ArrayStack.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.collections4;
import java.util.ArrayList;
import java.util.EmptyStackException;
/**
* An implementation of the {@link java.util.Stack} API that is based on an
* {@code ArrayList} instead of a {@code Vector}, so it is not
* synchronized to protect against multithreaded access. The implementation
* is therefore operates faster in environments where you do not need to
* worry about multiple thread contention.
* <p>
* The removal order of an {@code ArrayStack} is based on insertion
* order: The most recently added element is removed first. The iteration
* order is <em>not</em> the same as the removal order. The iterator returns
* elements from the bottom up.
* </p>
* <p>
* Unlike {@code Stack}, {@code ArrayStack} accepts null entries.
* <p>
* <strong>Note:</strong> From version 4.0 onwards, this class does not implement the
* removed {@code Buffer} interface anymore.
* </p>
*
* @param <E> the type of elements in this list
* @see java.util.Stack
* @since 1.0
* @deprecated use {@link java.util.ArrayDeque} instead (available from Java 1.6)
*/
@Deprecated
public class ArrayStack<E> extends ArrayList<E> {
/** Ensure serialization compatibility */
private static final long serialVersionUID = 2130079159931574599L;
/**
* Constructs a new empty {@code ArrayStack}. The initial size
* is controlled by {@code ArrayList} and is currently 10.
*/
public ArrayStack() {
}
/**
* Constructs a new empty {@code ArrayStack} with an initial size.
*
* @param initialSize the initial size to use
* @throws IllegalArgumentException if the specified initial size
* is negative
*/
public ArrayStack(final int initialSize) {
super(initialSize);
}
/**
* Return {@code true} if this stack is currently empty.
* <p>
* This method exists for compatibility with {@link java.util.Stack}.
* New users of this class should use {@code isEmpty} instead.
* </p>
*
* @return true if the stack is currently empty
*/
public boolean empty() {
return isEmpty();
}
/**
* Returns the top item off of this stack without removing it.
*
* @return the top item on the stack
* @throws EmptyStackException if the stack is empty
*/
public E peek() throws EmptyStackException {
final int n = size();
if (n <= 0) {
throw new EmptyStackException();
}
return get(n - 1);
}
/**
* Returns the n'th item down (zero-relative) from the top of this
* stack without removing it.
*
* @param n the number of items down to go
* @return the n'th item on the stack, zero relative
* @throws EmptyStackException if there are not enough items on the
* stack to satisfy this request
*/
public E peek(final int n) throws EmptyStackException {
final int m = size() - n - 1;
if (m < 0) {
throw new EmptyStackException();
}
return get(m);
}
/**
* Pops the top item off of this stack and return it.
*
* @return the top item on the stack
* @throws EmptyStackException if the stack is empty
*/
public E pop() throws EmptyStackException {
final int n = size();
if (n <= 0) {
throw new EmptyStackException();
}
return remove(n - 1);
}
/**
* Pushes a new item onto the top of this stack. The pushed item is also
* returned. This is equivalent to calling {@code add}.
*
* @param item the item to be added
* @return the item just pushed
*/
public E push(final E item) {
add(item);
return item;
}
/**
* Returns the one-based position of the distance from the top that the
* specified object exists on this stack, where the top-most element is
* considered to be at distance {@code 1}. If the object is not
* present on the stack, return {@code -1} instead. The
* {@code equals()} method is used to compare to the items
* in this stack.
*
* @param object the object to be searched for
* @return the 1-based depth into the stack of the object, or -1 if not found
*/
public int search(final Object object) {
int i = size() - 1; // Current index
int n = 1; // Current distance
while (i >= 0) {
final Object current = get(i);
if (object == null && current == null ||
object != null && object.equals(current)) {
return n;
}
i--;
n++;
}
return -1;
}
}