001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.collections4;
018
019import java.util.AbstractList;
020import java.util.ArrayList;
021import java.util.Collection;
022import java.util.Collections;
023import java.util.HashSet;
024import java.util.Iterator;
025import java.util.List;
026
027import org.apache.commons.collections4.bag.HashBag;
028import org.apache.commons.collections4.functors.DefaultEquator;
029import org.apache.commons.collections4.list.FixedSizeList;
030import org.apache.commons.collections4.list.LazyList;
031import org.apache.commons.collections4.list.PredicatedList;
032import org.apache.commons.collections4.list.TransformedList;
033import org.apache.commons.collections4.list.UnmodifiableList;
034import org.apache.commons.collections4.sequence.CommandVisitor;
035import org.apache.commons.collections4.sequence.EditScript;
036import org.apache.commons.collections4.sequence.SequencesComparator;
037
038/**
039 * Provides utility methods and decorators for {@link List} instances.
040 *
041 * @since 1.0
042 */
043public class ListUtils {
044
045    /**
046     * <code>ListUtils</code> should not normally be instantiated.
047     */
048    private ListUtils() {}
049
050    //-----------------------------------------------------------------------
051
052    /**
053     * Returns an immutable empty list if the argument is <code>null</code>,
054     * or the argument itself otherwise.
055     *
056     * @param <T> the element type
057     * @param list the list, possibly <code>null</code>
058     * @return an empty list if the argument is <code>null</code>
059     */
060    public static <T> List<T> emptyIfNull(final List<T> list) {
061        return list == null ? Collections.<T>emptyList() : list;
062    }
063
064    /**
065     * Returns either the passed in list, or if the list is {@code null},
066     * the value of {@code defaultList}.
067     *
068     * @param <T> the element type
069     * @param list  the list, possibly {@code null}
070     * @param defaultList  the returned values if list is {@code null}
071     * @return an empty list if the argument is <code>null</code>
072     * @since 4.0
073     */
074    public static <T> List<T> defaultIfNull(final List<T> list, final List<T> defaultList) {
075        return list == null ? defaultList : list;
076    }
077
078    /**
079     * Returns a new list containing all elements that are contained in
080     * both given lists.
081     *
082     * @param <E> the element type
083     * @param list1  the first list
084     * @param list2  the second list
085     * @return  the intersection of those two lists
086     * @throws NullPointerException if either list is null
087     */
088    public static <E> List<E> intersection(final List<? extends E> list1, final List<? extends E> list2) {
089        final List<E> result = new ArrayList<>();
090
091        List<? extends E> smaller = list1;
092        List<? extends E> larger = list2;
093        if (list1.size() > list2.size()) {
094            smaller = list2;
095            larger = list1;
096        }
097
098        final HashSet<E> hashSet = new HashSet<>(smaller);
099
100        for (final E e : larger) {
101            if (hashSet.contains(e)) {
102                result.add(e);
103                hashSet.remove(e);
104            }
105        }
106        return result;
107    }
108
109    /**
110     * Subtracts all elements in the second list from the first list,
111     * placing the results in a new list.
112     * <p>
113     * This differs from {@link List#removeAll(Collection)} in that
114     * cardinality is respected; if <Code>list1</Code> contains two
115     * occurrences of <Code>null</Code> and <Code>list2</Code> only
116     * contains one occurrence, then the returned list will still contain
117     * one occurrence.
118     *
119     * @param <E> the element type
120     * @param list1  the list to subtract from
121     * @param list2  the list to subtract
122     * @return a new list containing the results
123     * @throws NullPointerException if either list is null
124     */
125    public static <E> List<E> subtract(final List<E> list1, final List<? extends E> list2) {
126        final ArrayList<E> result = new ArrayList<>();
127        final HashBag<E> bag = new HashBag<>(list2);
128        for (final E e : list1) {
129            if (!bag.remove(e, 1)) {
130                result.add(e);
131            }
132        }
133        return result;
134    }
135
136    /**
137     * Returns the sum of the given lists.  This is their intersection
138     * subtracted from their union.
139     *
140     * @param <E> the element type
141     * @param list1  the first list
142     * @param list2  the second list
143     * @return  a new list containing the sum of those lists
144     * @throws NullPointerException if either list is null
145     */
146    public static <E> List<E> sum(final List<? extends E> list1, final List<? extends E> list2) {
147        return subtract(union(list1, list2), intersection(list1, list2));
148    }
149
150    /**
151     * Returns a new list containing the second list appended to the
152     * first list.  The {@link List#addAll(Collection)} operation is
153     * used to append the two given lists into a new list.
154     *
155     * @param <E> the element type
156     * @param list1  the first list
157     * @param list2  the second list
158     * @return a new list containing the union of those lists
159     * @throws NullPointerException if either list is null
160     */
161    public static <E> List<E> union(final List<? extends E> list1, final List<? extends E> list2) {
162        final ArrayList<E> result = new ArrayList<>(list1.size() + list2.size());
163        result.addAll(list1);
164        result.addAll(list2);
165        return result;
166    }
167
168    /**
169     * Selects all elements from input collection which match the given
170     * predicate into an output list.
171     * <p>
172     * A <code>null</code> predicate matches no elements.
173     *
174     * @param <E> the element type
175     * @param inputCollection  the collection to get the input from, may not be null
176     * @param predicate  the predicate to use, may be null
177     * @return the elements matching the predicate (new list)
178     * @throws NullPointerException if the input list is null
179     *
180     * @since 4.0
181     * @see CollectionUtils#select(Iterable, Predicate)
182     */
183    public static <E> List<E> select(final Collection<? extends E> inputCollection,
184            final Predicate<? super E> predicate) {
185        return CollectionUtils.select(inputCollection, predicate, new ArrayList<E>(inputCollection.size()));
186    }
187
188    /**
189     * Selects all elements from inputCollection which don't match the given
190     * predicate into an output collection.
191     * <p>
192     * If the input predicate is <code>null</code>, the result is an empty list.
193     *
194     * @param <E> the element type
195     * @param inputCollection the collection to get the input from, may not be null
196     * @param predicate the predicate to use, may be null
197     * @return the elements <b>not</b> matching the predicate (new list)
198     * @throws NullPointerException if the input collection is null
199     *
200     * @since 4.0
201     * @see CollectionUtils#selectRejected(Iterable, Predicate)
202     */
203    public static <E> List<E> selectRejected(final Collection<? extends E> inputCollection,
204            final Predicate<? super E> predicate) {
205        return CollectionUtils.selectRejected(inputCollection, predicate, new ArrayList<E>(inputCollection.size()));
206    }
207
208    /**
209     * Tests two lists for value-equality as per the equality contract in
210     * {@link java.util.List#equals(java.lang.Object)}.
211     * <p>
212     * This method is useful for implementing <code>List</code> when you cannot
213     * extend AbstractList. The method takes Collection instances to enable other
214     * collection types to use the List implementation algorithm.
215     * <p>
216     * The relevant text (slightly paraphrased as this is a static method) is:
217     * <blockquote>
218     * Compares the two list objects for equality.  Returns
219     * {@code true} if and only if both
220     * lists have the same size, and all corresponding pairs of elements in
221     * the two lists are <i>equal</i>.  (Two elements {@code e1} and
222     * {@code e2} are <i>equal</i> if <code>(e1==null ? e2==null :
223     * e1.equals(e2))</code>.)  In other words, two lists are defined to be
224     * equal if they contain the same elements in the same order.  This
225     * definition ensures that the equals method works properly across
226     * different implementations of the {@code List} interface.
227     * </blockquote>
228     *
229     * <b>Note:</b> The behaviour of this method is undefined if the lists are
230     * modified during the equals comparison.
231     *
232     * @see java.util.List
233     * @param list1  the first list, may be null
234     * @param list2  the second list, may be null
235     * @return whether the lists are equal by value comparison
236     */
237    public static boolean isEqualList(final Collection<?> list1, final Collection<?> list2) {
238        if (list1 == list2) {
239            return true;
240        }
241        if (list1 == null || list2 == null || list1.size() != list2.size()) {
242            return false;
243        }
244
245        final Iterator<?> it1 = list1.iterator();
246        final Iterator<?> it2 = list2.iterator();
247        Object obj1 = null;
248        Object obj2 = null;
249
250        while (it1.hasNext() && it2.hasNext()) {
251            obj1 = it1.next();
252            obj2 = it2.next();
253
254            if (!(obj1 == null ? obj2 == null : obj1.equals(obj2))) {
255                return false;
256            }
257        }
258
259        return !(it1.hasNext() || it2.hasNext());
260    }
261
262    /**
263     * Generates a hash code using the algorithm specified in
264     * {@link java.util.List#hashCode()}.
265     * <p>
266     * This method is useful for implementing <code>List</code> when you cannot
267     * extend AbstractList. The method takes Collection instances to enable other
268     * collection types to use the List implementation algorithm.
269     *
270     * @see java.util.List#hashCode()
271     * @param list  the list to generate the hashCode for, may be null
272     * @return the hash code
273     */
274    public static int hashCodeForList(final Collection<?> list) {
275        if (list == null) {
276            return 0;
277        }
278        int hashCode = 1;
279        final Iterator<?> it = list.iterator();
280
281        while (it.hasNext()) {
282            final Object obj = it.next();
283            hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode());
284        }
285        return hashCode;
286    }
287
288    //-----------------------------------------------------------------------
289    /**
290     * Returns a List containing all the elements in <code>collection</code>
291     * that are also in <code>retain</code>. The cardinality of an element <code>e</code>
292     * in the returned list is the same as the cardinality of <code>e</code>
293     * in <code>collection</code> unless <code>retain</code> does not contain <code>e</code>, in which
294     * case the cardinality is zero. This method is useful if you do not wish to modify
295     * the collection <code>c</code> and thus cannot call <code>collection.retainAll(retain);</code>.
296     * <p>
297     * This implementation iterates over <code>collection</code>, checking each element in
298     * turn to see if it's contained in <code>retain</code>. If it's contained, it's added
299     * to the returned list. As a consequence, it is advised to use a collection type for
300     * <code>retain</code> that provides a fast (e.g. O(1)) implementation of
301     * {@link Collection#contains(Object)}.
302     *
303     * @param <E>  the element type
304     * @param collection  the collection whose contents are the target of the #retailAll operation
305     * @param retain  the collection containing the elements to be retained in the returned collection
306     * @return a <code>List</code> containing all the elements of <code>c</code>
307     * that occur at least once in <code>retain</code>.
308     * @throws NullPointerException if either parameter is null
309     * @since 3.2
310     */
311    public static <E> List<E> retainAll(final Collection<E> collection, final Collection<?> retain) {
312        final List<E> list = new ArrayList<>(Math.min(collection.size(), retain.size()));
313
314        for (final E obj : collection) {
315            if (retain.contains(obj)) {
316                list.add(obj);
317            }
318        }
319        return list;
320    }
321
322    /**
323     * Removes the elements in <code>remove</code> from <code>collection</code>. That is, this
324     * method returns a list containing all the elements in <code>collection</code>
325     * that are not in <code>remove</code>. The cardinality of an element <code>e</code>
326     * in the returned collection is the same as the cardinality of <code>e</code>
327     * in <code>collection</code> unless <code>remove</code> contains <code>e</code>, in which
328     * case the cardinality is zero. This method is useful if you do not wish to modify
329     * <code>collection</code> and thus cannot call <code>collection.removeAll(remove);</code>.
330     * <p>
331     * This implementation iterates over <code>collection</code>, checking each element in
332     * turn to see if it's contained in <code>remove</code>. If it's not contained, it's added
333     * to the returned list. As a consequence, it is advised to use a collection type for
334     * <code>remove</code> that provides a fast (e.g. O(1)) implementation of
335     * {@link Collection#contains(Object)}.
336     *
337     * @param <E>  the element type
338     * @param collection  the collection from which items are removed (in the returned collection)
339     * @param remove  the items to be removed from the returned <code>collection</code>
340     * @return a <code>List</code> containing all the elements of <code>c</code> except
341     * any elements that also occur in <code>remove</code>.
342     * @throws NullPointerException if either parameter is null
343     * @since 3.2
344     */
345    public static <E> List<E> removeAll(final Collection<E> collection, final Collection<?> remove) {
346        final List<E> list = new ArrayList<>();
347        for (final E obj : collection) {
348            if (!remove.contains(obj)) {
349                list.add(obj);
350            }
351        }
352        return list;
353    }
354
355    //-----------------------------------------------------------------------
356    /**
357     * Returns a synchronized list backed by the given list.
358     * <p>
359     * You must manually synchronize on the returned list's iterator to
360     * avoid non-deterministic behavior:
361     *
362     * <pre>
363     * List list = ListUtils.synchronizedList(myList);
364     * synchronized (list) {
365     *     Iterator i = list.iterator();
366     *     while (i.hasNext()) {
367     *         process (i.next());
368     *     }
369     * }
370     * </pre>
371     *
372     * This method is just a wrapper for {@link Collections#synchronizedList(List)}.
373     *
374     * @param <E> the element type
375     * @param list  the list to synchronize, must not be null
376     * @return a synchronized list backed by the given list
377     * @throws NullPointerException if the list is null
378     */
379    public static <E> List<E> synchronizedList(final List<E> list) {
380        return Collections.synchronizedList(list);
381    }
382
383    /**
384     * Returns an unmodifiable list backed by the given list.
385     * <p>
386     * This method uses the implementation in the decorators subpackage.
387     *
388     * @param <E>  the element type
389     * @param list  the list to make unmodifiable, must not be null
390     * @return an unmodifiable list backed by the given list
391     * @throws NullPointerException if the list is null
392     */
393    public static <E> List<E> unmodifiableList(final List<? extends E> list) {
394        return UnmodifiableList.unmodifiableList(list);
395    }
396
397    /**
398     * Returns a predicated (validating) list backed by the given list.
399     * <p>
400     * Only objects that pass the test in the given predicate can be added to the list.
401     * Trying to add an invalid object results in an IllegalArgumentException.
402     * It is important not to use the original list after invoking this method,
403     * as it is a backdoor for adding invalid objects.
404     *
405     * @param <E> the element type
406     * @param list  the list to predicate, must not be null
407     * @param predicate  the predicate for the list, must not be null
408     * @return a predicated list backed by the given list
409     * @throws NullPointerException if the List or Predicate is null
410     */
411    public static <E> List<E> predicatedList(final List<E> list, final Predicate<E> predicate) {
412        return PredicatedList.predicatedList(list, predicate);
413    }
414
415    /**
416     * Returns a transformed list backed by the given list.
417     * <p>
418     * This method returns a new list (decorating the specified list) that
419     * will transform any new entries added to it.
420     * Existing entries in the specified list will not be transformed.
421     * <p>
422     * Each object is passed through the transformer as it is added to the
423     * List. It is important not to use the original list after invoking this
424     * method, as it is a backdoor for adding untransformed objects.
425     * <p>
426     * Existing entries in the specified list will not be transformed.
427     * If you want that behaviour, see {@link TransformedList#transformedList}.
428     *
429     * @param <E> the element type
430     * @param list  the list to predicate, must not be null
431     * @param transformer  the transformer for the list, must not be null
432     * @return a transformed list backed by the given list
433     * @throws NullPointerException if the List or Transformer is null
434     */
435    public static <E> List<E> transformedList(final List<E> list,
436                                              final Transformer<? super E, ? extends E> transformer) {
437        return TransformedList.transformingList(list, transformer);
438    }
439
440    /**
441     * Returns a "lazy" list whose elements will be created on demand.
442     * <p>
443     * When the index passed to the returned list's {@link List#get(int) get}
444     * method is greater than the list's size, then the factory will be used
445     * to create a new object and that object will be inserted at that index.
446     * <p>
447     * For instance:
448     *
449     * <pre>
450     * Factory&lt;Date&gt; factory = new Factory&lt;Date&gt;() {
451     *     public Date create() {
452     *         return new Date();
453     *     }
454     * }
455     * List&lt;Date&gt; lazy = ListUtils.lazyList(new ArrayList&lt;Date&gt;(), factory);
456     * Date date = lazy.get(3);
457     * </pre>
458     *
459     * After the above code is executed, <code>date</code> will refer to
460     * a new <code>Date</code> instance. Furthermore, that <code>Date</code>
461     * instance is the fourth element in the list.  The first, second,
462     * and third element are all set to <code>null</code>.
463     *
464     * @param <E> the element type
465     * @param list  the list to make lazy, must not be null
466     * @param factory  the factory for creating new objects, must not be null
467     * @return a lazy list backed by the given list
468     * @throws NullPointerException if the List or Factory is null
469     */
470    public static <E> List<E> lazyList(final List<E> list, final Factory<? extends E> factory) {
471        return LazyList.lazyList(list, factory);
472    }
473
474    /**
475     * Returns a "lazy" list whose elements will be created on demand.
476     * <p>
477     * When the index passed to the returned list's {@link List#get(int) get}
478     * method is greater than the list's size, then the transformer will be used
479     * to create a new object and that object will be inserted at that index.
480     * <p>
481     * For instance:
482     *
483     * <pre>
484     * List&lt;Integer&gt; hours = Arrays.asList(7, 5, 8, 2);
485     * Transformer&lt;Integer,Date&gt; transformer = input -&gt; LocalDateTime.now().withHour(hours.get(input));
486     * List&lt;LocalDateTime&gt; lazy = ListUtils.lazyList(new ArrayList&lt;LocalDateTime&gt;(), transformer);
487     * Date date = lazy.get(3);
488     * </pre>
489     *
490     * After the above code is executed, <code>date</code> will refer to
491     * a new <code>Date</code> instance. Furthermore, that <code>Date</code>
492     * instance is the fourth element in the list.  The first, second,
493     * and third element are all set to <code>null</code>.
494     *
495     * @param <E> the element type
496     * @param list  the list to make lazy, must not be null
497     * @param transformer  the transformer for creating new objects, must not be null
498     * @return a lazy list backed by the given list
499     * @throws NullPointerException if the List or Transformer is null
500     */
501    public static <E> List<E> lazyList(final List<E> list, final Transformer<Integer, ? extends E> transformer) {
502        return LazyList.lazyList(list, transformer);
503    }
504
505    /**
506     * Returns a fixed-sized list backed by the given list.
507     * Elements may not be added or removed from the returned list, but
508     * existing elements can be changed (for instance, via the
509     * {@link List#set(int, Object)} method).
510     *
511     * @param <E>  the element type
512     * @param list  the list whose size to fix, must not be null
513     * @return a fixed-size list backed by that list
514     * @throws NullPointerException  if the List is null
515     */
516    public static <E> List<E> fixedSizeList(final List<E> list) {
517        return FixedSizeList.fixedSizeList(list);
518    }
519
520    //-----------------------------------------------------------------------
521    /**
522     * Finds the first index in the given List which matches the given predicate.
523     * <p>
524     * If the input List or predicate is null, or no element of the List
525     * matches the predicate, -1 is returned.
526     *
527     * @param <E>  the element type
528     * @param list the List to search, may be null
529     * @param predicate  the predicate to use, may be null
530     * @return the first index of an Object in the List which matches the predicate or -1 if none could be found
531     */
532    public static <E> int indexOf(final List<E> list, final Predicate<E> predicate) {
533        if (list != null && predicate != null) {
534            for (int i = 0; i < list.size(); i++) {
535                final E item = list.get(i);
536                if (predicate.evaluate(item)) {
537                    return i;
538                }
539            }
540        }
541        return -1;
542    }
543
544    //-----------------------------------------------------------------------
545    /**
546     * Returns the longest common subsequence (LCS) of two sequences (lists).
547     *
548     * @param <E>  the element type
549     * @param a  the first list
550     * @param b  the second list
551     * @return the longest common subsequence
552     * @throws NullPointerException if either list is {@code null}
553     * @since 4.0
554     */
555    public static <E> List<E> longestCommonSubsequence(final List<E> a, final List<E> b) {
556      return longestCommonSubsequence( a, b, DefaultEquator.defaultEquator() );
557    }
558
559    /**
560     * Returns the longest common subsequence (LCS) of two sequences (lists).
561     *
562     * @param <E>  the element type
563     * @param a  the first list
564     * @param b  the second list
565     * @param equator  the equator used to test object equality
566     * @return the longest common subsequence
567     * @throws NullPointerException if either list or the equator is {@code null}
568     * @since 4.0
569     */
570    public static <E> List<E> longestCommonSubsequence(final List<E> a, final List<E> b,
571                                                       final Equator<? super E> equator) {
572        if (a == null || b == null) {
573            throw new NullPointerException("List must not be null");
574        }
575        if (equator == null) {
576          throw new NullPointerException("Equator must not be null");
577        }
578
579        final SequencesComparator<E> comparator = new SequencesComparator<>(a, b, equator);
580        final EditScript<E> script = comparator.getScript();
581        final LcsVisitor<E> visitor = new LcsVisitor<>();
582        script.visit(visitor);
583        return visitor.getSubSequence();
584    }
585
586    /**
587     * Returns the longest common subsequence (LCS) of two {@link CharSequence} objects.
588     * <p>
589     * This is a convenience method for using {@link #longestCommonSubsequence(List, List)}
590     * with {@link CharSequence} instances.
591     *
592     * @param a  the first sequence
593     * @param b  the second sequence
594     * @return the longest common subsequence as {@link String}
595     * @throws NullPointerException if either sequence is {@code null}
596     * @since 4.0
597     */
598    public static String longestCommonSubsequence(final CharSequence a, final CharSequence b) {
599        if (a == null || b == null) {
600            throw new NullPointerException("CharSequence must not be null");
601        }
602        final List<Character> lcs = longestCommonSubsequence(new CharSequenceAsList( a ), new CharSequenceAsList( b ));
603        final StringBuilder sb = new StringBuilder();
604        for ( final Character ch : lcs ) {
605          sb.append(ch);
606        }
607        return sb.toString();
608    }
609
610    /**
611     * A helper class used to construct the longest common subsequence.
612     */
613    private static final class LcsVisitor<E> implements CommandVisitor<E> {
614        private final ArrayList<E> sequence;
615
616        public LcsVisitor() {
617            sequence = new ArrayList<>();
618        }
619
620        @Override
621        public void visitInsertCommand(final E object) {}
622
623        @Override
624        public void visitDeleteCommand(final E object) {}
625
626        @Override
627        public void visitKeepCommand(final E object) {
628            sequence.add(object);
629        }
630
631        public List<E> getSubSequence() {
632            return sequence;
633        }
634    }
635
636    /**
637     * A simple wrapper to use a CharSequence as List.
638     */
639    private static final class CharSequenceAsList extends AbstractList<Character> {
640
641      private final CharSequence sequence;
642
643      public CharSequenceAsList(final CharSequence sequence) {
644        this.sequence = sequence;
645      }
646
647      @Override
648      public Character get( final int index ) {
649        return Character.valueOf(sequence.charAt( index ));
650      }
651
652      @Override
653      public int size() {
654        return sequence.length();
655      }
656
657    }
658
659    //-----------------------------------------------------------------------
660    /**
661     * Returns consecutive {@link List#subList(int, int) sublists} of a
662     * list, each of the same size (the final list may be smaller). For example,
663     * partitioning a list containing {@code [a, b, c, d, e]} with a partition
664     * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing
665     * two inner lists of three and two elements, all in the original order.
666     * <p>
667     * The outer list is unmodifiable, but reflects the latest state of the
668     * source list. The inner lists are sublist views of the original list,
669     * produced on demand using {@link List#subList(int, int)}, and are subject
670     * to all the usual caveats about modification as explained in that API.
671     * <p>
672     * Adapted from http://code.google.com/p/guava-libraries/
673     *
674     * @param <T> the element type
675     * @param list  the list to return consecutive sublists of
676     * @param size  the desired size of each sublist (the last may be smaller)
677     * @return a list of consecutive sublists
678     * @throws NullPointerException if list is null
679     * @throws IllegalArgumentException if size is not strictly positive
680     * @since 4.0
681     */
682    public static <T> List<List<T>> partition(final List<T> list, final int size) {
683        if (list == null) {
684            throw new NullPointerException("List must not be null");
685        }
686        if (size <= 0) {
687            throw new IllegalArgumentException("Size must be greater than 0");
688        }
689        return new Partition<>(list, size);
690    }
691
692    /**
693     * Provides a partition view on a {@link List}.
694     * @since 4.0
695     */
696    private static class Partition<T> extends AbstractList<List<T>> {
697        private final List<T> list;
698        private final int size;
699
700        private Partition(final List<T> list, final int size) {
701            this.list = list;
702            this.size = size;
703        }
704
705        @Override
706        public List<T> get(final int index) {
707            final int listSize = size();
708            if (index < 0) {
709                throw new IndexOutOfBoundsException("Index " + index + " must not be negative");
710            }
711            if (index >= listSize) {
712                throw new IndexOutOfBoundsException("Index " + index + " must be less than size " +
713                                                    listSize);
714            }
715            final int start = index * size;
716            final int end = Math.min(start + size, list.size());
717            return list.subList(start, end);
718        }
719
720        @Override
721        public int size() {
722            return (int) Math.ceil((double) list.size() / (double) size);
723        }
724
725        @Override
726        public boolean isEmpty() {
727            return list.isEmpty();
728        }
729    }
730}