001/*
002 * Licensed to the Apache Software Foundation (ASF) under one
003 * or more contributor license agreements.  See the NOTICE file
004 * distributed with this work for additional information
005 * regarding copyright ownership.  The ASF licenses this file
006 * to you under the Apache License, Version 2.0 (the
007 * "License"); you may not use this file except in compliance
008 * with the License.  You may obtain a copy of the License at
009 *
010 *   https://www.apache.org/licenses/LICENSE-2.0
011 *
012 * Unless required by applicable law or agreed to in writing,
013 * software distributed under the License is distributed on an
014 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
015 * KIND, either express or implied.  See the License for the
016 * specific language governing permissions and limitations
017 * under the License.
018 */
019package org.apache.commons.compress.compressors.bzip2;
020
021import java.io.IOException;
022import java.io.OutputStream;
023import java.util.Arrays;
024
025import org.apache.commons.compress.compressors.CompressorOutputStream;
026
027/**
028 * An output stream that compresses into the BZip2 format into another stream.
029 *
030 * <p>
031 * The compression requires large amounts of memory. Thus you should call the {@link #close() close()} method as soon as possible, to force
032 * {@code BZip2CompressorOutputStream} to release the allocated memory.
033 * </p>
034 *
035 * <p>
036 * You can shrink the amount of allocated memory and maybe raise the compression speed by choosing a lower blocksize, which in turn may cause a lower
037 * compression ratio. You can avoid unnecessary memory allocation by avoiding using a blocksize which is bigger than the size of the input.
038 * </p>
039 *
040 * <p>
041 * You can compute the memory usage for compressing by the following formula:
042 * </p>
043 *
044 * <pre>
045 * &lt;code&gt;400k + (9 * blocksize)&lt;/code&gt;.
046 * </pre>
047 *
048 * <p>
049 * To get the memory required for decompression by {@link BZip2CompressorInputStream} use
050 * </p>
051 *
052 * <pre>
053 * &lt;code&gt;65k + (5 * blocksize)&lt;/code&gt;.
054 * </pre>
055 *
056 * <table style="width:100%" border="1">
057 * <caption>Memory usage by blocksize</caption>
058 * <tr>
059 * <th colspan="3">Memory usage by blocksize</th>
060 * </tr>
061 * <tr>
062 * <th style="text-align: right">Blocksize</th>
063 * <th style="text-align: right">Compression<br>
064 * memory usage</th>
065 * <th style="text-align: right">Decompression<br>
066 * memory usage</th>
067 * </tr>
068 * <tr>
069 * <td style="text-align: right">100k</td>
070 * <td style="text-align: right">1300k</td>
071 * <td style="text-align: right">565k</td>
072 * </tr>
073 * <tr>
074 * <td style="text-align: right">200k</td>
075 * <td style="text-align: right">2200k</td>
076 * <td style="text-align: right">1065k</td>
077 * </tr>
078 * <tr>
079 * <td style="text-align: right">300k</td>
080 * <td style="text-align: right">3100k</td>
081 * <td style="text-align: right">1565k</td>
082 * </tr>
083 * <tr>
084 * <td style="text-align: right">400k</td>
085 * <td style="text-align: right">4000k</td>
086 * <td style="text-align: right">2065k</td>
087 * </tr>
088 * <tr>
089 * <td style="text-align: right">500k</td>
090 * <td style="text-align: right">4900k</td>
091 * <td style="text-align: right">2565k</td>
092 * </tr>
093 * <tr>
094 * <td style="text-align: right">600k</td>
095 * <td style="text-align: right">5800k</td>
096 * <td style="text-align: right">3065k</td>
097 * </tr>
098 * <tr>
099 * <td style="text-align: right">700k</td>
100 * <td style="text-align: right">6700k</td>
101 * <td style="text-align: right">3565k</td>
102 * </tr>
103 * <tr>
104 * <td style="text-align: right">800k</td>
105 * <td style="text-align: right">7600k</td>
106 * <td style="text-align: right">4065k</td>
107 * </tr>
108 * <tr>
109 * <td style="text-align: right">900k</td>
110 * <td style="text-align: right">8500k</td>
111 * <td style="text-align: right">4565k</td>
112 * </tr>
113 * </table>
114 *
115 * <p>
116 * For decompression {@code BZip2CompressorInputStream} allocates less memory if the bzipped input is smaller than one block.
117 * </p>
118 *
119 * <p>
120 * Instances of this class are not threadsafe.
121 * </p>
122 *
123 * <p>
124 * TODO: Update to BZip2 1.0.1
125 * </p>
126 *
127 * @NotThreadSafe
128 */
129public class BZip2CompressorOutputStream extends CompressorOutputStream<OutputStream> implements BZip2Constants {
130
131    static final class Data {
132
133        // with blockSize 900k
134        /* maps unsigned byte => "does it occur in block" */
135        final boolean[] inUse = new boolean[256]; // 256 byte
136        final byte[] unseqToSeq = new byte[256]; // 256 byte
137        final int[] mtfFreq = new int[MAX_ALPHA_SIZE]; // 1032 byte
138        final byte[] selector = new byte[MAX_SELECTORS]; // 18002 byte
139        final byte[] selectorMtf = new byte[MAX_SELECTORS]; // 18002 byte
140
141        final byte[] generateMTFValues_yy = new byte[256]; // 256 byte
142        final byte[][] sendMTFValues_len = new byte[N_GROUPS][MAX_ALPHA_SIZE]; // 1548
143        // byte
144        final int[][] sendMTFValues_rfreq = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192
145        // byte
146        final int[] sendMTFValues_fave = new int[N_GROUPS]; // 24 byte
147        final short[] sendMTFValues_cost = new short[N_GROUPS]; // 12 byte
148        final int[][] sendMTFValues_code = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192
149        // byte
150        final byte[] sendMTFValues2_pos = new byte[N_GROUPS]; // 6 byte
151        final boolean[] sentMTFValues4_inUse16 = new boolean[16]; // 16 byte
152
153        final int[] heap = new int[MAX_ALPHA_SIZE + 2]; // 1040 byte
154        final int[] weight = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte
155        final int[] parent = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte
156
157        // ------------
158        // 333408 byte
159
160        /*
161         * holds the RLEd block of original data starting at index 1. After sorting the last byte added to the buffer is at index 0.
162         */
163        final byte[] block; // 900021 byte
164        /*
165         * maps index in Burrows-Wheeler transformed block => index of byte in original block
166         */
167        final int[] fmap; // 3600000 byte
168        final char[] sfmap; // 3600000 byte
169        // ------------
170        // 8433529 byte
171        // ============
172
173        /**
174         * Index of original line in Burrows-Wheeler table.
175         *
176         * <p>
177         * This is the index in fmap that points to the last byte of the original data.
178         * </p>
179         */
180        int origPtr;
181
182        Data(final int blockSize100k) {
183            final int n = blockSize100k * BASEBLOCKSIZE;
184            this.block = new byte[n + 1 + NUM_OVERSHOOT_BYTES];
185            this.fmap = new int[n];
186            this.sfmap = new char[2 * n];
187        }
188
189    }
190
191    /**
192     * The minimum supported blocksize {@code  == 1}.
193     */
194    public static final int MIN_BLOCKSIZE = 1;
195
196    /**
197     * The maximum supported blocksize {@code  == 9}.
198     */
199    public static final int MAX_BLOCKSIZE = 9;
200    private static final int GREATER_ICOST = 15;
201
202    private static final int LESSER_ICOST = 0;
203
204    /**
205     * Chooses a blocksize based on the given length of the data to compress.
206     *
207     * @return The blocksize, between {@link #MIN_BLOCKSIZE} and {@link #MAX_BLOCKSIZE} both inclusive. For a negative {@code inputLength} this method returns
208     *         {@code MAX_BLOCKSIZE} always.
209     *
210     * @param inputLength The length of the data which will be compressed by {@code BZip2CompressorOutputStream}.
211     */
212    public static int chooseBlockSize(final long inputLength) {
213        return inputLength > 0 ? (int) Math.min(inputLength / 132000 + 1, 9) : MAX_BLOCKSIZE;
214    }
215
216    private static void hbAssignCodes(final int[] code, final byte[] length, final int minLen, final int maxLen, final int alphaSize) {
217        int vec = 0;
218        for (int n = minLen; n <= maxLen; n++) {
219            for (int i = 0; i < alphaSize; i++) {
220                if ((length[i] & 0xff) == n) {
221                    code[i] = vec;
222                    vec++;
223                }
224            }
225            vec <<= 1;
226        }
227    }
228
229    private static void hbMakeCodeLengths(final byte[] len, final int[] freq, final Data dat, final int alphaSize, final int maxLen) {
230        /*
231         * Nodes and heap entries run from 1. Entry 0 for both the heap and nodes is a sentinel.
232         */
233        final int[] heap = dat.heap;
234        final int[] weight = dat.weight;
235        final int[] parent = dat.parent;
236
237        for (int i = alphaSize; --i >= 0;) {
238            weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
239        }
240
241        for (boolean tooLong = true; tooLong;) {
242            tooLong = false;
243
244            int nNodes = alphaSize;
245            int nHeap = 0;
246            heap[0] = 0;
247            weight[0] = 0;
248            parent[0] = -2;
249
250            for (int i = 1; i <= alphaSize; i++) {
251                parent[i] = -1;
252                nHeap++;
253                heap[nHeap] = i;
254
255                int zz = nHeap;
256                final int tmp = heap[zz];
257                while (weight[tmp] < weight[heap[zz >> 1]]) {
258                    heap[zz] = heap[zz >> 1];
259                    zz >>= 1;
260                }
261                heap[zz] = tmp;
262            }
263
264            while (nHeap > 1) {
265                final int n1 = heap[1];
266                heap[1] = heap[nHeap];
267                nHeap--;
268
269                int yy = 0;
270                int zz = 1;
271                int tmp = heap[1];
272
273                while (true) {
274                    yy = zz << 1;
275
276                    if (yy > nHeap) {
277                        break;
278                    }
279
280                    if (yy < nHeap && weight[heap[yy + 1]] < weight[heap[yy]]) {
281                        yy++;
282                    }
283
284                    if (weight[tmp] < weight[heap[yy]]) {
285                        break;
286                    }
287
288                    heap[zz] = heap[yy];
289                    zz = yy;
290                }
291
292                heap[zz] = tmp;
293
294                final int n2 = heap[1];
295                heap[1] = heap[nHeap];
296                nHeap--;
297
298                yy = 0;
299                zz = 1;
300                tmp = heap[1];
301
302                while (true) {
303                    yy = zz << 1;
304
305                    if (yy > nHeap) {
306                        break;
307                    }
308
309                    if (yy < nHeap && weight[heap[yy + 1]] < weight[heap[yy]]) {
310                        yy++;
311                    }
312
313                    if (weight[tmp] < weight[heap[yy]]) {
314                        break;
315                    }
316
317                    heap[zz] = heap[yy];
318                    zz = yy;
319                }
320
321                heap[zz] = tmp;
322                nNodes++;
323                parent[n1] = parent[n2] = nNodes;
324
325                final int weight_n1 = weight[n1];
326                final int weight_n2 = weight[n2];
327                weight[nNodes] = (weight_n1 & 0xffffff00) + (weight_n2 & 0xffffff00) | 1 + Math.max(weight_n1 & 0x000000ff, weight_n2 & 0x000000ff);
328
329                parent[nNodes] = -1;
330                nHeap++;
331                heap[nHeap] = nNodes;
332
333                tmp = 0;
334                zz = nHeap;
335                tmp = heap[zz];
336                final int weight_tmp = weight[tmp];
337                while (weight_tmp < weight[heap[zz >> 1]]) {
338                    heap[zz] = heap[zz >> 1];
339                    zz >>= 1;
340                }
341                heap[zz] = tmp;
342
343            }
344
345            for (int i = 1; i <= alphaSize; i++) {
346                int j = 0;
347                int k = i;
348
349                for (int parent_k; (parent_k = parent[k]) >= 0;) {
350                    k = parent_k;
351                    j++;
352                }
353
354                len[i - 1] = (byte) j;
355                if (j > maxLen) {
356                    tooLong = true;
357                }
358            }
359
360            if (tooLong) {
361                for (int i = 1; i < alphaSize; i++) {
362                    int j = weight[i] >> 8;
363                    j = 1 + (j >> 1);
364                    weight[i] = j << 8;
365                }
366            }
367        }
368    }
369
370    /**
371     * Index of the last char in the block, so the block size == last + 1.
372     */
373    private int last;
374    /**
375     * Always: in the range 0 .. 9. The current block size is 100000 * this number.
376     */
377    private final int blockSize100k;
378
379    private int bsBuff;
380
381    private int bsLive;
382
383    private final CRC crc = new CRC();
384    private int nInUse;
385
386    private int nMTF;
387    private int currentChar = -1;
388    private int runLength;
389
390    private int combinedCRC;
391
392    private final int allowableBlockSize;
393    /**
394     * All memory intensive stuff.
395     */
396    private Data data;
397
398    private BlockSort blockSorter;
399
400    /**
401     * Constructs a new {@code BZip2CompressorOutputStream} with a blocksize of 900k.
402     *
403     * @param out the destination stream.
404     * @throws IOException          if an I/O error occurs in the specified stream.
405     * @throws NullPointerException if {@code out == null}.
406     */
407    public BZip2CompressorOutputStream(final OutputStream out) throws IOException {
408        this(out, MAX_BLOCKSIZE);
409    }
410
411    /**
412     * Constructs a new {@code BZip2CompressorOutputStream} with specified blocksize.
413     *
414     * @param out       the destination stream.
415     * @param blockSize the blockSize as 100k units.
416     * @throws IOException              if an I/O error occurs in the specified stream.
417     * @throws IllegalArgumentException if {@code (blockSize &lt; 1) || (blockSize &gt; 9)}.
418     * @throws NullPointerException     if {@code out == null}.
419     * @see #MIN_BLOCKSIZE
420     * @see #MAX_BLOCKSIZE
421     */
422    public BZip2CompressorOutputStream(final OutputStream out, final int blockSize) throws IOException {
423        super(out);
424        if (blockSize < 1) {
425            throw new IllegalArgumentException("blockSize(" + blockSize + ") < 1");
426        }
427        if (blockSize > 9) {
428            throw new IllegalArgumentException("blockSize(" + blockSize + ") > 9");
429        }
430        this.blockSize100k = blockSize;
431        /* 20 is just a paranoia constant */
432        this.allowableBlockSize = this.blockSize100k * BASEBLOCKSIZE - 20;
433        init();
434    }
435
436    private void blockSort() {
437        blockSorter.blockSort(data, last);
438    }
439
440    private void bsFinishedWithStream() throws IOException {
441        while (this.bsLive > 0) {
442            final int ch = this.bsBuff >> 24;
443            this.out.write(ch); // write 8-bit
444            this.bsBuff <<= 8;
445            this.bsLive -= 8;
446        }
447    }
448
449    private void bsPutInt(final int u) throws IOException {
450        bsW(8, u >> 24 & 0xff);
451        bsW(8, u >> 16 & 0xff);
452        bsW(8, u >> 8 & 0xff);
453        bsW(8, u & 0xff);
454    }
455
456    private void bsPutUByte(final int c) throws IOException {
457        bsW(8, c);
458    }
459
460    private void bsW(final int n, final int v) throws IOException {
461        final OutputStream outShadow = this.out;
462        int bsLiveShadow = this.bsLive;
463        int bsBuffShadow = this.bsBuff;
464
465        while (bsLiveShadow >= 8) {
466            outShadow.write(bsBuffShadow >> 24); // write 8-bit
467            bsBuffShadow <<= 8;
468            bsLiveShadow -= 8;
469        }
470
471        this.bsBuff = bsBuffShadow | v << 32 - bsLiveShadow - n;
472        this.bsLive = bsLiveShadow + n;
473    }
474
475    @Override
476    public void close() throws IOException {
477        if (!isClosed()) {
478            try {
479                finish();
480            } finally {
481                super.close();
482            }
483        }
484    }
485
486    private void endBlock() throws IOException {
487        final int blockCRC = this.crc.getValue();
488        this.combinedCRC = this.combinedCRC << 1 | this.combinedCRC >>> 31;
489        this.combinedCRC ^= blockCRC;
490
491        // empty block at end of file
492        if (this.last == -1) {
493            return;
494        }
495
496        /* sort the block and establish posn of original string */
497        blockSort();
498
499        /*
500         * A 6-byte block header, the value chosen arbitrarily as 0x314159265359 :-). A 32 bit value does not really give a strong enough guarantee that the
501         * value will not appear by chance in the compressed data stream. Worst-case probability of this event, for a 900k block, is about 2.0e-3 for 32 bits,
502         * 1.0e-5 for 40 bits and 4.0e-8 for 48 bits. For a compressed file of size 100Gb -- about 100000 blocks -- only a 48-bit marker will do. NB: normal
503         * compression/ decompression doesn't rely on these statistical properties. They are only important when trying to recover blocks from damaged files.
504         */
505        bsPutUByte(0x31);
506        bsPutUByte(0x41);
507        bsPutUByte(0x59);
508        bsPutUByte(0x26);
509        bsPutUByte(0x53);
510        bsPutUByte(0x59);
511
512        /* Now the block's CRC, so it is in a known place. */
513        bsPutInt(blockCRC);
514
515        /* Now a single bit indicating no randomization. */
516        bsW(1, 0);
517
518        /* Finally, block's contents proper. */
519        moveToFrontCodeAndSend();
520    }
521
522    private void endCompression() throws IOException {
523        /*
524         * Now another magic 48-bit number, 0x177245385090, to indicate the end of the last block. (sqrt(pi), if you want to know. I did want to use e, but it
525         * contains too much repetition -- 27 18 28 18 28 46 -- for me to feel statistically comfortable. Call me paranoid.)
526         */
527        bsPutUByte(0x17);
528        bsPutUByte(0x72);
529        bsPutUByte(0x45);
530        bsPutUByte(0x38);
531        bsPutUByte(0x50);
532        bsPutUByte(0x90);
533
534        bsPutInt(this.combinedCRC);
535        bsFinishedWithStream();
536    }
537
538    @Override
539    public void finish() throws IOException {
540        if (!isClosed()) {
541            try {
542                if (this.runLength > 0) {
543                    writeRun();
544                }
545                this.currentChar = -1;
546                endBlock();
547                endCompression();
548            } finally {
549                this.blockSorter = null;
550                this.data = null;
551            }
552        }
553    }
554
555    @Override
556    public void flush() throws IOException {
557        if (out != null) {
558            super.flush();
559        }
560    }
561
562    /*
563     * Performs Move-To-Front on the Burrows-Wheeler transformed buffer, storing the MTFed data in data.sfmap in RUNA/RUNB run-length-encoded form.
564     *
565     * <p>Keeps track of byte frequencies in data.mtfFreq at the same time.</p>
566     */
567    private void generateMTFValues() {
568        final int lastShadow = this.last;
569        final Data dataShadow = this.data;
570        final boolean[] inUse = dataShadow.inUse;
571        final byte[] block = dataShadow.block;
572        final int[] fmap = dataShadow.fmap;
573        final char[] sfmap = dataShadow.sfmap;
574        final int[] mtfFreq = dataShadow.mtfFreq;
575        final byte[] unseqToSeq = dataShadow.unseqToSeq;
576        final byte[] yy = dataShadow.generateMTFValues_yy;
577
578        // make maps
579        int nInUseShadow = 0;
580        for (int i = 0; i < 256; i++) {
581            if (inUse[i]) {
582                unseqToSeq[i] = (byte) nInUseShadow;
583                nInUseShadow++;
584            }
585        }
586        this.nInUse = nInUseShadow;
587
588        final int eob = nInUseShadow + 1;
589
590        Arrays.fill(mtfFreq, 0, eob + 1, 0);
591
592        for (int i = nInUseShadow; --i >= 0;) {
593            yy[i] = (byte) i;
594        }
595
596        int wr = 0;
597        int zPend = 0;
598
599        for (int i = 0; i <= lastShadow; i++) {
600            final byte ll_i = unseqToSeq[block[fmap[i]] & 0xff];
601            byte tmp = yy[0];
602            int j = 0;
603
604            while (ll_i != tmp) {
605                j++;
606                final byte tmp2 = tmp;
607                tmp = yy[j];
608                yy[j] = tmp2;
609            }
610            yy[0] = tmp;
611
612            if (j == 0) {
613                zPend++;
614            } else {
615                if (zPend > 0) {
616                    zPend--;
617                    while (true) {
618                        if ((zPend & 1) == 0) {
619                            sfmap[wr] = RUNA;
620                            wr++;
621                            mtfFreq[RUNA]++;
622                        } else {
623                            sfmap[wr] = RUNB;
624                            wr++;
625                            mtfFreq[RUNB]++;
626                        }
627
628                        if (zPend < 2) {
629                            break;
630                        }
631                        zPend = zPend - 2 >> 1;
632                    }
633                    zPend = 0;
634                }
635                sfmap[wr] = (char) (j + 1);
636                wr++;
637                mtfFreq[j + 1]++;
638            }
639        }
640
641        if (zPend > 0) {
642            zPend--;
643            while (true) {
644                if ((zPend & 1) == 0) {
645                    sfmap[wr] = RUNA;
646                    wr++;
647                    mtfFreq[RUNA]++;
648                } else {
649                    sfmap[wr] = RUNB;
650                    wr++;
651                    mtfFreq[RUNB]++;
652                }
653
654                if (zPend < 2) {
655                    break;
656                }
657                zPend = zPend - 2 >> 1;
658            }
659        }
660
661        sfmap[wr] = (char) eob;
662        mtfFreq[eob]++;
663        this.nMTF = wr + 1;
664    }
665
666    /**
667     * Returns the blocksize parameter specified at construction time.
668     *
669     * @return the blocksize parameter specified at construction time
670     */
671    public final int getBlockSize() {
672        return this.blockSize100k;
673    }
674
675    /**
676     * Writes magic bytes like BZ on the first position of the stream and bytes indicating the file-format, which is huffmanized, followed by a digit indicating
677     * blockSize100k.
678     *
679     * @throws IOException if the magic bytes could not been written
680     */
681    private void init() throws IOException {
682        bsPutUByte('B');
683        bsPutUByte('Z');
684
685        this.data = new Data(this.blockSize100k);
686        this.blockSorter = new BlockSort(this.data);
687
688        // huffmanized magic bytes
689        bsPutUByte('h');
690        bsPutUByte('0' + this.blockSize100k);
691
692        this.combinedCRC = 0;
693        initBlock();
694    }
695
696    private void initBlock() {
697        // blockNo++;
698        this.crc.reset();
699        this.last = -1;
700        // ch = 0;
701
702        final boolean[] inUse = this.data.inUse;
703        for (int i = 256; --i >= 0;) {
704            inUse[i] = false;
705        }
706
707    }
708
709    private void moveToFrontCodeAndSend() throws IOException {
710        bsW(24, this.data.origPtr);
711        generateMTFValues();
712        sendMTFValues();
713    }
714
715    private void sendMTFValues() throws IOException {
716        final byte[][] len = this.data.sendMTFValues_len;
717        final int alphaSize = this.nInUse + 2;
718
719        for (int t = N_GROUPS; --t >= 0;) {
720            final byte[] len_t = len[t];
721            for (int v = alphaSize; --v >= 0;) {
722                len_t[v] = GREATER_ICOST;
723            }
724        }
725
726        /* Decide how many coding tables to use */
727        // assert (this.nMTF > 0) : this.nMTF;
728        final int nGroups = this.nMTF < 200 ? 2 : this.nMTF < 600 ? 3 : this.nMTF < 1200 ? 4 : this.nMTF < 2400 ? 5 : 6;
729
730        /* Generate an initial set of coding tables */
731        sendMTFValues0(nGroups, alphaSize);
732
733        /*
734         * Iterate up to N_ITERS times to improve the tables.
735         */
736        final int nSelectors = sendMTFValues1(nGroups, alphaSize);
737
738        /* Compute MTF values for the selectors. */
739        sendMTFValues2(nGroups, nSelectors);
740
741        /* Assign actual codes for the tables. */
742        sendMTFValues3(nGroups, alphaSize);
743
744        /* Transmit the mapping table. */
745        sendMTFValues4();
746
747        /* Now the selectors. */
748        sendMTFValues5(nGroups, nSelectors);
749
750        /* Now the coding tables. */
751        sendMTFValues6(nGroups, alphaSize);
752
753        /* And finally, the block data proper */
754        sendMTFValues7();
755    }
756
757    private void sendMTFValues0(final int nGroups, final int alphaSize) {
758        final byte[][] len = this.data.sendMTFValues_len;
759        final int[] mtfFreq = this.data.mtfFreq;
760
761        int remF = this.nMTF;
762        int gs = 0;
763
764        for (int nPart = nGroups; nPart > 0; nPart--) {
765            final int tFreq = remF / nPart;
766            int ge = gs - 1;
767            int aFreq = 0;
768
769            for (final int a = alphaSize - 1; aFreq < tFreq && ge < a;) {
770                aFreq += mtfFreq[++ge];
771            }
772
773            if (ge > gs && nPart != nGroups && nPart != 1 && (nGroups - nPart & 1) != 0) {
774                aFreq -= mtfFreq[ge--];
775            }
776
777            final byte[] len_np = len[nPart - 1];
778            for (int v = alphaSize; --v >= 0;) {
779                if (v >= gs && v <= ge) {
780                    len_np[v] = LESSER_ICOST;
781                } else {
782                    len_np[v] = GREATER_ICOST;
783                }
784            }
785
786            gs = ge + 1;
787            remF -= aFreq;
788        }
789    }
790
791    private int sendMTFValues1(final int nGroups, final int alphaSize) {
792        final Data dataShadow = this.data;
793        final int[][] rfreq = dataShadow.sendMTFValues_rfreq;
794        final int[] fave = dataShadow.sendMTFValues_fave;
795        final short[] cost = dataShadow.sendMTFValues_cost;
796        final char[] sfmap = dataShadow.sfmap;
797        final byte[] selector = dataShadow.selector;
798        final byte[][] len = dataShadow.sendMTFValues_len;
799        final byte[] len_0 = len[0];
800        final byte[] len_1 = len[1];
801        final byte[] len_2 = len[2];
802        final byte[] len_3 = len[3];
803        final byte[] len_4 = len[4];
804        final byte[] len_5 = len[5];
805        final int nMTFShadow = this.nMTF;
806
807        int nSelectors = 0;
808
809        for (int iter = 0; iter < N_ITERS; iter++) {
810            for (int t = nGroups; --t >= 0;) {
811                fave[t] = 0;
812                final int[] rfreqt = rfreq[t];
813                for (int i = alphaSize; --i >= 0;) {
814                    rfreqt[i] = 0;
815                }
816            }
817
818            nSelectors = 0;
819
820            for (int gs = 0; gs < this.nMTF;) {
821                // Set group start & end marks.
822
823                // Calculate the cost of this group as coded by each of the
824                // coding tables.
825
826                final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1);
827
828                final byte mask = (byte) 0xff;
829                if (nGroups == N_GROUPS) {
830                    // unrolled version of the else-block
831
832                    short cost0 = 0;
833                    short cost1 = 0;
834                    short cost2 = 0;
835                    short cost3 = 0;
836                    short cost4 = 0;
837                    short cost5 = 0;
838
839                    for (int i = gs; i <= ge; i++) {
840                        final int icv = sfmap[i];
841                        cost0 += (short) (len_0[icv] & mask);
842                        cost1 += (short) (len_1[icv] & mask);
843                        cost2 += (short) (len_2[icv] & mask);
844                        cost3 += (short) (len_3[icv] & mask);
845                        cost4 += (short) (len_4[icv] & mask);
846                        cost5 += (short) (len_5[icv] & mask);
847                    }
848
849                    cost[0] = cost0;
850                    cost[1] = cost1;
851                    cost[2] = cost2;
852                    cost[3] = cost3;
853                    cost[4] = cost4;
854                    cost[5] = cost5;
855
856                } else {
857                    for (int t = nGroups; --t >= 0;) {
858                        cost[t] = 0;
859                    }
860
861                    for (int i = gs; i <= ge; i++) {
862                        final int icv = sfmap[i];
863                        for (int t = nGroups; --t >= 0;) {
864                            cost[t] += (short) (len[t][icv] & mask);
865                        }
866                    }
867                }
868
869                /*
870                 * Find the coding table which is best for this group, and record its identity in the selector table.
871                 */
872                int bt = -1;
873                for (int t = nGroups, bc = 999999999; --t >= 0;) {
874                    final int cost_t = cost[t];
875                    if (cost_t < bc) {
876                        bc = cost_t;
877                        bt = t;
878                    }
879                }
880
881                fave[bt]++;
882                selector[nSelectors] = (byte) bt;
883                nSelectors++;
884
885                /*
886                 * Increment the symbol frequencies for the selected table.
887                 */
888                final int[] rfreq_bt = rfreq[bt];
889                for (int i = gs; i <= ge; i++) {
890                    rfreq_bt[sfmap[i]]++;
891                }
892
893                gs = ge + 1;
894            }
895
896            /*
897             * Recompute the tables based on the accumulated frequencies.
898             */
899            for (int t = 0; t < nGroups; t++) {
900                hbMakeCodeLengths(len[t], rfreq[t], this.data, alphaSize, 20);
901            }
902        }
903
904        return nSelectors;
905    }
906
907    private void sendMTFValues2(final int nGroups, final int nSelectors) {
908        // assert (nGroups < 8) : nGroups;
909
910        final Data dataShadow = this.data;
911        final byte[] pos = dataShadow.sendMTFValues2_pos;
912
913        for (int i = nGroups; --i >= 0;) {
914            pos[i] = (byte) i;
915        }
916
917        for (int i = 0; i < nSelectors; i++) {
918            final byte ll_i = dataShadow.selector[i];
919            byte tmp = pos[0];
920            int j = 0;
921
922            while (ll_i != tmp) {
923                j++;
924                final byte tmp2 = tmp;
925                tmp = pos[j];
926                pos[j] = tmp2;
927            }
928
929            pos[0] = tmp;
930            dataShadow.selectorMtf[i] = (byte) j;
931        }
932    }
933
934    private void sendMTFValues3(final int nGroups, final int alphaSize) {
935        final int[][] code = this.data.sendMTFValues_code;
936        final byte[][] len = this.data.sendMTFValues_len;
937
938        for (int t = 0; t < nGroups; t++) {
939            int minLen = 32;
940            int maxLen = 0;
941            final byte[] len_t = len[t];
942            for (int i = alphaSize; --i >= 0;) {
943                final int l = len_t[i] & 0xff;
944                if (l > maxLen) {
945                    maxLen = l;
946                }
947                if (l < minLen) {
948                    minLen = l;
949                }
950            }
951
952            // assert (maxLen <= 20) : maxLen;
953            // assert (minLen >= 1) : minLen;
954
955            hbAssignCodes(code[t], len[t], minLen, maxLen, alphaSize);
956        }
957    }
958
959    private void sendMTFValues4() throws IOException {
960        final boolean[] inUse = this.data.inUse;
961        final boolean[] inUse16 = this.data.sentMTFValues4_inUse16;
962
963        for (int i = 16; --i >= 0;) {
964            inUse16[i] = false;
965            final int i16 = i * 16;
966            for (int j = 16; --j >= 0;) {
967                if (inUse[i16 + j]) {
968                    inUse16[i] = true;
969                    break;
970                }
971            }
972        }
973
974        for (int i = 0; i < 16; i++) {
975            bsW(1, inUse16[i] ? 1 : 0);
976        }
977
978        final OutputStream outShadow = this.out;
979        int bsLiveShadow = this.bsLive;
980        int bsBuffShadow = this.bsBuff;
981
982        for (int i = 0; i < 16; i++) {
983            if (inUse16[i]) {
984                final int i16 = i * 16;
985                for (int j = 0; j < 16; j++) {
986                    // inlined: bsW(1, inUse[i16 + j] ? 1 : 0);
987                    while (bsLiveShadow >= 8) {
988                        outShadow.write(bsBuffShadow >> 24); // write 8-bit
989                        bsBuffShadow <<= 8;
990                        bsLiveShadow -= 8;
991                    }
992                    if (inUse[i16 + j]) {
993                        bsBuffShadow |= 1 << 32 - bsLiveShadow - 1;
994                    }
995                    bsLiveShadow++;
996                }
997            }
998        }
999
1000        this.bsBuff = bsBuffShadow;
1001        this.bsLive = bsLiveShadow;
1002    }
1003
1004    private void sendMTFValues5(final int nGroups, final int nSelectors) throws IOException {
1005        bsW(3, nGroups);
1006        bsW(15, nSelectors);
1007
1008        final OutputStream outShadow = this.out;
1009        final byte[] selectorMtf = this.data.selectorMtf;
1010
1011        int bsLiveShadow = this.bsLive;
1012        int bsBuffShadow = this.bsBuff;
1013
1014        for (int i = 0; i < nSelectors; i++) {
1015            for (int j = 0, hj = selectorMtf[i] & 0xff; j < hj; j++) {
1016                // inlined: bsW(1, 1);
1017                while (bsLiveShadow >= 8) {
1018                    outShadow.write(bsBuffShadow >> 24);
1019                    bsBuffShadow <<= 8;
1020                    bsLiveShadow -= 8;
1021                }
1022                bsBuffShadow |= 1 << 32 - bsLiveShadow - 1;
1023                bsLiveShadow++;
1024            }
1025
1026            // inlined: bsW(1, 0);
1027            while (bsLiveShadow >= 8) {
1028                outShadow.write(bsBuffShadow >> 24);
1029                bsBuffShadow <<= 8;
1030                bsLiveShadow -= 8;
1031            }
1032            // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1);
1033            bsLiveShadow++;
1034        }
1035
1036        this.bsBuff = bsBuffShadow;
1037        this.bsLive = bsLiveShadow;
1038    }
1039
1040    private void sendMTFValues6(final int nGroups, final int alphaSize) throws IOException {
1041        final byte[][] len = this.data.sendMTFValues_len;
1042        final OutputStream outShadow = this.out;
1043
1044        int bsLiveShadow = this.bsLive;
1045        int bsBuffShadow = this.bsBuff;
1046
1047        for (int t = 0; t < nGroups; t++) {
1048            final byte[] len_t = len[t];
1049            int curr = len_t[0] & 0xff;
1050
1051            // inlined: bsW(5, curr);
1052            while (bsLiveShadow >= 8) {
1053                outShadow.write(bsBuffShadow >> 24); // write 8-bit
1054                bsBuffShadow <<= 8;
1055                bsLiveShadow -= 8;
1056            }
1057            bsBuffShadow |= curr << 32 - bsLiveShadow - 5;
1058            bsLiveShadow += 5;
1059
1060            for (int i = 0; i < alphaSize; i++) {
1061                final int lti = len_t[i] & 0xff;
1062                while (curr < lti) {
1063                    // inlined: bsW(2, 2);
1064                    while (bsLiveShadow >= 8) {
1065                        outShadow.write(bsBuffShadow >> 24); // write 8-bit
1066                        bsBuffShadow <<= 8;
1067                        bsLiveShadow -= 8;
1068                    }
1069                    bsBuffShadow |= 2 << 32 - bsLiveShadow - 2;
1070                    bsLiveShadow += 2;
1071
1072                    curr++; /* 10 */
1073                }
1074
1075                while (curr > lti) {
1076                    // inlined: bsW(2, 3);
1077                    while (bsLiveShadow >= 8) {
1078                        outShadow.write(bsBuffShadow >> 24); // write 8-bit
1079                        bsBuffShadow <<= 8;
1080                        bsLiveShadow -= 8;
1081                    }
1082                    bsBuffShadow |= 3 << 32 - bsLiveShadow - 2;
1083                    bsLiveShadow += 2;
1084
1085                    curr--; /* 11 */
1086                }
1087
1088                // inlined: bsW(1, 0);
1089                while (bsLiveShadow >= 8) {
1090                    outShadow.write(bsBuffShadow >> 24); // write 8-bit
1091                    bsBuffShadow <<= 8;
1092                    bsLiveShadow -= 8;
1093                }
1094                // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1);
1095                bsLiveShadow++;
1096            }
1097        }
1098
1099        this.bsBuff = bsBuffShadow;
1100        this.bsLive = bsLiveShadow;
1101    }
1102
1103    private void sendMTFValues7() throws IOException {
1104        final Data dataShadow = this.data;
1105        final byte[][] len = dataShadow.sendMTFValues_len;
1106        final int[][] code = dataShadow.sendMTFValues_code;
1107        final OutputStream outShadow = this.out;
1108        final byte[] selector = dataShadow.selector;
1109        final char[] sfmap = dataShadow.sfmap;
1110        final int nMTFShadow = this.nMTF;
1111
1112        int selCtr = 0;
1113
1114        int bsLiveShadow = this.bsLive;
1115        int bsBuffShadow = this.bsBuff;
1116
1117        for (int gs = 0; gs < nMTFShadow;) {
1118            final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1);
1119            final int selector_selCtr = selector[selCtr] & 0xff;
1120            final int[] code_selCtr = code[selector_selCtr];
1121            final byte[] len_selCtr = len[selector_selCtr];
1122
1123            while (gs <= ge) {
1124                final int sfmap_i = sfmap[gs];
1125
1126                //
1127                // inlined: bsW(len_selCtr[sfmap_i] & 0xff,
1128                // code_selCtr[sfmap_i]);
1129                //
1130                while (bsLiveShadow >= 8) {
1131                    outShadow.write(bsBuffShadow >> 24);
1132                    bsBuffShadow <<= 8;
1133                    bsLiveShadow -= 8;
1134                }
1135                final int n = len_selCtr[sfmap_i] & 0xFF;
1136                bsBuffShadow |= code_selCtr[sfmap_i] << 32 - bsLiveShadow - n;
1137                bsLiveShadow += n;
1138
1139                gs++;
1140            }
1141
1142            gs = ge + 1;
1143            selCtr++;
1144        }
1145
1146        this.bsBuff = bsBuffShadow;
1147        this.bsLive = bsLiveShadow;
1148    }
1149
1150    @Override
1151    public void write(final byte[] buf, int offs, final int len) throws IOException {
1152        if (offs < 0) {
1153            throw new IndexOutOfBoundsException("offs(" + offs + ") < 0.");
1154        }
1155        if (len < 0) {
1156            throw new IndexOutOfBoundsException("len(" + len + ") < 0.");
1157        }
1158        if (offs + len > buf.length) {
1159            throw new IndexOutOfBoundsException("offs(" + offs + ") + len(" + len + ") > buf.length(" + buf.length + ").");
1160        }
1161        checkOpen();
1162        for (final int hi = offs + len; offs < hi;) {
1163            write0(buf[offs++]);
1164        }
1165    }
1166
1167    @Override
1168    public void write(final int b) throws IOException {
1169        checkOpen();
1170        write0(b);
1171    }
1172
1173    /**
1174     * Keeps track of the last bytes written and implicitly performs run-length encoding as the first step of the bzip2 algorithm.
1175     */
1176    private void write0(int b) throws IOException {
1177        if (this.currentChar != -1) {
1178            b &= 0xff;
1179            if (this.currentChar == b) {
1180                if (++this.runLength > 254) {
1181                    writeRun();
1182                    this.currentChar = -1;
1183                    this.runLength = 0;
1184                }
1185                // else nothing to do
1186            } else {
1187                writeRun();
1188                this.runLength = 1;
1189                this.currentChar = b;
1190            }
1191        } else {
1192            this.currentChar = b & 0xff;
1193            this.runLength++;
1194        }
1195    }
1196
1197    /**
1198     * Writes the current byte to the buffer, run-length encoding it if it has been repeated at least four times (the first step RLEs sequences of four
1199     * identical bytes).
1200     *
1201     * <p>
1202     * Flushes the current block before writing data if it is full.
1203     * </p>
1204     *
1205     * <p>
1206     * "write to the buffer" means adding to data.buffer starting two steps "after" this.last - initially starting at index 1 (not 0) - and updating this.last
1207     * to point to the last index written minus 1.
1208     * </p>
1209     */
1210    private void writeRun() throws IOException {
1211        final int lastShadow = this.last;
1212
1213        if (lastShadow < this.allowableBlockSize) {
1214            final int currentCharShadow = this.currentChar;
1215            final Data dataShadow = this.data;
1216            dataShadow.inUse[currentCharShadow] = true;
1217            final byte ch = (byte) currentCharShadow;
1218
1219            int runLengthShadow = this.runLength;
1220            this.crc.update(currentCharShadow, runLengthShadow);
1221
1222            switch (runLengthShadow) {
1223            case 1:
1224                dataShadow.block[lastShadow + 2] = ch;
1225                this.last = lastShadow + 1;
1226                break;
1227
1228            case 2:
1229                dataShadow.block[lastShadow + 2] = ch;
1230                dataShadow.block[lastShadow + 3] = ch;
1231                this.last = lastShadow + 2;
1232                break;
1233
1234            case 3: {
1235                final byte[] block = dataShadow.block;
1236                block[lastShadow + 2] = ch;
1237                block[lastShadow + 3] = ch;
1238                block[lastShadow + 4] = ch;
1239                this.last = lastShadow + 3;
1240            }
1241                break;
1242
1243            default: {
1244                runLengthShadow -= 4;
1245                dataShadow.inUse[runLengthShadow] = true;
1246                final byte[] block = dataShadow.block;
1247                block[lastShadow + 2] = ch;
1248                block[lastShadow + 3] = ch;
1249                block[lastShadow + 4] = ch;
1250                block[lastShadow + 5] = ch;
1251                block[lastShadow + 6] = (byte) runLengthShadow;
1252                this.last = lastShadow + 5;
1253            }
1254                break;
1255
1256            }
1257        } else {
1258            endBlock();
1259            initBlock();
1260            writeRun();
1261        }
1262    }
1263
1264}