Line.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.geometry.euclidean.twod;
- import java.text.MessageFormat;
- import java.util.Objects;
- import org.apache.commons.geometry.core.Transform;
- import org.apache.commons.geometry.core.partitioning.AbstractHyperplane;
- import org.apache.commons.geometry.core.partitioning.EmbeddingHyperplane;
- import org.apache.commons.geometry.core.partitioning.Hyperplane;
- import org.apache.commons.geometry.euclidean.internal.Vectors;
- import org.apache.commons.geometry.euclidean.oned.AffineTransformMatrix1D;
- import org.apache.commons.geometry.euclidean.oned.Vector1D;
- import org.apache.commons.numbers.angle.Angle;
- import org.apache.commons.numbers.core.Precision;
- /** This class represents an oriented line in the 2D plane.
- * <p>An oriented line can be defined either by extending a line
- * segment between two points past these points, by specifying a
- * point and a direction, or by specifying a point and an angle
- * relative to the x-axis.</p>
- * <p>Since the line oriented, the two half planes on its sides are
- * unambiguously identified as the left half plane and the right half
- * plane. This can be used to identify the interior and the exterior
- * in a simple way when a line is used to define a portion of a polygon
- * boundary.</p>
- * <p>A line can also be used to completely define a reference frame
- * in the plane. It is sufficient to select one specific point in the
- * line (the orthogonal projection of the original reference frame on
- * the line) and to use the unit vector in the line direction (see
- * {@link #getDirection()} and the orthogonal vector oriented from the
- * left half plane to the right half plane (see {@link #getOffsetDirection()}.
- * We define two coordinates by the process, the <em>abscissa</em> along
- * the line, and the <em>offset</em> across the line. All points of the
- * plane are uniquely identified by these two coordinates. The line is
- * the set of points at zero offset, the left half plane is the set of
- * points with negative offsets and the right half plane is the set of
- * points with positive offsets.</p>
- * @see Lines
- */
- public final class Line extends AbstractHyperplane<Vector2D>
- implements EmbeddingHyperplane<Vector2D, Vector1D> {
- /** Format string for creating line string representations. */
- static final String TO_STRING_FORMAT = "{0}[origin= {1}, direction= {2}]";
- /** The direction of the line as a normalized vector. */
- private final Vector2D.Unit direction;
- /** The distance between the origin and the line. */
- private final double originOffset;
- /** Simple constructor.
- * @param direction The direction of the line.
- * @param originOffset The signed distance between the line and the origin.
- * @param precision Precision context used to compare floating point numbers.
- */
- Line(final Vector2D.Unit direction, final double originOffset, final Precision.DoubleEquivalence precision) {
- super(precision);
- this.direction = direction;
- this.originOffset = originOffset;
- }
- /** Get the angle of the line in radians with respect to the abscissa (+x) axis. The
- * returned angle is in the range {@code [0, 2pi)}.
- * @return the angle of the line with respect to the abscissa (+x) axis in the range
- * {@code [0, 2pi)}
- */
- public double getAngle() {
- final double angle = Math.atan2(direction.getY(), direction.getX());
- return Angle.Rad.WITHIN_0_AND_2PI.applyAsDouble(angle);
- }
- /** Get the direction of the line.
- * @return the direction of the line
- */
- public Vector2D.Unit getDirection() {
- return direction;
- }
- /** Get the offset direction of the line. This vector is perpendicular to the
- * line and points in the direction of positive offset values, meaning that
- * it points from the left side of the line to the right when one is looking
- * along the line direction.
- * @return the offset direction of the line.
- */
- public Vector2D getOffsetDirection() {
- return Vector2D.of(direction.getY(), -direction.getX());
- }
- /** Get the line origin point. This is the projection of the 2D origin
- * onto the line and also serves as the origin for the 1D embedded subspace.
- * @return the origin point of the line
- */
- public Vector2D getOrigin() {
- return toSpace(Vector1D.ZERO);
- }
- /** Get the signed distance from the origin of the 2D space to the
- * closest point on the line.
- * @return the signed distance from the origin to the line
- */
- public double getOriginOffset() {
- return originOffset;
- }
- /** {@inheritDoc} */
- @Override
- public Line reverse() {
- return new Line(direction.negate(), -originOffset, getPrecision());
- }
- /** {@inheritDoc} */
- @Override
- public Line transform(final Transform<Vector2D> transform) {
- final Vector2D origin = getOrigin();
- final Vector2D tOrigin = transform.apply(origin);
- final Vector2D tOriginPlusDir = transform.apply(origin.add(getDirection()));
- return Lines.fromPoints(tOrigin, tOriginPlusDir, getPrecision());
- }
- /** Get an object containing the current line transformed by the argument along with a
- * 1D transform that can be applied to subspace points. The subspace transform transforms
- * subspace points such that their 2D location in the transformed line is the same as their
- * 2D location in the original line after the 2D transform is applied. For example, consider
- * the code below:
- * <pre>
- * SubspaceTransform st = line.subspaceTransform(transform);
- *
- * Vector1D subPt = Vector1D.of(1);
- *
- * Vector2D a = transform.apply(line.toSpace(subPt)); // transform in 2D space
- * Vector2D b = st.getLine().toSpace(st.getTransform().apply(subPt)); // transform in 1D space
- * </pre>
- * At the end of execution, the points {@code a} (which was transformed using the original
- * 2D transform) and {@code b} (which was transformed in 1D using the subspace transform)
- * are equivalent.
- *
- * @param transform the transform to apply to this instance
- * @return an object containing the transformed line along with a transform that can be applied
- * to subspace points
- * @see #transform(Transform)
- */
- public SubspaceTransform subspaceTransform(final Transform<Vector2D> transform) {
- final Vector2D origin = getOrigin();
- final Vector2D p1 = transform.apply(origin);
- final Vector2D p2 = transform.apply(origin.add(direction));
- final Line tLine = Lines.fromPoints(p1, p2, getPrecision());
- final Vector1D tSubspaceOrigin = tLine.toSubspace(p1);
- final Vector1D tSubspaceDirection = tSubspaceOrigin.vectorTo(tLine.toSubspace(p2));
- final double translation = tSubspaceOrigin.getX();
- final double scale = tSubspaceDirection.getX();
- final AffineTransformMatrix1D subspaceTransform = AffineTransformMatrix1D.of(scale, translation);
- return new SubspaceTransform(tLine, subspaceTransform);
- }
- /** {@inheritDoc} */
- @Override
- public LineConvexSubset span() {
- return Lines.span(this);
- }
- /** Create a new line segment from the given 1D interval. The returned line
- * segment consists of all points between the two locations, regardless of the order the
- * arguments are given.
- * @param a first 1D location for the interval
- * @param b second 1D location for the interval
- * @return a new line segment on this line
- * @throws IllegalArgumentException if either of the locations is NaN or infinite
- * @see Lines#segmentFromLocations(Line, double, double)
- */
- public Segment segment(final double a, final double b) {
- return Lines.segmentFromLocations(this, a, b);
- }
- /** Create a new line segment from two points. The returned segment represents all points on this line
- * between the projected locations of {@code a} and {@code b}. The points may be given in any order.
- * @param a first point
- * @param b second point
- * @return a new line segment on this line
- * @throws IllegalArgumentException if either point contains NaN or infinite coordinate values
- * @see Lines#segmentFromPoints(Line, Vector2D, Vector2D)
- */
- public Segment segment(final Vector2D a, final Vector2D b) {
- return Lines.segmentFromPoints(this, a, b);
- }
- /** Create a new convex line subset that starts at infinity and continues along
- * the line up to the projection of the given end point.
- * @param endPoint point defining the end point of the line subset; the end point
- * is equal to the projection of this point onto the line
- * @return a new, half-open line subset that ends at the given point
- * @throws IllegalArgumentException if any coordinate in {@code endPoint} is NaN or infinite
- * @see Lines#reverseRayFromPoint(Line, Vector2D)
- */
- public ReverseRay reverseRayTo(final Vector2D endPoint) {
- return Lines.reverseRayFromPoint(this, endPoint);
- }
- /** Create a new convex line subset that starts at infinity and continues along
- * the line up to the given 1D location.
- * @param endLocation the 1D location of the end of the half-line
- * @return a new, half-open line subset that ends at the given 1D location
- * @throws IllegalArgumentException if {@code endLocation} is NaN or infinite
- * @see Lines#reverseRayFromLocation(Line, double)
- */
- public ReverseRay reverseRayTo(final double endLocation) {
- return Lines.reverseRayFromLocation(this, endLocation);
- }
- /** Create a new ray instance that starts at the projection of the given point
- * and continues in the direction of the line to infinity.
- * @param startPoint point defining the start point of the ray; the start point
- * is equal to the projection of this point onto the line
- * @return a ray starting at the projected point and extending along this line
- * to infinity
- * @throws IllegalArgumentException if any coordinate in {@code startPoint} is NaN or infinite
- * @see Lines#rayFromPoint(Line, Vector2D)
- */
- public Ray rayFrom(final Vector2D startPoint) {
- return Lines.rayFromPoint(this, startPoint);
- }
- /** Create a new ray instance that starts at the given 1D location and continues in
- * the direction of the line to infinity.
- * @param startLocation 1D location defining the start point of the ray
- * @return a ray starting at the given 1D location and extending along this line
- * to infinity
- * @throws IllegalArgumentException if {@code startLocation} is NaN or infinite
- * @see Lines#rayFromLocation(Line, double)
- */
- public Ray rayFrom(final double startLocation) {
- return Lines.rayFromLocation(this, startLocation);
- }
- /** Get the abscissa of the given point on the line. The abscissa represents
- * the distance the projection of the point on the line is from the line's
- * origin point (the point on the line closest to the origin of the
- * 2D space). Abscissa values increase in the direction of the line. This method
- * is exactly equivalent to {@link #toSubspace(Vector2D)} except that this method
- * returns a double instead of a {@link Vector1D}.
- * @param point point to compute the abscissa for
- * @return abscissa value of the point
- * @see #toSubspace(Vector2D)
- */
- public double abscissa(final Vector2D point) {
- return direction.dot(point);
- }
- /** {@inheritDoc} */
- @Override
- public Vector1D toSubspace(final Vector2D point) {
- return Vector1D.of(abscissa(point));
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D toSpace(final Vector1D point) {
- return toSpace(point.getX());
- }
- /** Convert the given abscissa value (1D location on the line)
- * into a 2D point.
- * @param abscissa value to convert
- * @return 2D point corresponding to the line abscissa value
- */
- public Vector2D toSpace(final double abscissa) {
- // The 2D coordinate is equal to the projection of the
- // 2D origin onto the line plus the direction multiplied
- // by the abscissa. We can combine everything into a single
- // step below given that the origin location is equal to
- // (-direction.y * originOffset, direction.x * originOffset).
- return Vector2D.of(
- Vectors.linearCombination(abscissa, direction.getX(), -originOffset, direction.getY()),
- Vectors.linearCombination(abscissa, direction.getY(), originOffset, direction.getX())
- );
- }
- /** Get the intersection point of the instance and another line.
- * @param other other line
- * @return intersection point of the instance and the other line
- * or null if there is no unique intersection point (ie, the lines
- * are parallel or coincident)
- */
- public Vector2D intersection(final Line other) {
- final double area = this.direction.signedArea(other.direction);
- if (getPrecision().eqZero(area)) {
- // lines are parallel
- return null;
- }
- final double x = Vectors.linearCombination(
- other.direction.getX(), originOffset,
- -direction.getX(), other.originOffset) / area;
- final double y = Vectors.linearCombination(
- other.direction.getY(), originOffset,
- -direction.getY(), other.originOffset) / area;
- return Vector2D.of(x, y);
- }
- /** Compute the angle in radians between this instance's direction and the direction
- * of the given line. The return value is in the range {@code [-pi, +pi)}. This method
- * always returns a value, even for parallel or coincident lines.
- * @param other other line
- * @return the angle required to rotate this line to point in the direction of
- * the given line
- */
- public double angle(final Line other) {
- final double thisAngle = Math.atan2(direction.getY(), direction.getX());
- final double otherAngle = Math.atan2(other.direction.getY(), other.direction.getX());
- return Angle.Rad.WITHIN_MINUS_PI_AND_PI.applyAsDouble(otherAngle - thisAngle);
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D project(final Vector2D point) {
- return toSpace(toSubspace(point));
- }
- /** {@inheritDoc} */
- @Override
- public double offset(final Vector2D point) {
- return originOffset - direction.signedArea(point);
- }
- /** Get the offset (oriented distance) of the given line relative to this instance.
- * Since an infinite number of distances can be calculated between points on two
- * different lines, this method returns the value closest to zero. For intersecting
- * lines, this will simply be zero. For parallel lines, this will be the
- * perpendicular distance between the two lines, as a signed value.
- *
- * <p>The sign of the returned offset indicates the side of the line that the
- * argument lies on. The offset is positive if the line lies on the right side
- * of the instance and negative if the line lies on the left side
- * of the instance.</p>
- * @param line line to check
- * @return offset of the line
- * @see #distance(Line)
- */
- public double offset(final Line line) {
- if (isParallel(line)) {
- // since the lines are parallel, the offset between
- // them is simply the difference between their origin offsets,
- // with the second offset negated if the lines point if opposite
- // directions
- final double dot = direction.dot(line.direction);
- return originOffset - (Math.signum(dot) * line.originOffset);
- }
- // the lines are not parallel, which means they intersect at some point
- return 0.0;
- }
- /** {@inheritDoc} */
- @Override
- public boolean similarOrientation(final Hyperplane<Vector2D> other) {
- final Line otherLine = (Line) other;
- return direction.dot(otherLine.direction) >= 0.0;
- }
- /** Get one point from the plane, relative to the coordinate system
- * of the line. Note that the direction of increasing offsets points
- * to the <em>right</em> of the line. This means that if one pictures
- * the line (abscissa) direction as equivalent to the +x-axis, the offset
- * direction will point along the -y axis.
- * @param abscissa desired abscissa (distance along the line) for the point
- * @param offset desired offset (distance perpendicular to the line) for the point
- * @return one point in the plane, with given abscissa and offset
- * relative to the line
- */
- public Vector2D pointAt(final double abscissa, final double offset) {
- final double pointOffset = offset - originOffset;
- return Vector2D.of(Vectors.linearCombination(abscissa, direction.getX(), pointOffset, direction.getY()),
- Vectors.linearCombination(abscissa, direction.getY(), -pointOffset, direction.getX()));
- }
- /** Check if the line contains a point.
- * @param p point to check
- * @return true if p belongs to the line
- */
- @Override
- public boolean contains(final Vector2D p) {
- return getPrecision().eqZero(offset(p));
- }
- /** Check if this instance completely contains the other line.
- * This will be true if the two instances represent the same line,
- * with perhaps different directions.
- * @param line line to check
- * @return true if this instance contains all points in the given line
- */
- public boolean contains(final Line line) {
- return isParallel(line) && getPrecision().eqZero(offset(line));
- }
- /** Compute the distance between the instance and a point.
- * <p>This is a shortcut for invoking Math.abs(getOffset(p)),
- * and provides consistency with what is in the
- * org.apache.commons.geometry.euclidean.threed.Line class.</p>
- *
- * @param p to check
- * @return distance between the instance and the point
- */
- public double distance(final Vector2D p) {
- return Math.abs(offset(p));
- }
- /** Compute the shortest distance between this instance and
- * the given line. This value will simply be zero for intersecting
- * lines.
- * @param line line to compute the closest distance to
- * @return the shortest distance between this instance and the
- * given line
- * @see #offset(Line)
- */
- public double distance(final Line line) {
- return Math.abs(offset(line));
- }
- /** Check if the instance is parallel to another line.
- * @param line other line to check
- * @return true if the instance is parallel to the other line
- * (they can have either the same or opposite orientations)
- */
- public boolean isParallel(final Line line) {
- final double area = direction.signedArea(line.direction);
- return getPrecision().eqZero(area);
- }
- /** Return true if this instance should be considered equivalent to the argument, using the
- * given precision context for comparison. Instances are considered equivalent if they have
- * equivalent {@code origin} points and make similar angles with the x-axis.
- * @param other the point to compare with
- * @param precision precision context to use for the comparison
- * @return true if this instance should be considered equivalent to the argument
- * @see Vector2D#eq(Vector2D, Precision.DoubleEquivalence)
- */
- public boolean eq(final Line other, final Precision.DoubleEquivalence precision) {
- return getOrigin().eq(other.getOrigin(), precision) &&
- precision.eq(getAngle(), other.getAngle());
- }
- /** {@inheritDoc} */
- @Override
- public int hashCode() {
- final int prime = 167;
- int result = 1;
- result = (prime * result) + Objects.hashCode(direction);
- result = (prime * result) + Double.hashCode(originOffset);
- result = (prime * result) + Objects.hashCode(getPrecision());
- return result;
- }
- /** {@inheritDoc} */
- @Override
- public boolean equals(final Object obj) {
- if (this == obj) {
- return true;
- } else if (!(obj instanceof Line)) {
- return false;
- }
- final Line other = (Line) obj;
- return Objects.equals(this.direction, other.direction) &&
- Double.compare(this.originOffset, other.originOffset) == 0 &&
- Objects.equals(this.getPrecision(), other.getPrecision());
- }
- /** {@inheritDoc} */
- @Override
- public String toString() {
- return MessageFormat.format(TO_STRING_FORMAT,
- getClass().getSimpleName(),
- getOrigin(),
- getDirection());
- }
- /** Class containing a transformed line instance along with a subspace (1D) transform. The subspace
- * transform produces the equivalent of the 2D transform in 1D.
- */
- public static final class SubspaceTransform {
- /** The transformed line. */
- private final Line line;
- /** The subspace transform instance. */
- private final AffineTransformMatrix1D transform;
- /** Simple constructor.
- * @param line the transformed line
- * @param transform 1D transform that can be applied to subspace points
- */
- public SubspaceTransform(final Line line, final AffineTransformMatrix1D transform) {
- this.line = line;
- this.transform = transform;
- }
- /** Get the transformed line instance.
- * @return the transformed line instance
- */
- public Line getLine() {
- return line;
- }
- /** Get the 1D transform that can be applied to subspace points. This transform can be used
- * to perform the equivalent of the 2D transform in 1D space.
- * @return the subspace transform instance
- */
- public AffineTransformMatrix1D getTransform() {
- return transform;
- }
- }
- }