Plane.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.geometry.euclidean.threed;
- import java.util.Objects;
- import org.apache.commons.geometry.core.Transform;
- import org.apache.commons.geometry.core.partitioning.AbstractHyperplane;
- import org.apache.commons.geometry.core.partitioning.Hyperplane;
- import org.apache.commons.geometry.euclidean.threed.line.Line3D;
- import org.apache.commons.geometry.euclidean.threed.line.Lines3D;
- import org.apache.commons.geometry.euclidean.threed.rotation.QuaternionRotation;
- import org.apache.commons.geometry.euclidean.twod.ConvexArea;
- import org.apache.commons.numbers.core.Precision;
- /** Class representing a plane in 3 dimensional Euclidean space. Each plane is defined by a
- * {@link #getNormal() normal} and an {@link #getOriginOffset() origin offset}. If \(\vec{n}\) is the plane normal,
- * \(d\) is the origin offset, and \(p\) and \(q\) are any points in the plane, then the following are true:
- * <ul>
- * <li>\(\lVert \vec{n} \rVert\) = 1</li>
- * <li>\(\vec{n} \cdot (p - q) = 0\)</li>
- * <li>\(d = - (\vec{n} \cdot q)\)</li>
- * </ul>
- * In other words, the normal is a unit vector such that the dot product of the normal and the difference of
- * any two points in the plane is always equal to \(0\). Similarly, the {@code origin offset} is equal to the
- * negation of the dot product of the normal and any point in the plane. The projection of the origin onto the
- * plane (given by {@link #getOrigin()}), is computed as \(-d \vec{n}\).
- *
- * <p>Instances of this class are guaranteed to be immutable.</p>
- * @see Planes
- */
- public class Plane extends AbstractHyperplane<Vector3D> {
- /** Plane normal. */
- private final Vector3D.Unit normal;
- /** Offset of the origin with respect to the plane. */
- private final double originOffset;
- /** Construct a plane from its component parts.
- * @param normal unit normal vector
- * @param originOffset offset of the origin with respect to the plane
- * @param precision precision context used to compare floating point values
- */
- Plane(final Vector3D.Unit normal, final double originOffset,
- final Precision.DoubleEquivalence precision) {
- super(precision);
- this.normal = normal;
- this.originOffset = originOffset;
- }
- /** Get the orthogonal projection of the 3D-space origin in the plane.
- * @return the origin point of the plane frame (point closest to the 3D-space
- * origin)
- */
- public Vector3D getOrigin() {
- return normal.multiply(-originOffset);
- }
- /** Get the offset of the spatial origin ({@code 0, 0, 0}) with respect to the plane.
- * @return the offset of the origin with respect to the plane.
- */
- public double getOriginOffset() {
- return originOffset;
- }
- /** Get the plane normal vector.
- * @return plane normal vector
- */
- public Vector3D.Unit getNormal() {
- return normal;
- }
- /** Return an {@link EmbeddingPlane} instance suitable for embedding 2D geometric objects
- * into this plane. Returned instances are guaranteed to be equal between invocations.
- * @return a plane instance suitable for embedding 2D subspaces
- */
- public EmbeddingPlane getEmbedding() {
- final Vector3D.Unit u = normal.orthogonal();
- final Vector3D.Unit v = normal.cross(u).normalize();
- return new EmbeddingPlane(u, v, normal, originOffset, getPrecision());
- }
- /** {@inheritDoc} */
- @Override
- public double offset(final Vector3D point) {
- return point.dot(normal) + originOffset;
- }
- /** Get the offset (oriented distance) of the given line with respect to the plane. The value
- * closest to zero is returned, which will always be zero if the line is not parallel to the plane.
- * @param line line to calculate the offset of
- * @return the offset of the line with respect to the plane or 0.0 if the line
- * is not parallel to the plane.
- */
- public double offset(final Line3D line) {
- if (!isParallel(line)) {
- return 0.0;
- }
- return offset(line.getOrigin());
- }
- /** Get the offset (oriented distance) of the given plane with respect to this instance. The value
- * closest to zero is returned, which will always be zero if the planes are not parallel.
- * @param plane plane to calculate the offset of
- * @return the offset of the plane with respect to this instance or 0.0 if the planes
- * are not parallel.
- */
- public double offset(final Plane plane) {
- if (!isParallel(plane)) {
- return 0.0;
- }
- return originOffset + (similarOrientation(plane) ? -plane.originOffset : plane.originOffset);
- }
- /** Check if the instance contains a point.
- * @param p point to check
- * @return true if p belongs to the plane
- */
- @Override
- public boolean contains(final Vector3D p) {
- return getPrecision().eqZero(offset(p));
- }
- /** Check if the instance contains a line.
- * @param line line to check
- * @return true if line is contained in this plane
- */
- public boolean contains(final Line3D line) {
- return isParallel(line) && contains(line.getOrigin());
- }
- /** Check if the instance contains another plane. Planes are considered similar if they contain
- * the same points. This does not mean they are equal since they can have opposite normals.
- * @param plane plane to which the instance is compared
- * @return true if the planes are similar
- */
- public boolean contains(final Plane plane) {
- final double angle = normal.angle(plane.normal);
- final Precision.DoubleEquivalence precision = getPrecision();
- return ((precision.eqZero(angle)) && precision.eq(originOffset, plane.originOffset)) ||
- ((precision.eq(angle, Math.PI)) && precision.eq(originOffset, -plane.originOffset));
- }
- /** {@inheritDoc} */
- @Override
- public Vector3D project(final Vector3D point) {
- return getOrigin().add(point.reject(normal));
- }
- /** Project a 3D line onto the plane.
- * @param line the line to project
- * @return the projection of the given line onto the plane.
- */
- public Line3D project(final Line3D line) {
- final Vector3D direction = line.getDirection();
- final Vector3D projection = normal.multiply(direction.dot(normal) * (1 / normal.normSq()));
- final Vector3D projectedLineDirection = direction.subtract(projection);
- final Vector3D p1 = project(line.getOrigin());
- final Vector3D p2 = p1.add(projectedLineDirection);
- return Lines3D.fromPoints(p1, p2, getPrecision());
- }
- /** {@inheritDoc} */
- @Override
- public PlaneConvexSubset span() {
- return Planes.subsetFromConvexArea(getEmbedding(), ConvexArea.full());
- }
- /** Check if the line is parallel to the instance.
- * @param line line to check.
- * @return true if the line is parallel to the instance, false otherwise.
- */
- public boolean isParallel(final Line3D line) {
- final double dot = normal.dot(line.getDirection());
- return getPrecision().eqZero(dot);
- }
- /** Check if the plane is parallel to the instance.
- * @param plane plane to check.
- * @return true if the plane is parallel to the instance, false otherwise.
- */
- public boolean isParallel(final Plane plane) {
- return getPrecision().eqZero(normal.cross(plane.normal).norm());
- }
- /** {@inheritDoc} */
- @Override
- public boolean similarOrientation(final Hyperplane<Vector3D> other) {
- return (((Plane) other).normal).dot(normal) > 0;
- }
- /** Get the intersection of a line with this plane.
- * @param line line intersecting the instance
- * @return intersection point between between the line and the instance (null if
- * the line is parallel to the instance)
- */
- public Vector3D intersection(final Line3D line) {
- final Vector3D direction = line.getDirection();
- final double dot = normal.dot(direction);
- if (getPrecision().eqZero(dot)) {
- return null;
- }
- final Vector3D point = line.pointAt(0);
- final double k = -(originOffset + normal.dot(point)) / dot;
- return Vector3D.Sum.of(point)
- .addScaled(k, direction)
- .get();
- }
- /** Get the line formed by the intersection of this instance with the given plane.
- * The returned line lies in both planes and points in the direction of
- * the cross product <code>n<sub>1</sub> x n<sub>2</sub></code>, where <code>n<sub>1</sub></code>
- * is the normal of the current instance and <code>n<sub>2</sub></code> is the normal
- * of the argument.
- *
- * <p>Null is returned if the planes are parallel.</p>
- *
- * @param other other plane
- * @return line at the intersection of the instance and the other plane, or null
- * if no such line exists
- */
- public Line3D intersection(final Plane other) {
- final Vector3D direction = normal.cross(other.normal);
- if (getPrecision().eqZero(direction.norm())) {
- return null;
- }
- final Vector3D point = intersection(this, other, Planes.fromNormal(direction, getPrecision()));
- return Lines3D.fromPointAndDirection(point, direction, getPrecision());
- }
- /** Build a new reversed version of this plane, with opposite orientation.
- * @return a new reversed plane
- */
- @Override
- public Plane reverse() {
- return new Plane(normal.negate(), -originOffset, getPrecision());
- }
- /** {@inheritDoc}
- *
- * <p>Instances are transformed by selecting 3 representative points from the
- * plane, transforming them, and constructing a new plane from the transformed points.
- * Since the normal is not transformed directly, but rather is constructed new from the
- * transformed points, the relative orientations of points in the plane are preserved,
- * even for transforms that do not
- * {@link Transform#preservesOrientation() preserve orientation}. The example below shows
- * a plane being transformed by a non-orientation-preserving transform. The normal of the
- * transformed plane retains its counterclockwise relationship to the points in the plane,
- * in contrast with the normal that is transformed directly by the transform.
- * </p>
- * <pre>
- * // construct a plane from 3 points; the normal will be selected such that the
- * // points are ordered counterclockwise when looking down the plane normal.
- * Vector3D p1 = Vector3D.of(0, 0, 0);
- * Vector3D p2 = Vector3D.of(+1, 0, 0);
- * Vector3D p3 = Vector3D.of(0, +1, 0);
- *
- * Plane plane = Planes.fromPoints(p1, p2, p3, precision); // normal is (0, 0, +1)
- *
- * // create a transform that negates all x-values; this transform does not
- * // preserve orientation, i.e. it will convert a right-handed system into a left-handed
- * // system and vice versa
- * AffineTransformMatrix3D transform = AffineTransformMatrix3D.createScale(-1, 1, 1);
- *
- * // transform the plane
- * Plane transformedPlane = plane.transform(transform);
- *
- * // the plane normal is oriented such that transformed points are still ordered
- * // counterclockwise when looking down the plane normal; since the point (1, 0, 0) has
- * // now become (-1, 0, 0), the normal has flipped to (0, 0, -1)
- * transformedPlane.getNormal();
- *
- * // directly transform the original plane normal; the normal is unchanged by the transform
- * // since the target space of the transform is left-handed
- * AffineTransformMatrix3D normalTransform = transform.normalTransform();
- * Vector3D directlyTransformedNormal = normalTransform.apply(plane.getNormal()); // (0, 0, +1)
- * </pre>
- */
- @Override
- public Plane transform(final Transform<Vector3D> transform) {
- // create 3 representation points lying on the plane, transform them,
- // and use the transformed points to create a new plane
- final Vector3D u = normal.orthogonal();
- final Vector3D v = normal.cross(u);
- final Vector3D p1 = getOrigin();
- final Vector3D p2 = p1.add(u);
- final Vector3D p3 = p1.add(v);
- final Vector3D t1 = transform.apply(p1);
- final Vector3D t2 = transform.apply(p2);
- final Vector3D t3 = transform.apply(p3);
- return Planes.fromPoints(t1, t2, t3, getPrecision());
- }
- /** Translate the plane by the specified amount.
- * @param translation translation to apply
- * @return a new plane
- */
- public Plane translate(final Vector3D translation) {
- final Vector3D tOrigin = getOrigin().add(translation);
- return Planes.fromPointAndNormal(tOrigin, normal, getPrecision());
- }
- /** Rotate the plane around the specified point.
- * @param center rotation center
- * @param rotation 3-dimensional rotation
- * @return a new plane
- */
- public Plane rotate(final Vector3D center, final QuaternionRotation rotation) {
- final Vector3D delta = getOrigin().subtract(center);
- final Vector3D tOrigin = center.add(rotation.apply(delta));
- // we can directly apply the rotation to the normal since it will transform
- // it properly (there is no translation or scaling involved)
- final Vector3D.Unit tNormal = rotation.apply(normal).normalize();
- return Planes.fromPointAndNormal(tOrigin, tNormal, getPrecision());
- }
- /** Return true if this instance should be considered equivalent to the argument, using the
- * given precision context for comparison. Instances are considered equivalent if they contain
- * the same points, which is determined by comparing the plane {@code origins} and {@code normals}.
- * @param other the point to compare with
- * @param precision precision context to use for the comparison
- * @return true if this instance should be considered equivalent to the argument
- * @see Vector3D#eq(Vector3D, Precision.DoubleEquivalence)
- */
- public boolean eq(final Plane other, final Precision.DoubleEquivalence precision) {
- return getOrigin().eq(other.getOrigin(), precision) &&
- normal.eq(other.normal, precision);
- }
- /** {@inheritDoc} */
- @Override
- public int hashCode() {
- return Objects.hash(normal, originOffset, getPrecision());
- }
- /** {@inheritDoc} */
- @Override
- public boolean equals(final Object obj) {
- if (this == obj) {
- return true;
- } else if (obj == null || obj.getClass() != this.getClass()) {
- return false;
- }
- final Plane other = (Plane) obj;
- return Objects.equals(this.normal, other.normal) &&
- Double.compare(this.originOffset, other.originOffset) == 0 &&
- Objects.equals(this.getPrecision(), other.getPrecision());
- }
- /** {@inheritDoc} */
- @Override
- public String toString() {
- final StringBuilder sb = new StringBuilder();
- sb.append(getClass().getSimpleName())
- .append("[origin= ")
- .append(getOrigin())
- .append(", normal= ")
- .append(normal)
- .append(']');
- return sb.toString();
- }
- /** Get the intersection point of three planes. Returns null if no unique intersection point
- * exists (ie, there are no intersection points or an infinite number).
- * @param plane1 first plane1
- * @param plane2 second plane2
- * @param plane3 third plane2
- * @return intersection point of the three planes or null if no unique intersection point exists
- */
- public static Vector3D intersection(final Plane plane1, final Plane plane2, final Plane plane3) {
- // coefficients of the three planes linear equations
- final double a1 = plane1.normal.getX();
- final double b1 = plane1.normal.getY();
- final double c1 = plane1.normal.getZ();
- final double d1 = plane1.originOffset;
- final double a2 = plane2.normal.getX();
- final double b2 = plane2.normal.getY();
- final double c2 = plane2.normal.getZ();
- final double d2 = plane2.originOffset;
- final double a3 = plane3.normal.getX();
- final double b3 = plane3.normal.getY();
- final double c3 = plane3.normal.getZ();
- final double d3 = plane3.originOffset;
- // direct Cramer resolution of the linear system
- // (this is still feasible for a 3x3 system)
- final double a23 = (b2 * c3) - (b3 * c2);
- final double b23 = (c2 * a3) - (c3 * a2);
- final double c23 = (a2 * b3) - (a3 * b2);
- final double determinant = (a1 * a23) + (b1 * b23) + (c1 * c23);
- // use the precision context of the first plane to determine equality
- if (plane1.getPrecision().eqZero(determinant)) {
- return null;
- }
- final double r = 1.0 / determinant;
- return Vector3D.of((-a23 * d1 - (c1 * b3 - c3 * b1) * d2 - (c2 * b1 - c1 * b2) * d3) * r,
- (-b23 * d1 - (c3 * a1 - c1 * a3) * d2 - (c1 * a2 - c2 * a1) * d3) * r,
- (-c23 * d1 - (b1 * a3 - b3 * a1) * d2 - (b2 * a1 - b1 * a2) * d3) * r);
- }
- }