;
- e.setValue(newValue, valueType, refQueue);
- }
- return replaced;
- }
- /**
- * Sets table to new HashEntry array. Call only while holding lock or in constructor.
- */
- void setTable(final HashEntry<K, V>[] newTable) {
- threshold = (int) (newTable.length * loadFactor);
- table = newTable;
- refQueue = new ReferenceQueue<>();
- }
- }
- private static class SimpleEntry<K, V> implements Entry<K, V> {
- private static boolean eq(final Object o1, final Object o2) {
- return Objects.equals(o1, o2);
- }
- private final K key;
- private V value;
- SimpleEntry(final K key, final V value) {
- this.key = key;
- this.value = value;
- }
- @Override
- public boolean equals(final Object o) {
- if (!(o instanceof Map.Entry)) {
- return false;
- }
- final Entry<?, ?> e = (Entry<?, ?>) o;
- return eq(key, e.getKey()) && eq(value, e.getValue());
- }
- @Override
- public K getKey() {
- return key;
- }
- @Override
- public V getValue() {
- return value;
- }
- @Override
- public int hashCode() {
- return (key == null ? 0 : key.hashCode()) ^ (value == null ? 0 : value.hashCode());
- }
- @Override
- public V setValue(final V value) {
- final V oldValue = this.value;
- this.value = value;
- return oldValue;
- }
- @Override
- public String toString() {
- return key + "=" + value;
- }
- }
- /**
- * A soft-key reference which stores the key hash needed for reclamation.
- */
- private static final class SoftKeyReference<K> extends SoftReference<K> implements KeyReference {
- private final int hash;
- SoftKeyReference(final K key, final int hash, final ReferenceQueue<Object> refQueue) {
- super(key, refQueue);
- this.hash = hash;
- }
- @Override
- public int keyHash() {
- return hash;
- }
- @Override
- public Object keyRef() {
- return this;
- }
- }
- private static final class SoftValueReference<V> extends SoftReference<V> implements KeyReference {
- private final Object keyRef;
- private final int hash;
- SoftValueReference(final V value, final Object keyRef, final int hash, final ReferenceQueue<Object> refQueue) {
- super(value, refQueue);
- this.keyRef = keyRef;
- this.hash = hash;
- }
- @Override
- public int keyHash() {
- return hash;
- }
- @Override
- public Object keyRef() {
- return keyRef;
- }
- }
- private final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
- @Override
- public V next() {
- return super.nextEntry().value();
- }
- @Override
- public V nextElement() {
- return super.nextEntry().value();
- }
- }
- private final class Values extends AbstractCollection<V> {
- @Override
- public void clear() {
- ConcurrentReferenceHashMap.this.clear();
- }
- @Override
- public boolean contains(final Object o) {
- return ConcurrentReferenceHashMap.this.containsValue(o);
- }
- @Override
- public boolean isEmpty() {
- return ConcurrentReferenceHashMap.this.isEmpty();
- }
- @Override
- public Iterator<V> iterator() {
- return new ValueIterator();
- }
- @Override
- public int size() {
- return ConcurrentReferenceHashMap.this.size();
- }
- }
- /**
- * A weak-key reference which stores the key hash needed for reclamation.
- */
- private static final class WeakKeyReference<K> extends WeakReference<K> implements KeyReference {
- private final int hash;
- WeakKeyReference(final K key, final int hash, final ReferenceQueue<Object> refQueue) {
- super(key, refQueue);
- this.hash = hash;
- }
- @Override
- public int keyHash() {
- return hash;
- }
- @Override
- public Object keyRef() {
- return this;
- }
- }
- private static final class WeakValueReference<V> extends WeakReference<V> implements KeyReference {
- private final Object keyRef;
- private final int hash;
- WeakValueReference(final V value, final Object keyRef, final int hash, final ReferenceQueue<Object> refQueue) {
- super(value, refQueue);
- this.keyRef = keyRef;
- this.hash = hash;
- }
- @Override
- public int keyHash() {
- return hash;
- }
- @Override
- public Object keyRef() {
- return keyRef;
- }
- }
- /**
- * Custom Entry class used by EntryIterator.next(), that relays setValue changes to the underlying map.
- */
- private final class WriteThroughEntry extends SimpleEntry<K, V> {
- private WriteThroughEntry(final K k, final V v) {
- super(k, v);
- }
- /**
- * Set our entry's value and writes it through to the map. The value to return is somewhat arbitrary: since a WriteThroughEntry does not necessarily
- * track asynchronous changes, the most recent "previous" value could be different from what we return (or could even have been removed in which case
- * the put will re-establish). We do not and cannot guarantee more.
- */
- @Override
- public V setValue(final V value) {
- Objects.requireNonNull(value, "value");
- final V v = super.setValue(value);
- ConcurrentReferenceHashMap.this.put(getKey(), value);
- return v;
- }
- }
- static final ReferenceType DEFAULT_KEY_TYPE = ReferenceType.WEAK;
- static final ReferenceType DEFAULT_VALUE_TYPE = ReferenceType.STRONG;
- static final EnumSet<Option> DEFAULT_OPTIONS = null;
- /**
- * The default initial capacity for this table, used when not otherwise specified in a constructor.
- */
- static final int DEFAULT_INITIAL_CAPACITY = 16;
- /**
- * The default load factor for this table, used when not otherwise specified in a constructor.
- */
- static final float DEFAULT_LOAD_FACTOR = 0.75f;
- /**
- * The default concurrency level for this table, used when not otherwise specified in a constructor.
- */
- static final int DEFAULT_CONCURRENCY_LEVEL = 16;
- /**
- * The maximum capacity, used if a higher value is implicitly specified by either of the constructors with arguments. MUST be a power of two <=
- * 1<<30 to ensure that entries are indexable using ints.
- */
- private static final int MAXIMUM_CAPACITY = 1 << 30;
- /**
- * The maximum number of segments to allow; used to bound constructor arguments.
- */
- private static final int MAX_SEGMENTS = 1 << 16;
- /**
- * Number of unsynchronized retries in size and containsValue methods before resorting to locking. This is used to avoid unbounded retries if tables undergo
- * continuous modification which would make it impossible to obtain an accurate result.
- */
- private static final int RETRIES_BEFORE_LOCK = 2;
- /**
- * Creates a new Builder.
- * <p>
- * By default, keys are weak, and values are strong.
- * </p>
- * <p>
- * The default values are:
- * </p>
- * <ul>
- * <li>concurrency level: {@value #DEFAULT_CONCURRENCY_LEVEL}</li>
- * <li>initial capacity: {@value #DEFAULT_INITIAL_CAPACITY}</li>
- * <li>key reference type: {@link ReferenceType#WEAK}</li>
- * <li>load factor: {@value #DEFAULT_LOAD_FACTOR}</li>
- * <li>options: {@code null}</li>
- * <li>source map: {@code null}</li>
- * <li>value reference type: {@link ReferenceType#STRONG}</li>
- * </ul>
- *
- * @param <K> the type of keys.
- * @param <V> the type of values.
- * @return a new Builder.
- */
- public static <K, V> Builder<K, V> builder() {
- return new Builder<>();
- }
- /**
- * Applies a supplemental hash function to a given hashCode, which defends against poor quality hash functions. This is critical because
- * ConcurrentReferenceHashMap uses power-of-two length hash tables, that otherwise encounter collisions for hashCodes that do not differ in lower or upper
- * bits.
- */
- private static int hash(int h) {
- // Spread bits to regularize both segment and index locations,
- // using variant of single-word Wang/Jenkins hash.
- h += h << 15 ^ 0xffffcd7d;
- h ^= h >>> 10;
- h += h << 3;
- h ^= h >>> 6;
- h += (h << 2) + (h << 14);
- return h ^ h >>> 16;
- }
- /**
- * Mask value for indexing into segments. The upper bits of a key's hash code are used to choose the segment.
- */
- private final int segmentMask;
- /**
- * Shift value for indexing within segments.
- */
- private final int segmentShift;
- /**
- * The segments, each of which is a specialized hash table
- */
- private final Segment<K, V>[] segments;
- private final boolean identityComparisons;
- private transient Set<K> keySet;
- private transient Set<Entry<K, V>> entrySet;
- private transient Collection<V> values;
- /**
- * Creates a new, empty map with the specified initial capacity, reference types, load factor, and concurrency level.
- * <p>
- * Behavioral changing options such as {@link Option#IDENTITY_COMPARISONS} can also be specified.
- * </p>
- *
- * @param initialCapacity the initial capacity. The implementation performs internal sizing to accommodate this many elements.
- * @param loadFactor the load factor threshold, used to control resizing. Resizing may be performed when the average number of elements per bin
- * exceeds this threshold.
- * @param concurrencyLevel the estimated number of concurrently updating threads. The implementation performs internal sizing to try to accommodate this
- * many threads.
- * @param keyType the reference type to use for keys.
- * @param valueType the reference type to use for values.
- * @param options the behavioral options.
- * @throws IllegalArgumentException if the initial capacity is negative or the load factor or concurrencyLevel are nonpositive.
- */
- private ConcurrentReferenceHashMap(int initialCapacity, final float loadFactor, int concurrencyLevel, final ReferenceType keyType,
- final ReferenceType valueType, final EnumSet<Option> options) {
- if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) {
- throw new IllegalArgumentException();
- }
- if (concurrencyLevel > MAX_SEGMENTS) {
- concurrencyLevel = MAX_SEGMENTS;
- }
- // Find power-of-two sizes best matching arguments
- int sshift = 0;
- int ssize = 1;
- while (ssize < concurrencyLevel) {
- ++sshift;
- ssize <<= 1;
- }
- segmentShift = 32 - sshift;
- segmentMask = ssize - 1;
- this.segments = Segment.newArray(ssize);
- if (initialCapacity > MAXIMUM_CAPACITY) {
- initialCapacity = MAXIMUM_CAPACITY;
- }
- int c = initialCapacity / ssize;
- if (c * ssize < initialCapacity) {
- ++c;
- }
- int cap = 1;
- while (cap < c) {
- cap <<= 1;
- }
- identityComparisons = options != null && options.contains(Option.IDENTITY_COMPARISONS);
- for (int i = 0; i < this.segments.length; ++i) {
- this.segments[i] = new Segment<>(cap, loadFactor, keyType, valueType, identityComparisons);
- }
- }
- /**
- * Removes all of the mappings from this map.
- */
- @Override
- public void clear() {
- for (final Segment<K, V> segment : segments) {
- segment.clear();
- }
- }
- @Override
- public V compute(final K key, final BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
- Objects.requireNonNull(key);
- Objects.requireNonNull(remappingFunction);
- final int hash = hashOf(key);
- final Segment<K, V> segment = segmentFor(hash);
- return segment.apply(key, hash, remappingFunction);
- }
- /**
- * The default implementation is equivalent to the following steps for this {@code map}, then returning the current value or {@code null} if now absent:
- *
- * <pre>{@code
- * if (map.get(key) == null) {
- * V newValue = mappingFunction.apply(key);
- * if (newValue != null)
- * return map.putIfAbsent(key, newValue);
- * }
- * }</pre>
- * <p>
- * The default implementation may retry these steps when multiple threads attempt updates including potentially calling the mapping function multiple times.
- * </p>
- * <p>
- * This implementation assumes that the ConcurrentMap cannot contain null values and {@code get()} returning null unambiguously means the key is absent.
- * Implementations which support null values <strong>must</strong> override this default implementation.
- * </p>
- */
- @Override
- public V computeIfAbsent(final K key, final Function<? super K, ? extends V> mappingFunction) {
- Objects.requireNonNull(key);
- Objects.requireNonNull(mappingFunction);
- final int hash = hashOf(key);
- final Segment<K, V> segment = segmentFor(hash);
- final V v = segment.get(key, hash);
- return v == null ? segment.put(key, hash, null, mappingFunction, true) : v;
- }
- @Override
- public V computeIfPresent(final K key, final BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
- Objects.requireNonNull(key);
- Objects.requireNonNull(remappingFunction);
- final int hash = hashOf(key);
- final Segment<K, V> segment = segmentFor(hash);
- final V v = segment.get(key, hash);
- if (v == null) {
- return null;
- }
- return segmentFor(hash).applyIfPresent(key, hash, remappingFunction);
- }
- /**
- * Tests if the specified object is a key in this table.
- *
- * @param key possible key
- * @return {@code true} if and only if the specified object is a key in this table, as determined by the {@code equals} method; {@code false} otherwise.
- * @throws NullPointerException if the specified key is null
- */
- @Override
- public boolean containsKey(final Object key) {
- final int hash = hashOf(key);
- return segmentFor(hash).containsKey(key, hash);
- }
- /**
- * Returns {@code true} if this map maps one or more keys to the specified value. Note: This method requires a full internal traversal of the hash table,
- * therefore it is much slower than the method {@code containsKey}.
- *
- * @param value value whose presence in this map is to be tested
- * @return {@code true} if this map maps one or more keys to the specified value
- * @throws NullPointerException if the specified value is null
- */
- @Override
- public boolean containsValue(final Object value) {
- Objects.requireNonNull(value, "value");
- // See explanation of modCount use above
- final Segment<K, V>[] segments = this.segments;
- final int[] mc = new int[segments.length];
- // Try a few times without locking
- for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
- // final int sum = 0;
- int mcsum = 0;
- for (int i = 0; i < segments.length; ++i) {
- // final int c = segments[i].count;
- mcsum += mc[i] = segments[i].modCount;
- if (segments[i].containsValue(value)) {
- return true;
- }
- }
- boolean cleanSweep = true;
- if (mcsum != 0) {
- for (int i = 0; i < segments.length; ++i) {
- // final int c = segments[i].count;
- if (mc[i] != segments[i].modCount) {
- cleanSweep = false;
- break;
- }
- }
- }
- if (cleanSweep) {
- return false;
- }
- }
- // Resort to locking all segments
- for (final Segment<K, V> segment : segments) {
- segment.lock();
- }
- boolean found = false;
- try {
- for (final Segment<K, V> segment : segments) {
- if (segment.containsValue(value)) {
- found = true;
- break;
- }
- }
- } finally {
- for (final Segment<K, V> segment : segments) {
- segment.unlock();
- }
- }
- return found;
- }
- /**
- * Returns a {@link Set} view of the mappings contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and
- * vice-versa. The set supports element removal, which removes the corresponding mapping from the map, via the {@code Iterator.remove}, {@code Set.remove},
- * {@code removeAll}, {@code retainAll}, and {@code clear} operations. It does not support the {@code add} or {@code addAll} operations.
- * <p>
- * The view's {@code iterator} is a "weakly consistent" iterator that will never throw {@link ConcurrentModificationException}, and is guaranteed to
- * traverse elements as they existed upon construction of the iterator, and may (but is not guaranteed to) reflect any modifications subsequent to
- * construction.
- * </p>
- */
- @Override
- public Set<Entry<K, V>> entrySet() {
- final Set<Entry<K, V>> es = entrySet;
- return es != null ? es : (entrySet = new EntrySet(false));
- }
- /**
- * Gets the value to which the specified key is mapped, or {@code null} if this map contains no mapping for the key.
- * <p>
- * If this map contains a mapping from a key {@code k} to a value {@code v} such that {@code key.equals(k)}, then this method returns {@code v}; otherwise
- * it returns {@code null}. (There can be at most one such mapping.)
- * </p>
- *
- * @throws NullPointerException if the specified key is null
- */
- @Override
- public V get(final Object key) {
- final int hash = hashOf(key);
- return segmentFor(hash).get(key, hash);
- }
- private int hashOf(final Object key) {
- return hash(identityComparisons ? System.identityHashCode(key) : key.hashCode());
- }
- /**
- * Returns {@code true} if this map contains no key-value mappings.
- *
- * @return {@code true} if this map contains no key-value mappings
- */
- @Override
- public boolean isEmpty() {
- final Segment<K, V>[] segments = this.segments;
- //
- // We keep track of per-segment modCounts to avoid ABA problems in which an element in one segment was added and in another removed during traversal, in
- // which case the table was never actually empty at any point. Note the similar use of modCounts in the size() and containsValue() methods, which are
- // the only other methods also susceptible to ABA problems.
- //
- final int[] mc = new int[segments.length];
- int mcsum = 0;
- for (int i = 0; i < segments.length; ++i) {
- if (segments[i].count != 0) {
- return false;
- }
- mcsum += mc[i] = segments[i].modCount;
- }
- // If mcsum happens to be zero, then we know we got a snapshot
- // before any modifications at all were made. This is
- // probably common enough to bother tracking.
- if (mcsum != 0) {
- for (int i = 0; i < segments.length; ++i) {
- if (segments[i].count != 0 || mc[i] != segments[i].modCount) {
- return false;
- }
- }
- }
- return true;
- }
- /**
- * Returns a {@link Set} view of the keys contained in this map. The set is backed by the map, so changes to the map are reflected in the set, and
- * vice-versa. The set supports element removal, which removes the corresponding mapping from this map, via the {@code Iterator.remove}, {@code Set.remove},
- * {@code removeAll}, {@code retainAll}, and {@code clear} operations. It does not support the {@code add} or {@code addAll} operations.
- * <p>
- * The view's {@code iterator} is a "weakly consistent" iterator that will never throw {@link ConcurrentModificationException}, and guarantees to traverse
- * elements as they existed upon construction of the iterator, and may (but is not guaranteed to) reflect any modifications subsequent to construction.
- * </p>
- */
- @Override
- public Set<K> keySet() {
- final Set<K> ks = keySet;
- return ks != null ? ks : (keySet = new KeySet());
- }
- /**
- * Removes any stale entries whose keys have been finalized. Use of this method is normally not necessary since stale entries are automatically removed
- * lazily, when blocking operations are required. However, there are some cases where this operation should be performed eagerly, such as cleaning up old
- * references to a ClassLoader in a multi-classloader environment.
- * <p>
- * Note: this method will acquire locks one at a time across all segments of this table, so this method should be used sparingly.
- * </p>
- */
- public void purgeStaleEntries() {
- for (final Segment<K, V> segment : segments) {
- segment.removeStale();
- }
- }
- /**
- * Maps the specified key to the specified value in this table. Neither the key nor the value can be null.
- * <p>
- * The value can be retrieved by calling the {@code get} method with a key that is equal to the original key.
- * </p>
- *
- * @param key key with which the specified value is to be associated
- * @param value value to be associated with the specified key
- * @return the previous value associated with {@code key}, or {@code null} if there was no mapping for {@code key}
- * @throws NullPointerException if the specified key or value is null
- */
- @Override
- public V put(final K key, final V value) {
- Objects.requireNonNull(key, "key");
- Objects.requireNonNull(value, "value");
- final int hash = hashOf(key);
- return segmentFor(hash).put(key, hash, value, null, false);
- }
- /**
- * Copies all of the mappings from the specified map to this one. These mappings replace any mappings that this map had for any of the keys currently in the
- * specified map.
- *
- * @param m mappings to be stored in this map
- */
- @Override
- public void putAll(final Map<? extends K, ? extends V> m) {
- for (final Entry<? extends K, ? extends V> e : m.entrySet()) {
- put(e.getKey(), e.getValue());
- }
- }
- /**
- * {@inheritDoc}
- *
- * @return the previous value associated with the specified key, or {@code null} if there was no mapping for the key
- * @throws NullPointerException if the specified key or value is null
- */
- @Override
- public V putIfAbsent(final K key, final V value) {
- Objects.requireNonNull(value, "value");
- final int hash = hashOf(key);
- return segmentFor(hash).put(key, hash, value, null, true);
- }
- /**
- * Removes the key (and its corresponding value) from this map. This method does nothing if the key is not in the map.
- *
- * @param key the key that needs to be removed
- * @return the previous value associated with {@code key}, or {@code null} if there was no mapping for {@code key}
- * @throws NullPointerException if the specified key is null
- */
- @Override
- public V remove(final Object key) {
- final int hash = hashOf(key);
- return segmentFor(hash).remove(key, hash, null, false);
- }
- /**
- * {@inheritDoc}
- *
- * @throws NullPointerException if the specified key is null
- */
- @Override
- public boolean remove(final Object key, final Object value) {
- final int hash = hashOf(key);
- if (value == null) {
- return false;
- }
- return segmentFor(hash).remove(key, hash, value, false) != null;
- }
- /**
- * {@inheritDoc}
- *
- * @return the previous value associated with the specified key, or {@code null} if there was no mapping for the key
- * @throws NullPointerException if the specified key or value is null
- */
- @Override
- public V replace(final K key, final V value) {
- Objects.requireNonNull(value, "value");
- final int hash = hashOf(key);
- return segmentFor(hash).replace(key, hash, value);
- }
- /**
- * {@inheritDoc}
- *
- * @throws NullPointerException if any of the arguments are null
- */
- @Override
- public boolean replace(final K key, final V oldValue, final V newValue) {
- Objects.requireNonNull(oldValue, "oldValue");
- Objects.requireNonNull(newValue, "newValue");
- final int hash = hashOf(key);
- return segmentFor(hash).replace(key, hash, oldValue, newValue);
- }
- /**
- * Returns the segment that should be used for key with given hash
- *
- * @param hash the hash code for the key
- * @return the segment
- */
- private Segment<K, V> segmentFor(final int hash) {
- return segments[hash >>> segmentShift & segmentMask];
- }
- /**
- * Returns the number of key-value mappings in this map. If the map contains more than {@code Integer.MAX_VALUE} elements, returns
- * {@code Integer.MAX_VALUE}.
- *
- * @return the number of key-value mappings in this map
- */
- @Override
- public int size() {
- final Segment<K, V>[] segments = this.segments;
- long sum = 0;
- long check = 0;
- final int[] mc = new int[segments.length];
- // Try a few times to get accurate count. On failure due to
- // continuous async changes in table, resort to locking.
- for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
- check = 0;
- sum = 0;
- int mcsum = 0;
- for (int i = 0; i < segments.length; ++i) {
- sum += segments[i].count;
- mcsum += mc[i] = segments[i].modCount;
- }
- if (mcsum != 0) {
- for (int i = 0; i < segments.length; ++i) {
- check += segments[i].count;
- if (mc[i] != segments[i].modCount) {
- // force retry
- check = -1;
- break;
- }
- }
- }
- if (check == sum) {
- break;
- }
- }
- if (check != sum) {
- // Resort to locking all segments
- sum = 0;
- for (final Segment<K, V> segment : segments) {
- segment.lock();
- }
- for (final Segment<K, V> segment : segments) {
- sum += segment.count;
- }
- for (final Segment<K, V> segment : segments) {
- segment.unlock();
- }
- }
- return sum > Integer.MAX_VALUE ? Integer.MAX_VALUE : (int) sum;
- }
- /**
- * Returns a {@link Collection} view of the values contained in this map. The collection is backed by the map, so changes to the map are reflected in the
- * collection, and vice-versa. The collection supports element removal, which removes the corresponding mapping from this map, via the
- * {@code Iterator.remove}, {@code Collection.remove}, {@code removeAll}, {@code retainAll}, and {@code clear} operations. It does not support the
- * {@code add} or {@code addAll} operations.
- * <p>
- * The view's {@code iterator} is a "weakly consistent" iterator that will never throw {@link ConcurrentModificationException}, and guarantees to traverse
- * elements as they existed upon construction of the iterator, and may (but is not guaranteed to) reflect any modifications subsequent to construction.
- * </p>
- */
- @Override
- public Collection<V> values() {
- final Collection<V> vs = values;
- return vs != null ? vs : (values = new Values());
- }
- }