BlockSort.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- * KIND, either express or implied. See the License for the
- * specific language governing permissions and limitations
- * under the License.
- */
- package org.apache.commons.compress.compressors.bzip2;
- import java.util.Arrays;
- import java.util.BitSet;
- /**
- * Encapsulates the Burrows-Wheeler sorting algorithm needed by {@link BZip2CompressorOutputStream}.
- *
- * <p>
- * This class is based on a Java port of Julian Seward's blocksort.c in his libbzip2
- * </p>
- *
- * <p>
- * The Burrows-Wheeler transform is a reversible transform of the original data that is supposed to group similar bytes close to each other. The idea is to sort
- * all permutations of the input and only keep the last byte of each permutation. E.g. for "Commons Compress" you'd get:
- * </p>
- *
- * <pre>
- * CompressCommons
- * Commons Compress
- * CompressCommons
- * essCommons Compr
- * mmons CompressCo
- * mons CompressCom
- * mpressCommons Co
- * ns CompressCommo
- * ommons CompressC
- * ompressCommons C
- * ons CompressComm
- * pressCommons Com
- * ressCommons Comp
- * s CompressCommon
- * sCommons Compres
- * ssCommons Compre
- * </pre>
- *
- * <p>
- * Which results in a new text "ss romooCCmmpnse", in adition the index of the first line that contained the original text is kept - in this case it is 1. The
- * idea is that in a long English text all permutations that start with "he" are likely suffixes of a "the" and thus they end in "t" leading to a larger block
- * of "t"s that can better be compressed by the subsequent Move-to-Front, run-length und Huffman encoding steps.
- * </p>
- *
- * <p>
- * For more information see for example:
- * </p>
- * <ul>
- * <li><a href="http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf">Burrows, M. and Wheeler, D.: A Block-sorting Lossless Data Compression
- * Algorithm</a></li>
- * <li><a href="http://webglimpse.net/pubs/suffix.pdf">Manber, U. and Myers, G.: Suffix arrays: A new method for on-line string searches</a></li>
- * <li><a href="http://www.cs.tufts.edu/~nr/comp150fp/archive/bob-sedgewick/fast-strings.pdf">Bentley, J.L. and Sedgewick, R.: Fast Algorithms for Sorting and
- * Searching Strings</a></li>
- * </ul>
- *
- * @NotThreadSafe
- */
- final class BlockSort {
- /*
- * Some of the constructs used in the C code cannot be ported literally to Java - for example macros, unsigned types. Some code has been hand-tuned to
- * improve performance. In order to avoid memory pressure some structures are reused for several blocks and some memory is even shared between sorting and
- * the MTF stage even though either algorithm uses it for its own purpose.
- *
- * Comments preserved from the actual C code are prefixed with "LBZ2:".
- */
- /*
- * 2012-05-20 Stefan Bodewig:
- *
- * This class seems to mix several revisions of libbzip2's code. The mainSort function and those used by it look closer to the 0.9.5 version but show some
- * variations introduced later. At the same time the logic of Compress 1.4 to randomize the block on bad input has been dropped after libbzip2 0.9.0 and
- * replaced by a fallback sorting algorithm.
- *
- * I've added the fallbackSort function of 1.0.6 and tried to integrate it with the existing code without touching too much. I've also removed the now
- * unused randomization code.
- */
- private static final int FTAB_LENGTH = 65537; // 262148 byte
- /*
- * LBZ2: If you are ever unlucky/improbable enough to get a stack overflow whilst sorting, increase the following constant and try again. In practice I have
- * never seen the stack go above 27 elems, so the following limit seems very generous.
- */
- private static final int QSORT_STACK_SIZE = 1000;
- private static final int FALLBACK_QSORT_STACK_SIZE = 100;
- private static final int STACK_SIZE = Math.max(QSORT_STACK_SIZE, FALLBACK_QSORT_STACK_SIZE);
- private static final int FALLBACK_QSORT_SMALL_THRESH = 10;
- /*
- * LBZ2: Knuth's increments seem to work better than Incerpi-Sedgewick here. Possibly because the number of elems to sort is usually small, typically <=
- * 20.
- */
- private static final int[] INCS = { 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484 };
- private static final int SMALL_THRESH = 20;
- private static final int DEPTH_THRESH = 10;
- private static final int WORK_FACTOR = 30;
- private static final int SETMASK = 1 << 21;
- private static final int CLEARMASK = ~SETMASK;
- private static int med3(final int a, final int b, final int c) {
- return a < b ? b < c ? b : a < c ? c : a : b > c ? b : a > c ? c : a;
- }
- private static void vswap(final int[] fmap, int p1, int p2, int n) {
- n += p1;
- while (p1 < n) {
- final int t = fmap[p1];
- fmap[p1++] = fmap[p2];
- fmap[p2++] = t;
- }
- }
- /*
- * Used when sorting. If too many long comparisons happen, we stop sorting, and use fallbackSort instead.
- */
- private int workDone;
- private int workLimit;
- private boolean firstAttempt;
- private final int[] stack_ll = new int[STACK_SIZE]; // 4000 byte
- private final int[] stack_hh = new int[STACK_SIZE]; // 4000 byte
- /*---------------------------------------------*/
- /*---------------------------------------------*/
- /*--- LBZ2: Fallback O(N log(N)^2) sorting ---*/
- /*--- algorithm, for repetitive blocks ---*/
- /*---------------------------------------------*/
- /*
- * This is the fallback sorting algorithm libbzip2 1.0.6 uses for repetitive or very short inputs.
- *
- * The idea is inspired by Manber-Myers string suffix sorting algorithm. First a bucket sort places each permutation of the block into a bucket based on its
- * first byte. Permutations are represented by pointers to their first character kept in (partially) sorted order inside the array ftab.
- *
- * The next step visits all buckets in order and performs a quicksort on all permutations of the bucket based on the index of the bucket the second byte of
- * the permutation belongs to, thereby forming new buckets. When arrived here the permutations are sorted up to the second character and we have buckets of
- * permutations that are identical up to two characters.
- *
- * Repeat the step of quicksorting each bucket, now based on the bucket holding the sequence of the third and forth character leading to four byte buckets.
- * Repeat this doubling of bucket sizes until all buckets only contain single permutations or the bucket size exceeds the block size.
- *
- * I.e.
- *
- * "abraba" form three buckets for the chars "a", "b", and "r" in the first step with
- *
- * fmap = { 'a:' 5, 3, 0, 'b:' 4, 1, 'r', 2 }
- *
- * when looking at the bucket of "a"s the second characters are in the buckets that start with fmap-index 0 (rolled over), 3 and 3 respectively, forming two
- * new buckets "aa" and "ab", so we get
- *
- * fmap = { 'aa:' 5, 'ab:' 3, 0, 'ba:' 4, 'br': 1, 'ra:' 2 }
- *
- * since the last bucket only contained a single item it didn't have to be sorted at all.
- *
- * There now is just one bucket with more than one permutation that remains to be sorted. For the permutation that starts with index 3 the third and forth
- * char are in bucket 'aa' at index 0 and for the one starting at block index 0 they are in bucket 'ra' with sort index 5. The fully sorted order then
- * becomes.
- *
- * fmap = { 5, 3, 0, 4, 1, 2 }
- */
- private final int[] stack_dd = new int[QSORT_STACK_SIZE]; // 4000 byte
- private final int[] mainSort_runningOrder = new int[256]; // 1024 byte
- private final int[] mainSort_copy = new int[256]; // 1024 byte
- private final boolean[] mainSort_bigDone = new boolean[256]; // 256 byte
- private final int[] ftab = new int[FTAB_LENGTH]; // 262148 byte
- /**
- * Array instance identical to Data's sfmap, both are used only temporarily and indepently, so we do not need to allocate additional memory.
- */
- private final char[] quadrant;
- private int[] eclass;
- /*---------------------------------------------*/
- BlockSort(final BZip2CompressorOutputStream.Data data) {
- this.quadrant = data.sfmap;
- }
- void blockSort(final BZip2CompressorOutputStream.Data data, final int last) {
- this.workLimit = WORK_FACTOR * last;
- this.workDone = 0;
- this.firstAttempt = true;
- if (last + 1 < 10000) {
- fallbackSort(data, last);
- } else {
- mainSort(data, last);
- if (this.firstAttempt && this.workDone > this.workLimit) {
- fallbackSort(data, last);
- }
- }
- final int[] fmap = data.fmap;
- data.origPtr = -1;
- for (int i = 0; i <= last; i++) {
- if (fmap[i] == 0) {
- data.origPtr = i;
- break;
- }
- }
- // assert (data.origPtr != -1) : data.origPtr;
- }
- /*
- * The C code uses an array of ints (each int holding 32 flags) to represents the bucket-start flags (bhtab). It also contains optimizations to skip over 32
- * consecutively set or consecutively unset bits on word boundaries at once. For now I've chosen to use the simpler but potentially slower code using BitSet
- * - also in the hope that using the BitSet#nextXXX methods may be fast enough.
- */
- /**
- * @param fmap points to the index of the starting point of a permutation inside the block of data in the current partially sorted order
- * @param eclass points from the index of a character inside the block to the first index in fmap that contains the bucket of its suffix that is sorted in
- * this step.
- * @param loSt lower boundary of the fmap-interval to be sorted
- * @param hiSt upper boundary of the fmap-interval to be sorted
- */
- private void fallbackQSort3(final int[] fmap, final int[] eclass, final int loSt, final int hiSt) {
- int lo, unLo, ltLo, hi, unHi, gtHi, n;
- long r = 0;
- int sp = 0;
- fpush(sp++, loSt, hiSt);
- while (sp > 0) {
- final int[] s = fpop(--sp);
- lo = s[0];
- hi = s[1];
- if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
- fallbackSimpleSort(fmap, eclass, lo, hi);
- continue;
- }
- /*
- * LBZ2: Random partitioning. Median of 3 sometimes fails to avoid bad cases. Median of 9 seems to help but looks rather expensive. This too seems
- * to work but is cheaper. Guidance for the magic constants 7621 and 32768 is taken from Sedgewick's algorithms book, chapter 35.
- */
- r = (r * 7621 + 1) % 32768;
- final long r3 = r % 3;
- final long med;
- if (r3 == 0) {
- med = eclass[fmap[lo]];
- } else if (r3 == 1) {
- med = eclass[fmap[lo + hi >>> 1]];
- } else {
- med = eclass[fmap[hi]];
- }
- unLo = ltLo = lo;
- unHi = gtHi = hi;
- // looks like the ternary partition attributed to Wegner
- // in the cited Sedgewick paper
- while (true) {
- while (true) {
- if (unLo > unHi) {
- break;
- }
- n = eclass[fmap[unLo]] - (int) med;
- if (n == 0) {
- fswap(fmap, unLo, ltLo);
- ltLo++;
- unLo++;
- continue;
- }
- if (n > 0) {
- break;
- }
- unLo++;
- }
- while (true) {
- if (unLo > unHi) {
- break;
- }
- n = eclass[fmap[unHi]] - (int) med;
- if (n == 0) {
- fswap(fmap, unHi, gtHi);
- gtHi--;
- unHi--;
- continue;
- }
- if (n < 0) {
- break;
- }
- unHi--;
- }
- if (unLo > unHi) {
- break;
- }
- fswap(fmap, unLo, unHi);
- unLo++;
- unHi--;
- }
- if (gtHi < ltLo) {
- continue;
- }
- n = Math.min(ltLo - lo, unLo - ltLo);
- fvswap(fmap, lo, unLo - n, n);
- int m = Math.min(hi - gtHi, gtHi - unHi);
- fvswap(fmap, unHi + 1, hi - m + 1, m);
- n = lo + unLo - ltLo - 1;
- m = hi - (gtHi - unHi) + 1;
- if (n - lo > hi - m) {
- fpush(sp++, lo, n);
- fpush(sp++, m, hi);
- } else {
- fpush(sp++, m, hi);
- fpush(sp++, lo, n);
- }
- }
- }
- /*---------------------------------------------*/
- /**
- * @param fmap points to the index of the starting point of a permutation inside the block of data in the current partially sorted order
- * @param eclass points from the index of a character inside the block to the first index in fmap that contains the bucket of its suffix that is sorted in
- * this step.
- * @param lo lower boundary of the fmap-interval to be sorted
- * @param hi upper boundary of the fmap-interval to be sorted
- */
- private void fallbackSimpleSort(final int[] fmap, final int[] eclass, final int lo, final int hi) {
- if (lo == hi) {
- return;
- }
- int j;
- if (hi - lo > 3) {
- for (int i = hi - 4; i >= lo; i--) {
- final int tmp = fmap[i];
- final int ec_tmp = eclass[tmp];
- for (j = i + 4; j <= hi && ec_tmp > eclass[fmap[j]]; j += 4) {
- fmap[j - 4] = fmap[j];
- }
- fmap[j - 4] = tmp;
- }
- }
- for (int i = hi - 1; i >= lo; i--) {
- final int tmp = fmap[i];
- final int ec_tmp = eclass[tmp];
- for (j = i + 1; j <= hi && ec_tmp > eclass[fmap[j]]; j++) {
- fmap[j - 1] = fmap[j];
- }
- fmap[j - 1] = tmp;
- }
- }
- /**
- * Adapt fallbackSort to the expected interface of the rest of the code, in particular deal with the fact that block starts at offset 1 (in libbzip2 1.0.6
- * it starts at 0).
- */
- void fallbackSort(final BZip2CompressorOutputStream.Data data, final int last) {
- data.block[0] = data.block[last + 1];
- fallbackSort(data.fmap, data.block, last + 1);
- for (int i = 0; i < last + 1; i++) {
- --data.fmap[i];
- }
- for (int i = 0; i < last + 1; i++) {
- if (data.fmap[i] == -1) {
- data.fmap[i] = last;
- break;
- }
- }
- }
- /*--
- LBZ2: The following is an implementation of
- an elegant 3-way quicksort for strings,
- described in a paper "Fast Algorithms for
- Sorting and Searching Strings", by Robert
- Sedgewick and Jon L. Bentley.
- --*/
- /**
- * @param fmap points to the index of the starting point of a permutation inside the block of data in the current partially sorted order
- * @param block the original data
- * @param nblock size of the block
- */
- void fallbackSort(final int[] fmap, final byte[] block, final int nblock) {
- final int[] ftab = new int[257];
- int H, i, j, k, l, r, cc, cc1;
- int nNotDone;
- final int nBhtab;
- final int[] eclass = getEclass();
- for (i = 0; i < nblock; i++) {
- eclass[i] = 0;
- }
- /*--
- LBZ2: Initial 1-char radix sort to generate
- initial fmap and initial BH bits.
- --*/
- for (i = 0; i < nblock; i++) {
- ftab[block[i] & 0xff]++;
- }
- for (i = 1; i < 257; i++) {
- ftab[i] += ftab[i - 1];
- }
- for (i = 0; i < nblock; i++) {
- j = block[i] & 0xff;
- k = ftab[j] - 1;
- ftab[j] = k;
- fmap[k] = i;
- }
- nBhtab = 64 + nblock;
- final BitSet bhtab = new BitSet(nBhtab);
- for (i = 0; i < 256; i++) {
- bhtab.set(ftab[i]);
- }
- /*--
- LBZ2: Inductively refine the buckets. Kind-of an
- "exponential radix sort" (!), inspired by the
- Manber-Myers suffix array construction algorithm.
- --*/
- /*-- LBZ2: set sentinel bits for block-end detection --*/
- for (i = 0; i < 32; i++) {
- bhtab.set(nblock + 2 * i);
- bhtab.clear(nblock + 2 * i + 1);
- }
- /*-- LBZ2: the log(N) loop --*/
- H = 1;
- while (true) {
- j = 0;
- for (i = 0; i < nblock; i++) {
- if (bhtab.get(i)) {
- j = i;
- }
- k = fmap[i] - H;
- if (k < 0) {
- k += nblock;
- }
- eclass[k] = j;
- }
- nNotDone = 0;
- r = -1;
- while (true) {
- /*-- LBZ2: find the next non-singleton bucket --*/
- k = r + 1;
- k = bhtab.nextClearBit(k);
- l = k - 1;
- if (l >= nblock) {
- break;
- }
- k = bhtab.nextSetBit(k + 1);
- r = k - 1;
- if (r >= nblock) {
- break;
- }
- /*-- LBZ2: now [l, r] bracket current bucket --*/
- if (r > l) {
- nNotDone += r - l + 1;
- fallbackQSort3(fmap, eclass, l, r);
- /*-- LBZ2: scan bucket and generate header bits-- */
- cc = -1;
- for (i = l; i <= r; i++) {
- cc1 = eclass[fmap[i]];
- if (cc != cc1) {
- bhtab.set(i);
- cc = cc1;
- }
- }
- }
- }
- H *= 2;
- if (H > nblock || nNotDone == 0) {
- break;
- }
- }
- }
- private int[] fpop(final int sp) {
- return new int[] { stack_ll[sp], stack_hh[sp] };
- }
- private void fpush(final int sp, final int lz, final int hz) {
- stack_ll[sp] = lz;
- stack_hh[sp] = hz;
- }
- /**
- * swaps two values in fmap
- */
- private void fswap(final int[] fmap, final int zz1, final int zz2) {
- final int zztmp = fmap[zz1];
- fmap[zz1] = fmap[zz2];
- fmap[zz2] = zztmp;
- }
- /**
- * swaps two intervals starting at yyp1 and yyp2 of length yyn inside fmap.
- */
- private void fvswap(final int[] fmap, int yyp1, int yyp2, int yyn) {
- while (yyn > 0) {
- fswap(fmap, yyp1, yyp2);
- yyp1++;
- yyp2++;
- yyn--;
- }
- }
- private int[] getEclass() {
- if (eclass == null) {
- eclass = new int[quadrant.length / 2];
- }
- return eclass;
- }
- /**
- * Method "mainQSort3", file "blocksort.c", BZip2 1.0.2
- */
- private void mainQSort3(final BZip2CompressorOutputStream.Data dataShadow, final int loSt, final int hiSt, final int dSt, final int last) {
- final int[] stack_ll = this.stack_ll;
- final int[] stack_hh = this.stack_hh;
- final int[] stack_dd = this.stack_dd;
- final int[] fmap = dataShadow.fmap;
- final byte[] block = dataShadow.block;
- stack_ll[0] = loSt;
- stack_hh[0] = hiSt;
- stack_dd[0] = dSt;
- for (int sp = 1; --sp >= 0;) {
- final int lo = stack_ll[sp];
- final int hi = stack_hh[sp];
- final int d = stack_dd[sp];
- if (hi - lo < SMALL_THRESH || d > DEPTH_THRESH) {
- if (mainSimpleSort(dataShadow, lo, hi, d, last)) {
- return;
- }
- } else {
- final int d1 = d + 1;
- final int med = med3(block[fmap[lo] + d1] & 0xff, block[fmap[hi] + d1] & 0xff, block[fmap[lo + hi >>> 1] + d1] & 0xff);
- int unLo = lo;
- int unHi = hi;
- int ltLo = lo;
- int gtHi = hi;
- while (true) {
- while (unLo <= unHi) {
- final int n = (block[fmap[unLo] + d1] & 0xff) - med;
- if (n == 0) {
- final int temp = fmap[unLo];
- fmap[unLo++] = fmap[ltLo];
- fmap[ltLo++] = temp;
- } else if (n < 0) {
- unLo++;
- } else {
- break;
- }
- }
- while (unLo <= unHi) {
- final int n = (block[fmap[unHi] + d1] & 0xff) - med;
- if (n == 0) {
- final int temp = fmap[unHi];
- fmap[unHi--] = fmap[gtHi];
- fmap[gtHi--] = temp;
- } else if (n > 0) {
- unHi--;
- } else {
- break;
- }
- }
- if (unLo > unHi) {
- break;
- }
- final int temp = fmap[unLo];
- fmap[unLo++] = fmap[unHi];
- fmap[unHi--] = temp;
- }
- if (gtHi < ltLo) {
- stack_ll[sp] = lo;
- stack_hh[sp] = hi;
- stack_dd[sp] = d1;
- } else {
- int n = Math.min(ltLo - lo, unLo - ltLo);
- vswap(fmap, lo, unLo - n, n);
- int m = Math.min(hi - gtHi, gtHi - unHi);
- vswap(fmap, unLo, hi - m + 1, m);
- n = lo + unLo - ltLo - 1;
- m = hi - (gtHi - unHi) + 1;
- stack_ll[sp] = lo;
- stack_hh[sp] = n;
- stack_dd[sp] = d;
- sp++;
- stack_ll[sp] = n + 1;
- stack_hh[sp] = m - 1;
- stack_dd[sp] = d1;
- sp++;
- stack_ll[sp] = m;
- stack_hh[sp] = hi;
- stack_dd[sp] = d;
- }
- sp++;
- }
- }
- }
- /**
- * This is the most hammered method of this class.
- *
- * <p>
- * This is the version using unrolled loops. Normally I never use such ones in Java code. The unrolling has shown a noticeable performance improvement on
- * JRE 1.4.2 (Linux i586 / HotSpot Client). Of course it depends on the JIT compiler of the vm.
- * </p>
- */
- private boolean mainSimpleSort(final BZip2CompressorOutputStream.Data dataShadow, final int lo, final int hi, final int d, final int lastShadow) {
- final int bigN = hi - lo + 1;
- if (bigN < 2) {
- return this.firstAttempt && this.workDone > this.workLimit;
- }
- int hp = 0;
- while (INCS[hp] < bigN) {
- hp++;
- }
- final int[] fmap = dataShadow.fmap;
- final char[] quadrant = this.quadrant;
- final byte[] block = dataShadow.block;
- final int lastPlus1 = lastShadow + 1;
- final boolean firstAttemptShadow = this.firstAttempt;
- final int workLimitShadow = this.workLimit;
- int workDoneShadow = this.workDone;
- // Following block contains unrolled code which could be shortened by
- // coding it in additional loops.
- HP: while (--hp >= 0) {
- final int h = INCS[hp];
- final int mj = lo + h - 1;
- for (int i = lo + h; i <= hi;) {
- // copy
- for (int k = 3; i <= hi && --k >= 0; i++) {
- final int v = fmap[i];
- final int vd = v + d;
- int j = i;
- // for (int a;
- // (j > mj) && mainGtU((a = fmap[j - h]) + d, vd,
- // block, quadrant, lastShadow);
- // j -= h) {
- // fmap[j] = a;
- // }
- //
- // unrolled version:
- // start inline mainGTU
- boolean onceRunned = false;
- int a = 0;
- HAMMER: while (true) {
- if (onceRunned) {
- fmap[j] = a;
- if ((j -= h) <= mj) { // NOSONAR
- break HAMMER;
- }
- } else {
- onceRunned = true;
- }
- a = fmap[j - h];
- int i1 = a + d;
- int i2 = vd;
- // following could be done in a loop, but
- // unrolled it for performance:
- if (block[i1 + 1] == block[i2 + 1]) {
- if (block[i1 + 2] == block[i2 + 2]) {
- if (block[i1 + 3] == block[i2 + 3]) {
- if (block[i1 + 4] == block[i2 + 4]) {
- if (block[i1 + 5] == block[i2 + 5]) {
- if (block[i1 += 6] == block[i2 += 6]) { // NOSONAR
- int x = lastShadow;
- X: while (x > 0) {
- x -= 4;
- if (block[i1 + 1] == block[i2 + 1]) {
- if (quadrant[i1] == quadrant[i2]) {
- if (block[i1 + 2] == block[i2 + 2]) {
- if (quadrant[i1 + 1] == quadrant[i2 + 1]) {
- if (block[i1 + 3] == block[i2 + 3]) {
- if (quadrant[i1 + 2] == quadrant[i2 + 2]) {
- if (block[i1 + 4] == block[i2 + 4]) {
- if (quadrant[i1 + 3] == quadrant[i2 + 3]) {
- if ((i1 += 4) >= lastPlus1) { // NOSONAR
- i1 -= lastPlus1;
- }
- if ((i2 += 4) >= lastPlus1) { // NOSONAR
- i2 -= lastPlus1;
- }
- workDoneShadow++;
- continue X;
- }
- if (quadrant[i1 + 3] > quadrant[i2 + 3]) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if (quadrant[i1 + 2] > quadrant[i2 + 2]) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if (quadrant[i1 + 1] > quadrant[i2 + 1]) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if (quadrant[i1] > quadrant[i2]) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
- continue HAMMER;
- }
- break HAMMER;
- }
- break HAMMER;
- } // while x > 0
- if ((block[i1] & 0xff) > (block[i2] & 0xff)) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if ((block[i1 + 5] & 0xff) > (block[i2 + 5] & 0xff)) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
- continue HAMMER;
- }
- break HAMMER;
- }
- if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
- continue HAMMER;
- }
- break HAMMER;
- } // HAMMER
- // end inline mainGTU
- fmap[j] = v;
- }
- if (firstAttemptShadow && i <= hi && workDoneShadow > workLimitShadow) {
- break HP;
- }
- }
- }
- this.workDone = workDoneShadow;
- return firstAttemptShadow && workDoneShadow > workLimitShadow;
- }
- void mainSort(final BZip2CompressorOutputStream.Data dataShadow, final int lastShadow) {
- final int[] runningOrder = this.mainSort_runningOrder;
- final int[] copy = this.mainSort_copy;
- final boolean[] bigDone = this.mainSort_bigDone;
- final int[] ftab = this.ftab;
- final byte[] block = dataShadow.block;
- final int[] fmap = dataShadow.fmap;
- final char[] quadrant = this.quadrant;
- final int workLimitShadow = this.workLimit;
- final boolean firstAttemptShadow = this.firstAttempt;
- // LBZ2: Set up the 2-byte frequency table
- Arrays.fill(ftab, 0);
- /*
- * In the various block-sized structures, live data runs from 0 to last+NUM_OVERSHOOT_BYTES inclusive. First, set up the overshoot area for block.
- */
- for (int i = 0; i < BZip2Constants.NUM_OVERSHOOT_BYTES; i++) {
- block[lastShadow + i + 2] = block[i % (lastShadow + 1) + 1];
- }
- for (int i = lastShadow + BZip2Constants.NUM_OVERSHOOT_BYTES + 1; --i >= 0;) {
- quadrant[i] = 0;
- }
- block[0] = block[lastShadow + 1];
- // LBZ2: Complete the initial radix sort:
- int c1 = block[0] & 0xff;
- for (int i = 0; i <= lastShadow; i++) {
- final int c2 = block[i + 1] & 0xff;
- ftab[(c1 << 8) + c2]++;
- c1 = c2;
- }
- for (int i = 1; i <= 65536; i++) {
- ftab[i] += ftab[i - 1];
- }
- c1 = block[1] & 0xff;
- for (int i = 0; i < lastShadow; i++) {
- final int c2 = block[i + 2] & 0xff;
- fmap[--ftab[(c1 << 8) + c2]] = i;
- c1 = c2;
- }
- fmap[--ftab[((block[lastShadow + 1] & 0xff) << 8) + (block[1] & 0xff)]] = lastShadow;
- /*
- * LBZ2: Now ftab contains the first loc of every small bucket. Calculate the running order, from smallest to largest big bucket.
- */
- for (int i = 256; --i >= 0;) {
- bigDone[i] = false;
- runningOrder[i] = i;
- }
- // h = 364, 121, 40, 13, 4, 1
- for (int h = 364; h != 1;) { // NOSONAR
- h /= 3;
- for (int i = h; i <= 255; i++) {
- final int vv = runningOrder[i];
- final int a = ftab[vv + 1 << 8] - ftab[vv << 8];
- final int b = h - 1;
- int j = i;
- for (int ro = runningOrder[j - h]; ftab[ro + 1 << 8] - ftab[ro << 8] > a; ro = runningOrder[j - h]) {
- runningOrder[j] = ro;
- j -= h;
- if (j <= b) {
- break;
- }
- }
- runningOrder[j] = vv;
- }
- }
- /*
- * LBZ2: The main sorting loop.
- */
- for (int i = 0; i <= 255; i++) {
- /*
- * LBZ2: Process big buckets, starting with the least full.
- */
- final int ss = runningOrder[i];
- // Step 1:
- /*
- * LBZ2: Complete the big bucket [ss] by quicksorting any unsorted small buckets [ss, j]. Hopefully previous pointer-scanning phases have already
- * completed many of the small buckets [ss, j], so we don't have to sort them at all.
- */
- for (int j = 0; j <= 255; j++) {
- final int sb = (ss << 8) + j;
- final int ftab_sb = ftab[sb];
- if ((ftab_sb & SETMASK) != SETMASK) {
- final int lo = ftab_sb & CLEARMASK;
- final int hi = (ftab[sb + 1] & CLEARMASK) - 1;
- if (hi > lo) {
- mainQSort3(dataShadow, lo, hi, 2, lastShadow);
- if (firstAttemptShadow && this.workDone > workLimitShadow) {
- return;
- }
- }
- ftab[sb] = ftab_sb | SETMASK;
- }
- }
- // Step 2:
- // LBZ2: Now scan this big bucket so as to synthesise the
- // sorted order for small buckets [t, ss] for all t != ss.
- for (int j = 0; j <= 255; j++) {
- copy[j] = ftab[(j << 8) + ss] & CLEARMASK;
- }
- for (int j = ftab[ss << 8] & CLEARMASK, hj = ftab[ss + 1 << 8] & CLEARMASK; j < hj; j++) {
- final int fmap_j = fmap[j];
- c1 = block[fmap_j] & 0xff;
- if (!bigDone[c1]) {
- fmap[copy[c1]] = fmap_j == 0 ? lastShadow : fmap_j - 1;
- copy[c1]++;
- }
- }
- for (int j = 256; --j >= 0;) {
- ftab[(j << 8) + ss] |= SETMASK;
- }
- // Step 3:
- /*
- * LBZ2: The ss big bucket is now done. Record this fact, and update the quadrant descriptors. Remember to update quadrants in the overshoot area
- * too, if necessary. The "if (i < 255)" test merely skips this updating for the last bucket processed, since updating for the last bucket is
- * pointless.
- */
- bigDone[ss] = true;
- if (i < 255) {
- final int bbStart = ftab[ss << 8] & CLEARMASK;
- final int bbSize = (ftab[ss + 1 << 8] & CLEARMASK) - bbStart;
- int shifts = 0;
- while (bbSize >> shifts > 65534) {
- shifts++;
- }
- for (int j = 0; j < bbSize; j++) {
- final int a2update = fmap[bbStart + j];
- final char qVal = (char) (j >> shifts);
- quadrant[a2update] = qVal;
- if (a2update < BZip2Constants.NUM_OVERSHOOT_BYTES) {
- quadrant[a2update + lastShadow + 1] = qVal;
- }
- }
- }
- }
- }
- }