001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.geometry.euclidean.threed; 018 019import java.text.MessageFormat; 020import java.util.ArrayList; 021import java.util.Arrays; 022import java.util.Collection; 023import java.util.List; 024import java.util.function.BiFunction; 025 026import org.apache.commons.geometry.core.partitioning.HyperplaneBoundedRegion; 027import org.apache.commons.geometry.core.partitioning.Split; 028import org.apache.commons.geometry.core.partitioning.SplitLocation; 029import org.apache.commons.geometry.euclidean.internal.EuclideanUtils; 030import org.apache.commons.geometry.euclidean.threed.line.Line3D; 031import org.apache.commons.geometry.euclidean.threed.line.LineConvexSubset3D; 032import org.apache.commons.geometry.euclidean.twod.ConvexArea; 033import org.apache.commons.geometry.euclidean.twod.Line; 034import org.apache.commons.geometry.euclidean.twod.LineConvexSubset; 035import org.apache.commons.geometry.euclidean.twod.Lines; 036import org.apache.commons.geometry.euclidean.twod.RegionBSPTree2D; 037import org.apache.commons.geometry.euclidean.twod.Vector2D; 038import org.apache.commons.geometry.euclidean.twod.path.LinePath; 039import org.apache.commons.numbers.core.Precision; 040 041/** Class containing factory methods for constructing {@link Plane} and {@link PlaneSubset} instances. 042 */ 043public final class Planes { 044 045 /** Utility class; no instantiation. */ 046 private Planes() { 047 } 048 049 /** Build a plane from a point and two (on plane) vectors. 050 * @param p the provided point (on plane) 051 * @param u u vector (on plane) 052 * @param v v vector (on plane) 053 * @param precision precision context used to compare floating point values 054 * @return a new plane 055 * @throws IllegalArgumentException if the norm of the given values is zero, NaN, or infinite. 056 */ 057 public static EmbeddingPlane fromPointAndPlaneVectors(final Vector3D p, final Vector3D u, final Vector3D v, 058 final Precision.DoubleEquivalence precision) { 059 final Vector3D.Unit uNorm = u.normalize(); 060 final Vector3D.Unit vNorm = uNorm.orthogonal(v); 061 final Vector3D.Unit wNorm = uNorm.cross(vNorm).normalize(); 062 final double originOffset = -p.dot(wNorm); 063 064 return new EmbeddingPlane(uNorm, vNorm, wNorm, originOffset, precision); 065 } 066 067 /** Build a plane from a normal. 068 * Chooses origin as point on plane. 069 * @param normal normal direction to the plane 070 * @param precision precision context used to compare floating point values 071 * @return a new plane 072 * @throws IllegalArgumentException if the norm of the given values is zero, NaN, or infinite. 073 */ 074 public static Plane fromNormal(final Vector3D normal, final Precision.DoubleEquivalence precision) { 075 return fromPointAndNormal(Vector3D.ZERO, normal, precision); 076 } 077 078 /** Build a plane from a point and a normal. 079 * 080 * @param p point belonging to the plane 081 * @param normal normal direction to the plane 082 * @param precision precision context used to compare floating point values 083 * @return a new plane 084 * @throws IllegalArgumentException if the norm of the given values is zero, NaN, or infinite. 085 */ 086 public static Plane fromPointAndNormal(final Vector3D p, final Vector3D normal, 087 final Precision.DoubleEquivalence precision) { 088 final Vector3D.Unit unitNormal = normal.normalize(); 089 final double originOffset = -p.dot(unitNormal); 090 091 return new Plane(unitNormal, originOffset, precision); 092 } 093 094 /** Build a plane from three points. 095 * <p> 096 * The plane is oriented in the direction of {@code (p2-p1) ^ (p3-p1)} 097 * </p> 098 * 099 * @param p1 first point belonging to the plane 100 * @param p2 second point belonging to the plane 101 * @param p3 third point belonging to the plane 102 * @param precision precision context used to compare floating point values 103 * @return a new plane 104 * @throws IllegalArgumentException if the points do not define a unique plane 105 */ 106 public static Plane fromPoints(final Vector3D p1, final Vector3D p2, final Vector3D p3, 107 final Precision.DoubleEquivalence precision) { 108 return fromPoints(Arrays.asList(p1, p2, p3), precision); 109 } 110 111 /** Construct a plane from a collection of points lying on the plane. The plane orientation is 112 * determined by the overall orientation of the point sequence. For example, if the points wind 113 * around the z-axis in a counter-clockwise direction, then the plane normal will point up the 114 * +z axis. If the points wind in the opposite direction, then the plane normal will point down 115 * the -z axis. The {@code u} vector for the plane is set to the first non-zero vector between 116 * points in the sequence (ie, the first direction in the path). 117 * 118 * @param pts collection of sequenced points lying on the plane 119 * @param precision precision context used to compare floating point values 120 * @return a new plane containing the given points 121 * @throws IllegalArgumentException if the given collection does not contain at least 3 points or the 122 * points do not define a unique plane 123 */ 124 public static Plane fromPoints(final Collection<Vector3D> pts, final Precision.DoubleEquivalence precision) { 125 return new PlaneBuilder(pts, precision).build(); 126 } 127 128 /** Create a new plane subset from a plane and an embedded convex subspace area. 129 * @param plane embedding plane for the area 130 * @param area area embedded in the plane 131 * @return a new convex sub plane instance 132 */ 133 public static PlaneConvexSubset subsetFromConvexArea(final EmbeddingPlane plane, final ConvexArea area) { 134 if (area.isFinite()) { 135 // prefer a vertex-based representation for finite areas 136 final List<Vector3D> vertices = plane.toSpace(area.getVertices()); 137 return fromConvexPlanarVertices(plane, vertices); 138 } 139 140 return new EmbeddedAreaPlaneConvexSubset(plane, area); 141 } 142 143 /** Create a new convex polygon from the given sequence of vertices. The vertices must define a unique 144 * plane, meaning that at least 3 unique vertices must be given. The given sequence is assumed to be closed, 145 * ie that an edge exists between the last vertex and the first. 146 * @param pts collection of points defining the convex polygon 147 * @param precision precision context used to compare floating point values 148 * @return a new convex polygon defined by the given sequence of vertices 149 * @throws IllegalArgumentException if fewer than 3 vertices are given or the vertices do not define a 150 * unique plane 151 * @see #fromPoints(Collection, Precision.DoubleEquivalence) 152 */ 153 public static ConvexPolygon3D convexPolygonFromVertices(final Collection<Vector3D> pts, 154 final Precision.DoubleEquivalence precision) { 155 final List<Vector3D> vertices = new ArrayList<>(pts.size()); 156 final Plane plane = new PlaneBuilder(pts, precision).buildForConvexPolygon(vertices); 157 158 // make sure that the first point is not repeated at the end 159 final Vector3D firstPt = vertices.get(0); 160 final Vector3D lastPt = vertices.get(vertices.size() - 1); 161 if (firstPt.eq(lastPt, precision)) { 162 vertices.remove(vertices.size() - 1); 163 } 164 165 if (vertices.size() == EuclideanUtils.TRIANGLE_VERTEX_COUNT) { 166 return new SimpleTriangle3D(plane, vertices.get(0), vertices.get(1), vertices.get(2)); 167 } 168 return new VertexListConvexPolygon3D(plane, vertices); 169 } 170 171 /** Construct a triangle from three vertices. The triangle plane is oriented such that the points 172 * are arranged in a counter-clockwise order when looking down the plane normal. 173 * @param p1 first vertex 174 * @param p2 second vertex 175 * @param p3 third vertex 176 * @param precision precision context used for floating point comparisons 177 * @return a triangle constructed from the three vertices 178 * @throws IllegalArgumentException if the points do not define a unique plane 179 */ 180 public static Triangle3D triangleFromVertices(final Vector3D p1, final Vector3D p2, final Vector3D p3, 181 final Precision.DoubleEquivalence precision) { 182 final Plane plane = fromPoints(p1, p2, p3, precision); 183 return new SimpleTriangle3D(plane, p1, p2, p3); 184 } 185 186 /** Construct a list of {@link Triangle3D} instances from a set of vertices and arrays of face indices. 187 * For example, the following code constructs a list of triangles forming a square pyramid. 188 * <pre> 189 * Precision.DoubleEquivalence precision = Precision.doubleEquivalenceOfEpsilon(1e-10); 190 * 191 * Vector3D[] vertices = { 192 * Vector3D.ZERO, 193 * Vector3D.of(1, 0, 0), 194 * Vector3D.of(1, 1, 0), 195 * Vector3D.of(0, 1, 0), 196 * Vector3D.of(0.5, 0.5, 4) 197 * }; 198 * 199 * int[][] faceIndices = { 200 * {0, 2, 1}, 201 * {0, 3, 2}, 202 * {0, 1, 4}, 203 * {1, 2, 4}, 204 * {2, 3, 4}, 205 * {3, 0, 4} 206 * }; 207 * 208 * List<Triangle3D> triangles = Planes.indexedTriangles(vertices, faceIndices, TEST_PRECISION); 209 * </pre> 210 * @param vertices vertices available for use in triangle construction 211 * @param faceIndices array of indices for each triangular face; each entry in the array is an array of 212 * 3 index values into {@code vertices}, defining the 3 vertices that will be used to construct the 213 * triangle 214 * @param precision precision context used for floating point comparisons 215 * @return a list of triangles constructed from the set of vertices and face indices 216 * @throws IllegalArgumentException if any face index array does not contain exactly 3 elements or a set 217 * of 3 vertices do not define a plane 218 * @throws IndexOutOfBoundsException if any index into {@code vertices} is out of bounds 219 */ 220 public static List<Triangle3D> indexedTriangles(final Vector3D[] vertices, final int[][] faceIndices, 221 final Precision.DoubleEquivalence precision) { 222 return indexedTriangles(Arrays.asList(vertices), faceIndices, precision); 223 } 224 225 /** Construct a list of {@link Triangle3D} instances from a set of vertices and arrays of face indices. 226 * @param vertices vertices available for use in triangle construction 227 * @param faceIndices array of indices for each triangular face; each entry in the array is an array of 228 * 3 index values into {@code vertices}, defining the 3 vertices that will be used to construct the 229 * triangle 230 * @param precision precision context used for floating point comparisons 231 * @return a list of triangles constructed from the set of vertices and face indices 232 * @throws IllegalArgumentException if any face index array does not contain exactly 3 elements or a set 233 * of 3 vertices do not define a plane 234 * @throws IndexOutOfBoundsException if any index into {@code vertices} is out of bounds 235 * @see #indexedTriangles(Vector3D[], int[][], Precision.DoubleEquivalence) 236 */ 237 public static List<Triangle3D> indexedTriangles(final List<? extends Vector3D> vertices, final int[][] faceIndices, 238 final Precision.DoubleEquivalence precision) { 239 240 final int numFaces = faceIndices.length; 241 final List<Triangle3D> triangles = new ArrayList<>(numFaces); 242 243 int[] face; 244 for (int i = 0; i < numFaces; ++i) { 245 face = faceIndices[i]; 246 if (face.length != EuclideanUtils.TRIANGLE_VERTEX_COUNT) { 247 throw new IllegalArgumentException(MessageFormat.format( 248 "Invalid number of vertex indices for face at index {0}: expected {1} but found {2}", 249 i, EuclideanUtils.TRIANGLE_VERTEX_COUNT, face.length)); 250 } 251 252 triangles.add(triangleFromVertices( 253 vertices.get(face[0]), 254 vertices.get(face[1]), 255 vertices.get(face[2]), 256 precision 257 )); 258 } 259 260 return triangles; 261 } 262 263 /** Construct a list of {@link ConvexPolygon3D} instances from a set of vertices and arrays of face indices. Each 264 * face must contain at least 3 vertices but the number of vertices per face does not need to be constant. 265 * For example, the following code constructs a list of convex polygons forming a square pyramid. 266 * Note that the first face (the pyramid base) uses a different number of vertices than the other faces. 267 * <pre> 268 * Precision.DoubleEquivalence precision = Precision.doubleEquivalenceOfEpsilon(1e-10); 269 * 270 * Vector3D[] vertices = { 271 * Vector3D.ZERO, 272 * Vector3D.of(1, 0, 0), 273 * Vector3D.of(1, 1, 0), 274 * Vector3D.of(0, 1, 0), 275 * Vector3D.of(0.5, 0.5, 4) 276 * }; 277 * 278 * int[][] faceIndices = { 279 * {0, 3, 2, 1}, // square base 280 * {0, 1, 4}, 281 * {1, 2, 4}, 282 * {2, 3, 4}, 283 * {3, 0, 4} 284 * }; 285 * 286 * List<ConvexPolygon3D> polygons = Planes.indexedConvexPolygons(vertices, faceIndices, precision); 287 * </pre> 288 * @param vertices vertices available for use in convex polygon construction 289 * @param faceIndices array of indices for each triangular face; each entry in the array is an array of 290 * at least 3 index values into {@code vertices}, defining the vertices that will be used to construct the 291 * convex polygon 292 * @param precision precision context used for floating point comparisons 293 * @return a list of convex polygons constructed from the set of vertices and face indices 294 * @throws IllegalArgumentException if any face index array does not contain at least 3 elements or a set 295 * of vertices do not define a planar convex polygon 296 * @throws IndexOutOfBoundsException if any index into {@code vertices} is out of bounds 297 */ 298 public static List<ConvexPolygon3D> indexedConvexPolygons(final Vector3D[] vertices, final int[][] faceIndices, 299 final Precision.DoubleEquivalence precision) { 300 return indexedConvexPolygons(Arrays.asList(vertices), faceIndices, precision); 301 } 302 303 /** Construct a list of {@link ConvexPolygon3D} instances from a set of vertices and arrays of face indices. Each 304 * face must contain at least 3 vertices but the number of vertices per face does not need to be constant. 305 * @param vertices vertices available for use in convex polygon construction 306 * @param faceIndices array of indices for each triangular face; each entry in the array is an array of 307 * at least 3 index values into {@code vertices}, defining the vertices that will be used to construct the 308 * convex polygon 309 * @param precision precision context used for floating point comparisons 310 * @return a list of convex polygons constructed from the set of vertices and face indices 311 * @throws IllegalArgumentException if any face index array does not contain at least 3 elements or a set 312 * of vertices do not define a planar convex polygon 313 * @throws IndexOutOfBoundsException if any index into {@code vertices} is out of bounds 314 * @see #indexedConvexPolygons(Vector3D[], int[][], Precision.DoubleEquivalence) 315 */ 316 public static List<ConvexPolygon3D> indexedConvexPolygons(final List<? extends Vector3D> vertices, 317 final int[][] faceIndices, final Precision.DoubleEquivalence precision) { 318 final int numFaces = faceIndices.length; 319 final List<ConvexPolygon3D> polygons = new ArrayList<>(numFaces); 320 final List<Vector3D> faceVertices = new ArrayList<>(); 321 322 int[] face; 323 for (int i = 0; i < numFaces; ++i) { 324 face = faceIndices[i]; 325 if (face.length < EuclideanUtils.TRIANGLE_VERTEX_COUNT) { 326 throw new IllegalArgumentException(MessageFormat.format( 327 "Invalid number of vertex indices for face at index {0}: required at least {1} but found {2}", 328 i, EuclideanUtils.TRIANGLE_VERTEX_COUNT, face.length)); 329 } 330 331 for (final int vertexIndex : face) { 332 faceVertices.add(vertices.get(vertexIndex)); 333 } 334 335 polygons.add(convexPolygonFromVertices( 336 faceVertices, 337 precision 338 )); 339 340 faceVertices.clear(); 341 } 342 343 return polygons; 344 } 345 346 /** Get the boundaries of a 3D region created by extruding a polygon defined by a list of vertices. The ends 347 * ("top" and "bottom") of the extruded 3D region are flat while the sides follow the boundaries of the original 348 * 2D region. 349 * @param vertices vertices forming the 2D polygon to extrude 350 * @param plane plane to extrude the 2D polygon from 351 * @param extrusionVector vector to extrude the polygon vertices through 352 * @param precision precision context used to construct the 3D region boundaries 353 * @return the boundaries of the extruded 3D region 354 * @throws IllegalStateException if {@code vertices} contains only a single unique vertex 355 * @throws IllegalArgumentException if regions of non-zero size cannot be produced with the 356 * given plane and extrusion vector. This occurs when the extrusion vector has zero length 357 * or is orthogonal to the plane normal 358 * @see LinePath#fromVertexLoop(Collection, Precision.DoubleEquivalence) 359 * @see #extrude(LinePath, EmbeddingPlane, Vector3D, Precision.DoubleEquivalence) 360 */ 361 public static List<PlaneConvexSubset> extrudeVertexLoop(final List<Vector2D> vertices, 362 final EmbeddingPlane plane, final Vector3D extrusionVector, final Precision.DoubleEquivalence precision) { 363 final LinePath path = LinePath.fromVertexLoop(vertices, precision); 364 return extrude(path, plane, extrusionVector, precision); 365 } 366 367 /** Get the boundaries of the 3D region created by extruding a 2D line path. The ends ("top" and "bottom") of 368 * the extruded 3D region are flat while the sides follow the boundaries of the original 2D region. The path is 369 * converted to a BSP tree before extrusion. 370 * @param path path to extrude 371 * @param plane plane to extrude the path from 372 * @param extrusionVector vector to extrude the polygon points through 373 * @param precision precision precision context used to construct the 3D region boundaries 374 * @return the boundaries of the extruded 3D region 375 * @throws IllegalArgumentException if regions of non-zero size cannot be produced with the 376 * given plane and extrusion vector. This occurs when the extrusion vector has zero length 377 * or is orthogonal to the plane normal 378 * @see #extrude(RegionBSPTree2D, EmbeddingPlane, Vector3D, Precision.DoubleEquivalence) 379 */ 380 public static List<PlaneConvexSubset> extrude(final LinePath path, final EmbeddingPlane plane, 381 final Vector3D extrusionVector, final Precision.DoubleEquivalence precision) { 382 return extrude(path.toTree(), plane, extrusionVector, precision); 383 } 384 385 /** Get the boundaries of the 3D region created by extruding a 2D region. The ends ("top" and "bottom") of 386 * the extruded 3D region are flat while the sides follow the boundaries of the original 2D region. 387 * @param region region to extrude 388 * @param plane plane to extrude the region from 389 * @param extrusionVector vector to extrude the region points through 390 * @param precision precision precision context used to construct the 3D region boundaries 391 * @return the boundaries of the extruded 3D region 392 * @throws IllegalArgumentException if regions of non-zero size cannot be produced with the 393 * given plane and extrusion vector. This occurs when the extrusion vector has zero length 394 * or is orthogonal to the plane normal 395 */ 396 public static List<PlaneConvexSubset> extrude(final RegionBSPTree2D region, final EmbeddingPlane plane, 397 final Vector3D extrusionVector, final Precision.DoubleEquivalence precision) { 398 return new PlaneRegionExtruder(plane, extrusionVector, precision).extrude(region); 399 } 400 401 /** Get the unique intersection of the plane subset with the given line. Null is 402 * returned if no unique intersection point exists (ie, the line and plane are 403 * parallel or coincident) or the line does not intersect the plane subset. 404 * @param planeSubset plane subset to intersect with 405 * @param line line to intersect with this plane subset 406 * @return the unique intersection point between the line and this plane subset 407 * or null if no such point exists. 408 */ 409 static Vector3D intersection(final PlaneSubset planeSubset, final Line3D line) { 410 final Vector3D pt = planeSubset.getPlane().intersection(line); 411 return (pt != null && planeSubset.contains(pt)) ? pt : null; 412 } 413 414 /** Get the unique intersection of the plane subset with the given line subset. Null 415 * is returned if the underlying line and plane do not have a unique intersection 416 * point (ie, they are parallel or coincident) or the intersection point is unique 417 * but is not contained in both the line subset and plane subset. 418 * @param planeSubset plane subset to intersect with 419 * @param lineSubset line subset to intersect with 420 * @return the unique intersection point between this plane subset and the argument or 421 * null if no such point exists. 422 */ 423 static Vector3D intersection(final PlaneSubset planeSubset, final LineConvexSubset3D lineSubset) { 424 final Vector3D pt = intersection(planeSubset, lineSubset.getLine()); 425 return (pt != null && lineSubset.contains(pt)) ? pt : null; 426 } 427 428 /** Validate that the actual plane contains the same points as the expected plane, throwing an exception if not. 429 * The subspace orientations of embedding planes are not considered. 430 * @param expected the expected plane 431 * @param actual the actual plane 432 * @throws IllegalArgumentException if the actual plane is not equivalent to the expected plane 433 */ 434 static void validatePlanesEquivalent(final Plane expected, final Plane actual) { 435 if (!expected.eq(actual, expected.getPrecision())) { 436 throw new IllegalArgumentException("Arguments do not represent the same plane. Expected " + 437 expected + " but was " + actual + "."); 438 } 439 } 440 441 /** Generic split method that uses performs the split using the subspace region of the plane subset. 442 * @param splitter splitting hyperplane 443 * @param subset the plane subset being split 444 * @param factory function used to create new plane subset instances 445 * @param <T> Plane subset implementation type 446 * @return the result of the split operation 447 */ 448 static <T extends PlaneSubset> Split<T> subspaceSplit(final Plane splitter, final T subset, 449 final BiFunction<? super EmbeddingPlane, ? super HyperplaneBoundedRegion<Vector2D>, T> factory) { 450 451 final EmbeddingPlane thisPlane = subset.getPlane().getEmbedding(); 452 453 final Line3D intersection = thisPlane.intersection(splitter); 454 if (intersection == null) { 455 return getNonIntersectingSplitResult(splitter, subset); 456 } else { 457 final EmbeddingPlane embeddingPlane = subset.getPlane().getEmbedding(); 458 459 // the lines intersect; split the subregion 460 final Vector3D intersectionOrigin = intersection.getOrigin(); 461 final Vector2D subspaceP1 = embeddingPlane.toSubspace(intersectionOrigin); 462 final Vector2D subspaceP2 = embeddingPlane.toSubspace(intersectionOrigin.add(intersection.getDirection())); 463 464 final Line subspaceSplitter = Lines.fromPoints(subspaceP1, subspaceP2, thisPlane.getPrecision()); 465 466 final Split<? extends HyperplaneBoundedRegion<Vector2D>> split = 467 subset.getEmbedded().getSubspaceRegion().split(subspaceSplitter); 468 final SplitLocation subspaceSplitLoc = split.getLocation(); 469 470 if (SplitLocation.MINUS == subspaceSplitLoc) { 471 return new Split<>(subset, null); 472 } else if (SplitLocation.PLUS == subspaceSplitLoc) { 473 return new Split<>(null, subset); 474 } 475 476 final T minus = (split.getMinus() != null) ? factory.apply(thisPlane, split.getMinus()) : null; 477 final T plus = (split.getPlus() != null) ? factory.apply(thisPlane, split.getPlus()) : null; 478 479 return new Split<>(minus, plus); 480 } 481 } 482 483 /** Get a split result for cases where the splitting plane and the plane containing the subset being split 484 * do not intersect. Callers are responsible for ensuring that the planes involved do not actually intersect. 485 * @param <T> Plane subset implementation type 486 * @param splitter plane performing the splitting 487 * @param subset subset being split 488 * @return the split result for the non-intersecting split 489 */ 490 private static <T extends PlaneSubset> Split<T> getNonIntersectingSplitResult( 491 final Plane splitter, final T subset) { 492 final Plane plane = subset.getPlane(); 493 494 final double offset = splitter.offset(plane); 495 final int comp = plane.getPrecision().compare(offset, 0.0); 496 497 if (comp < 0) { 498 return new Split<>(subset, null); 499 } else if (comp > 0) { 500 return new Split<>(null, subset); 501 } else { 502 return new Split<>(null, null); 503 } 504 } 505 506 /** Construct a convex polygon 3D from a plane and a list of vertices lying in the plane. Callers are 507 * responsible for ensuring that the vertices lie in the plane and define a convex polygon. 508 * @param plane the plane containing the convex polygon 509 * @param vertices vertices defining the closed, convex polygon. The must must contain at least 3 unique 510 * vertices and should not include the start vertex at the end of the list. 511 * @return a new convex polygon instance 512 * @throws IllegalArgumentException if the size of {@code vertices} if less than 3 513 */ 514 static ConvexPolygon3D fromConvexPlanarVertices(final Plane plane, final List<Vector3D> vertices) { 515 final int size = vertices.size(); 516 517 if (size == EuclideanUtils.TRIANGLE_VERTEX_COUNT) { 518 return new SimpleTriangle3D(plane, vertices.get(0), vertices.get(1), vertices.get(2)); 519 } 520 521 return new VertexListConvexPolygon3D(plane, vertices); 522 } 523 524 /** Convert a convex polygon defined by a plane and list of points into a triangle fan. 525 * @param plane plane containing the convex polygon 526 * @param vertices vertices defining the convex polygon 527 * @return a triangle fan representing the same area as the convex polygon 528 * @throws IllegalArgumentException if fewer than 3 vertices are given 529 */ 530 static List<Triangle3D> convexPolygonToTriangleFan(final Plane plane, final List<Vector3D> vertices) { 531 return EuclideanUtils.convexPolygonToTriangleFan(vertices, 532 tri -> new SimpleTriangle3D(plane, tri.get(0), tri.get(1), tri.get(2))); 533 } 534 535 /** Internal helper class used to construct planes from sequences of points. Instances can be also be 536 * configured to collect lists of unique points found during plane construction and validate that the 537 * defined region is convex. 538 */ 539 private static final class PlaneBuilder { 540 541 /** The point sequence to build a plane for. */ 542 private final Collection<? extends Vector3D> pts; 543 544 /** Precision context used for floating point comparisons. */ 545 private final Precision.DoubleEquivalence precision; 546 547 /** The start point from the point sequence. */ 548 private Vector3D startPt; 549 550 /** The previous point from the point sequence. */ 551 private Vector3D prevPt; 552 553 /** The previous vector from the point sequence, preceding from the {@code startPt} to {@code prevPt}. */ 554 private Vector3D prevVector; 555 556 /** The computed {@code normal} vector for the plane. */ 557 private Vector3D.Unit normal; 558 559 /** The x component of the sum of all cross products from adjacent vectors in the point sequence. */ 560 private double crossSumX; 561 562 /** The y component of the sum of all cross products from adjacent vectors in the point sequence. */ 563 private double crossSumY; 564 565 /** The z component of the sum of all cross products from adjacent vectors in the point sequence. */ 566 private double crossSumZ; 567 568 /** If true, an exception will be thrown if the point sequence is discovered to be non-convex. */ 569 private boolean requireConvex; 570 571 /** List that unique vertices discovered in the input sequence will be added to. */ 572 private List<? super Vector3D> uniqueVertexOutput; 573 574 /** Construct a new build instance for the given point sequence and precision context. 575 * @param pts point sequence 576 * @param precision precision context used to perform floating point comparisons 577 */ 578 PlaneBuilder(final Collection<? extends Vector3D> pts, final Precision.DoubleEquivalence precision) { 579 this.pts = pts; 580 this.precision = precision; 581 } 582 583 /** Build a plane from the configured point sequence. 584 * @return a plane built from the configured point sequence 585 * @throws IllegalArgumentException if the points do not define a plane 586 */ 587 Plane build() { 588 if (pts.size() < EuclideanUtils.TRIANGLE_VERTEX_COUNT) { 589 throw nonPlanar(); 590 } 591 592 pts.forEach(this::processPoint); 593 594 return createPlane(); 595 } 596 597 /** Build a plane from the configured point sequence, validating that the points form a convex region 598 * and adding all discovered unique points to the given list. 599 * @param vertexOutput list that unique points discovered in the point sequence will be added to 600 * @return a plane created from the configured point sequence 601 * @throws IllegalArgumentException if the points do not define a plane or the {@code requireConvex} 602 * flag is true and the points do not define a convex area 603 */ 604 Plane buildForConvexPolygon(final List<? super Vector3D> vertexOutput) { 605 this.requireConvex = true; 606 this.uniqueVertexOutput = vertexOutput; 607 608 return build(); 609 } 610 611 /** Process a point from the point sequence. 612 * @param pt 613 * @throws IllegalArgumentException if the points do not define a plane or the {@code requireConvex} 614 * flag is true and the points do not define a convex area 615 */ 616 private void processPoint(final Vector3D pt) { 617 if (prevPt == null) { 618 startPt = pt; 619 prevPt = pt; 620 621 if (uniqueVertexOutput != null) { 622 uniqueVertexOutput.add(pt); 623 } 624 625 } else if (!prevPt.eq(pt, precision)) { // skip duplicate points 626 final Vector3D vec = startPt.vectorTo(pt); 627 628 if (prevVector != null) { 629 processCrossProduct(prevVector.cross(vec)); 630 } 631 632 if (uniqueVertexOutput != null) { 633 uniqueVertexOutput.add(pt); 634 } 635 636 prevPt = pt; 637 prevVector = vec; 638 } 639 } 640 641 /** Process the computed cross product of two vectors from the input point sequence. The vectors 642 * start at the first point in the sequence and point to adjacent points later in the sequence. 643 * @param cross the cross product of two vectors from the input point sequence 644 * @throws IllegalArgumentException if the points do not define a plane or the {@code requireConvex} 645 * flag is true and the points do not define a convex area 646 */ 647 private void processCrossProduct(final Vector3D cross) { 648 crossSumX += cross.getX(); 649 crossSumY += cross.getY(); 650 crossSumZ += cross.getZ(); 651 652 final double crossNorm = cross.norm(); 653 654 if (!precision.eqZero(crossNorm)) { 655 // the cross product has non-zero magnitude 656 if (normal == null) { 657 // save the first non-zero cross product as our normal 658 normal = cross.normalize(); 659 } else { 660 final double crossDot = normal.dot(cross) / crossNorm; 661 662 // check non-planar before non-convex since the former is a more general type 663 // of issue 664 if (!precision.eq(1.0, Math.abs(crossDot))) { 665 throw nonPlanar(); 666 } else if (requireConvex && crossDot < 0) { 667 throw nonConvex(); 668 } 669 } 670 } 671 } 672 673 /** Construct the plane instance using the value gathered during point processing. 674 * @return the created plane instance 675 * @throws IllegalArgumentException if the point do not define a plane 676 */ 677 private Plane createPlane() { 678 if (normal == null) { 679 throw nonPlanar(); 680 } 681 682 // flip the normal if needed to match the overall orientation of the points 683 if (normal.dot(Vector3D.of(crossSumX, crossSumY, crossSumZ)) < 0) { 684 normal = normal.negate(); 685 } 686 687 // construct the plane 688 final double originOffset = -startPt.dot(normal); 689 690 return new Plane(normal, originOffset, precision); 691 } 692 693 /** Return an exception with a message stating that the points given to this builder do not 694 * define a plane. 695 * @return an exception stating that the points do not define a plane 696 */ 697 private IllegalArgumentException nonPlanar() { 698 return new IllegalArgumentException("Points do not define a plane: " + pts); 699 } 700 701 /** Return an exception with a message stating that the points given to this builder do not 702 * define a convex region. 703 * @return an exception stating that the points do not define a plane 704 */ 705 private IllegalArgumentException nonConvex() { 706 return new IllegalArgumentException("Points do not define a convex region: " + pts); 707 } 708 } 709 710 /** Class designed to create 3D regions by taking a 2D region and extruding from a base plane 711 * through an extrusion vector. The ends ("top" and "bottom") of the extruded 3D region are flat 712 * while the sides follow the boundaries of the original 2D region. 713 */ 714 private static final class PlaneRegionExtruder { 715 /** Base plane to extrude from. */ 716 private final EmbeddingPlane basePlane; 717 718 /** Vector to extrude along; the extruded plane is translated from the base plane by this amount. */ 719 private final Vector3D extrusionVector; 720 721 /** True if the extrusion vector points to the plus side of the base plane. */ 722 private final boolean extrudingOnPlusSide; 723 724 /** Precision context used to create boundaries. */ 725 private final Precision.DoubleEquivalence precision; 726 727 /** Construct a new instance that performs extrusions from {@code basePlane} along {@code extrusionVector}. 728 * @param basePlane base plane to extrude from 729 * @param extrusionVector vector to extrude along 730 * @param precision precision context used to construct boundaries 731 * @throws IllegalArgumentException if the given extrusion vector and plane produce regions 732 * of zero size 733 */ 734 PlaneRegionExtruder(final EmbeddingPlane basePlane, final Vector3D extrusionVector, 735 final Precision.DoubleEquivalence precision) { 736 737 this.basePlane = basePlane; 738 739 // Extruded plane; this forms the end of the 3D region opposite the base plane. 740 final EmbeddingPlane extrudedPlane = basePlane.translate(extrusionVector); 741 742 if (basePlane.contains(extrudedPlane)) { 743 throw new IllegalArgumentException( 744 "Extrusion vector produces regions of zero size: extrusionVector= " + 745 extrusionVector + ", plane= " + basePlane); 746 } 747 748 this.extrusionVector = extrusionVector; 749 this.extrudingOnPlusSide = basePlane.getNormal().dot(extrusionVector) > 0; 750 751 this.precision = precision; 752 } 753 754 /** Extrude the given 2D BSP tree using the configured base plane and extrusion vector. 755 * @param subspaceRegion region to extrude 756 * @return the boundaries of the extruded region 757 */ 758 public List<PlaneConvexSubset> extrude(final RegionBSPTree2D subspaceRegion) { 759 final List<PlaneConvexSubset> extrudedBoundaries = new ArrayList<>(); 760 761 // add the boundaries 762 addEnds(subspaceRegion, extrudedBoundaries); 763 addSides(subspaceRegion, extrudedBoundaries); 764 765 return extrudedBoundaries; 766 } 767 768 /** Add the end ("top" and "bottom") of the extruded subspace region to the result list. 769 * @param subspaceRegion subspace region being extruded. 770 * @param result list to add the boundary results to 771 */ 772 private void addEnds(final RegionBSPTree2D subspaceRegion, final List<? super PlaneConvexSubset> result) { 773 // add the base boundaries 774 final List<ConvexArea> baseAreas = subspaceRegion.toConvex(); 775 776 final List<PlaneConvexSubset> baseList = new ArrayList<>(baseAreas.size()); 777 final List<PlaneConvexSubset> extrudedList = new ArrayList<>(baseAreas.size()); 778 779 final AffineTransformMatrix3D extrudeTransform = AffineTransformMatrix3D.createTranslation(extrusionVector); 780 781 PlaneConvexSubset base; 782 for (final ConvexArea area : baseAreas) { 783 base = subsetFromConvexArea(basePlane, area); 784 if (extrudingOnPlusSide) { 785 base = base.reverse(); 786 } 787 788 baseList.add(base); 789 extrudedList.add(base.transform(extrudeTransform).reverse()); 790 } 791 792 result.addAll(baseList); 793 result.addAll(extrudedList); 794 } 795 796 /** Add the side boundaries of the extruded region to the result list. 797 * @param subspaceRegion subspace region being extruded. 798 * @param result list to add the boundary results to 799 */ 800 private void addSides(final RegionBSPTree2D subspaceRegion, final List<? super PlaneConvexSubset> result) { 801 Vector2D subStartPt; 802 Vector2D subEndPt; 803 804 PlaneConvexSubset boundary; 805 for (final LinePath path : subspaceRegion.getBoundaryPaths()) { 806 for (final LineConvexSubset lineSubset : path.getElements()) { 807 subStartPt = lineSubset.getStartPoint(); 808 subEndPt = lineSubset.getEndPoint(); 809 810 boundary = (subStartPt != null && subEndPt != null) ? 811 extrudeSideFinite(basePlane.toSpace(subStartPt), basePlane.toSpace(subEndPt)) : 812 extrudeSideInfinite(lineSubset); 813 814 result.add(boundary); 815 } 816 } 817 } 818 819 /** Extrude a single, finite boundary forming one of the sides of the extruded region. 820 * @param startPt start point of the boundary 821 * @param endPt end point of the boundary 822 * @return the extruded region side boundary 823 */ 824 private ConvexPolygon3D extrudeSideFinite(final Vector3D startPt, final Vector3D endPt) { 825 final Vector3D extrudedStartPt = startPt.add(extrusionVector); 826 final Vector3D extrudedEndPt = endPt.add(extrusionVector); 827 828 final List<Vector3D> vertices = extrudingOnPlusSide ? 829 Arrays.asList(startPt, endPt, extrudedEndPt, extrudedStartPt) : 830 Arrays.asList(startPt, extrudedStartPt, extrudedEndPt, endPt); 831 832 return convexPolygonFromVertices(vertices, precision); 833 } 834 835 /** Extrude a single, infinite boundary forming one of the sides of the extruded region. 836 * @param lineSubset line subset to extrude 837 * @return the extruded region side boundary 838 */ 839 private PlaneConvexSubset extrudeSideInfinite(final LineConvexSubset lineSubset) { 840 final Vector2D subLinePt = lineSubset.getLine().getOrigin(); 841 final Vector2D subLineDir = lineSubset.getLine().getDirection(); 842 843 final Vector3D linePt = basePlane.toSpace(subLinePt); 844 final Vector3D lineDir = linePt.vectorTo(basePlane.toSpace(subLinePt.add(subLineDir))); 845 846 final EmbeddingPlane sidePlane; 847 if (extrudingOnPlusSide) { 848 sidePlane = fromPointAndPlaneVectors(linePt, lineDir, extrusionVector, precision); 849 } else { 850 sidePlane = fromPointAndPlaneVectors(linePt, extrusionVector, lineDir, precision); 851 } 852 853 final Vector2D sideLineOrigin = sidePlane.toSubspace(linePt); 854 final Vector2D sideLineDir = sideLineOrigin.vectorTo(sidePlane.toSubspace(linePt.add(lineDir))); 855 856 final Vector2D extrudedSideLineOrigin = sidePlane.toSubspace(linePt.add(extrusionVector)); 857 858 final Vector2D sideExtrusionDir = sidePlane.toSubspace(sidePlane.getOrigin().add(extrusionVector)) 859 .normalize(); 860 861 // construct a list of lines forming the bounds of the extruded subspace region 862 final List<Line> lines = new ArrayList<>(); 863 864 // add the top and bottom lines (original and extruded) 865 if (extrudingOnPlusSide) { 866 lines.add(Lines.fromPointAndDirection(sideLineOrigin, sideLineDir, precision)); 867 lines.add(Lines.fromPointAndDirection(extrudedSideLineOrigin, sideLineDir.negate(), precision)); 868 } else { 869 lines.add(Lines.fromPointAndDirection(sideLineOrigin, sideLineDir.negate(), precision)); 870 lines.add(Lines.fromPointAndDirection(extrudedSideLineOrigin, sideLineDir, precision)); 871 } 872 873 // if we have a point on the original line, then connect the two 874 final Vector2D startPt = lineSubset.getStartPoint(); 875 final Vector2D endPt = lineSubset.getEndPoint(); 876 if (startPt != null) { 877 lines.add(Lines.fromPointAndDirection( 878 sidePlane.toSubspace(basePlane.toSpace(startPt)), 879 extrudingOnPlusSide ? sideExtrusionDir.negate() : sideExtrusionDir, 880 precision)); 881 } else if (endPt != null) { 882 lines.add(Lines.fromPointAndDirection( 883 sidePlane.toSubspace(basePlane.toSpace(endPt)), 884 extrudingOnPlusSide ? sideExtrusionDir : sideExtrusionDir.negate(), 885 precision)); 886 } 887 888 return subsetFromConvexArea(sidePlane, ConvexArea.fromBounds(lines)); 889 } 890 } 891}