- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.geometry.euclidean.twod;
- import java.util.ArrayList;
- import java.util.Collections;
- import java.util.List;
- import java.util.stream.Collectors;
- import java.util.stream.Stream;
- import java.util.stream.StreamSupport;
- import org.apache.commons.geometry.core.partitioning.Hyperplane;
- import org.apache.commons.geometry.core.partitioning.Split;
- import org.apache.commons.geometry.core.partitioning.bsp.AbstractBSPTree;
- import org.apache.commons.geometry.core.partitioning.bsp.AbstractPartitionedRegionBuilder;
- import org.apache.commons.geometry.core.partitioning.bsp.AbstractRegionBSPTree;
- import org.apache.commons.geometry.core.partitioning.bsp.BSPTreeVisitor;
- import org.apache.commons.geometry.core.partitioning.bsp.RegionCutBoundary;
- import org.apache.commons.geometry.euclidean.twod.path.InteriorAngleLinePathConnector;
- import org.apache.commons.geometry.euclidean.twod.path.LinePath;
- import org.apache.commons.numbers.core.Precision;
- /** Binary space partitioning (BSP) tree representing a region in two dimensional
- * Euclidean space.
- */
- public final class RegionBSPTree2D extends AbstractRegionBSPTree<Vector2D, RegionBSPTree2D.RegionNode2D>
- implements BoundarySource2D {
- /** List of line subset paths comprising the region boundary. */
- private List<LinePath> boundaryPaths;
- /** Create a new, empty region.
- */
- public RegionBSPTree2D() {
- this(false);
- }
- /** Create a new region. If {@code full} is true, then the region will
- * represent the entire 2D space. Otherwise, it will be empty.
- * @param full whether or not the region should contain the entire
- * 2D space or be empty
- */
- public RegionBSPTree2D(final boolean full) {
- super(full);
- }
- /** Return a deep copy of this instance.
- * @return a deep copy of this instance.
- * @see #copy(org.apache.commons.geometry.core.partitioning.bsp.BSPTree)
- */
- public RegionBSPTree2D copy() {
- final RegionBSPTree2D result = RegionBSPTree2D.empty();
- result.copy(this);
- return result;
- }
- /** {@inheritDoc} */
- @Override
- public Iterable<LineConvexSubset> boundaries() {
- return createBoundaryIterable(LineConvexSubset.class::cast);
- }
- /** {@inheritDoc} */
- @Override
- public Stream<LineConvexSubset> boundaryStream() {
- return StreamSupport.stream(boundaries().spliterator(), false);
- }
- /** {@inheritDoc} */
- @Override
- public List<LineConvexSubset> getBoundaries() {
- return createBoundaryList(LineConvexSubset.class::cast);
- }
- /** Get the boundary of the region as a list of connected line subset paths.
- * The line subset are oriented such that their minus (left) side lies on the
- * interior of the region.
- * @return line subset paths representing the region boundary
- */
- public List<LinePath> getBoundaryPaths() {
- if (boundaryPaths == null) {
- boundaryPaths = Collections.unmodifiableList(computeBoundaryPaths());
- }
- return boundaryPaths;
- }
- /** Add a convex area to this region. The resulting region will be the
- * union of the convex area and the region represented by this instance.
- * @param area the convex area to add
- */
- public void add(final ConvexArea area) {
- union(area.toTree());
- }
- /** Return a list of {@link ConvexArea}s representing the same region
- * as this instance. One convex area is returned for each interior leaf
- * node in the tree.
- * @return a list of convex areas representing the same region as this
- * instance
- */
- public List<ConvexArea> toConvex() {
- final List<ConvexArea> result = new ArrayList<>();
- toConvexRecursive(getRoot(), ConvexArea.full(), result);
- return result;
- }
- /** Recursive method to compute the convex areas of all inside leaf nodes in the subtree rooted at the given
- * node. The computed convex areas are added to the given list.
- * @param node root of the subtree to compute the convex areas for
- * @param nodeArea the convex area for the current node; this will be split by the node's cut hyperplane to
- * form the convex areas for any child nodes
- * @param result list containing the results of the computation
- */
- private void toConvexRecursive(final RegionNode2D node, final ConvexArea nodeArea,
- final List<? super ConvexArea> result) {
- if (node.isLeaf()) {
- // base case; only add to the result list if the node is inside
- if (node.isInside()) {
- result.add(nodeArea);
- }
- } else {
- // recurse
- final Split<ConvexArea> split = nodeArea.split(node.getCutHyperplane());
- toConvexRecursive(node.getMinus(), split.getMinus(), result);
- toConvexRecursive(node.getPlus(), split.getPlus(), result);
- }
- }
- /** {@inheritDoc} */
- @Override
- public Split<RegionBSPTree2D> split(final Hyperplane<Vector2D> splitter) {
- return split(splitter, RegionBSPTree2D.empty(), RegionBSPTree2D.empty());
- }
- /** {@inheritDoc} */
- @Override
- public Vector2D project(final Vector2D pt) {
- // use our custom projector so that we can disambiguate points that are
- // actually equidistant from the target point
- final BoundaryProjector2D projector = new BoundaryProjector2D(pt);
- accept(projector);
- return projector.getProjected();
- }
- /** Return the current instance.
- */
- @Override
- public RegionBSPTree2D toTree() {
- return this;
- }
- /** {@inheritDoc} */
- @Override
- public List<LinecastPoint2D> linecast(final LineConvexSubset subset) {
- final LinecastVisitor visitor = new LinecastVisitor(subset, false);
- accept(visitor);
- return visitor.getResults();
- }
- /** {@inheritDoc} */
- @Override
- public LinecastPoint2D linecastFirst(final LineConvexSubset subset) {
- final LinecastVisitor visitor = new LinecastVisitor(subset, true);
- accept(visitor);
- return visitor.getFirstResult();
- }
- /** Compute the line subset paths comprising the region boundary.
- * @return the line subset paths comprising the region boundary
- */
- private List<LinePath> computeBoundaryPaths() {
- final InteriorAngleLinePathConnector connector = new InteriorAngleLinePathConnector.Minimize();
- connector.connect(boundaries());
- return connector.connectAll().stream()
- .map(LinePath::simplify).collect(Collectors.toList());
- }
- /** {@inheritDoc} */
- @Override
- protected RegionSizeProperties<Vector2D> computeRegionSizeProperties() {
- // handle simple cases
- if (isFull()) {
- return new RegionSizeProperties<>(Double.POSITIVE_INFINITY, null);
- } else if (isEmpty()) {
- return new RegionSizeProperties<>(0, null);
- }
- // compute the size based on the boundary line subsets
- double quadrilateralAreaSum = 0.0;
- double scaledSumX = 0.0;
- double scaledSumY = 0.0;
- Vector2D startPoint;
- Vector2D endPoint;
- double signedArea;
- for (final LineConvexSubset boundary : boundaries()) {
- if (boundary.isInfinite()) {
- // at least on boundary is infinite, meaning that
- // the size is also infinite
- quadrilateralAreaSum = Double.POSITIVE_INFINITY;
- break;
- }
- startPoint = boundary.getStartPoint();
- endPoint = boundary.getEndPoint();
- // compute the area
- signedArea = startPoint.signedArea(endPoint);
- quadrilateralAreaSum += signedArea;
- // compute scaled coordinate values for the centroid
- scaledSumX += signedArea * (startPoint.getX() + endPoint.getX());
- scaledSumY += signedArea * (startPoint.getY() + endPoint.getY());
- }
- double size = Double.POSITIVE_INFINITY;
- Vector2D centroid = null;
- // The area is finite only if the computed quadrilateral area is finite and non-negative.
- // Negative areas indicate that the region is inside-out, with a finite outside surrounded
- // by an infinite inside.
- if (quadrilateralAreaSum >= 0 && Double.isFinite(quadrilateralAreaSum)) {
- size = 0.5 * quadrilateralAreaSum;
- if (quadrilateralAreaSum > 0) {
- centroid = Vector2D.of(scaledSumX, scaledSumY).multiply(1.0 / (3.0 * quadrilateralAreaSum));
- }
- }
- return new RegionSizeProperties<>(size, centroid);
- }
- /** {@inheritDoc} */
- @Override
- protected void invalidate() {
- super.invalidate();
- boundaryPaths = null;
- }
- /** {@inheritDoc} */
- @Override
- protected RegionNode2D createNode() {
- return new RegionNode2D(this);
- }
- /** Return a new {@link RegionBSPTree2D} instance containing the entire space.
- * @return a new {@link RegionBSPTree2D} instance containing the entire space
- */
- public static RegionBSPTree2D full() {
- return new RegionBSPTree2D(true);
- }
- /** Return a new, empty {@link RegionBSPTree2D} instance.
- * @return a new, empty {@link RegionBSPTree2D} instance
- */
- public static RegionBSPTree2D empty() {
- return new RegionBSPTree2D(false);
- }
- /** Construct a new tree from the given boundaries. If no boundaries
- * are present, the returned tree is empty.
- * @param boundaries boundaries to construct the tree from
- * @return a new tree instance constructed from the given boundaries
- * @see #from(Iterable, boolean)
- */
- public static RegionBSPTree2D from(final Iterable<? extends LineConvexSubset> boundaries) {
- return from(boundaries, false);
- }
- /** Construct a new tree from the given boundaries. If {@code full} is true, then
- * the initial tree before boundary insertion contains the entire space. Otherwise,
- * it is empty.
- * @param boundaries boundaries to construct the tree from
- * @param full if true, the initial tree will contain the entire space
- * @return a new tree instance constructed from the given boundaries
- */
- public static RegionBSPTree2D from(final Iterable<? extends LineConvexSubset> boundaries, final boolean full) {
- final RegionBSPTree2D tree = new RegionBSPTree2D(full);
- tree.insert(boundaries);
- return tree;
- }
- /** Create a new {@link PartitionedRegionBuilder2D} instance which can be used to build balanced
- * BSP trees from region boundaries.
- * @return a new {@link PartitionedRegionBuilder2D} instance
- */
- public static PartitionedRegionBuilder2D partitionedRegionBuilder() {
- return new PartitionedRegionBuilder2D();
- }
- /** BSP tree node for two dimensional Euclidean space.
- */
- public static final class RegionNode2D extends AbstractRegionBSPTree.AbstractRegionNode<Vector2D, RegionNode2D> {
- /** Simple constructor.
- * @param tree the owning tree instance
- */
- private RegionNode2D(final AbstractBSPTree<Vector2D, RegionNode2D> tree) {
- super(tree);
- }
- /** Get the region represented by this node. The returned region contains
- * the entire area contained in this node, regardless of the attributes of
- * any child nodes.
- * @return the region represented by this node
- */
- public ConvexArea getNodeRegion() {
- ConvexArea area = ConvexArea.full();
- RegionNode2D child = this;
- RegionNode2D parent;
- while ((parent = child.getParent()) != null) {
- final Split<ConvexArea> split = area.split(parent.getCutHyperplane());
- area = child.isMinus() ? split.getMinus() : split.getPlus();
- child = parent;
- }
- return area;
- }
- /** {@inheritDoc} */
- @Override
- protected RegionNode2D getSelf() {
- return this;
- }
- }
- /** Class used to build regions in Euclidean 2D space by inserting boundaries into a BSP
- * tree containing "partitions", i.e. structural cuts where both sides of the cut have the same region location.
- * When partitions are chosen that effectively divide the region boundaries at each partition level, the
- * constructed tree is shallower and more balanced than one constructed from the region boundaries alone,
- * resulting in improved performance. For example, consider a line segment approximation of a circle. The region is
- * convex so each boundary has all of the other boundaries on its minus side; the plus sides are all empty.
- * When these boundaries are inserted directly into a tree, the tree degenerates into a simple linked list of
- * nodes with a height directly proportional to the number of boundaries. This means that many operations on the
- * tree, such as inside/outside testing of points, involve iterating through each and every region boundary. In
- * contrast, if a partition is first inserted that passes through the circle center, the first BSP tree node
- * contains region nodes on its plus <em>and</em> minus sides, cutting the height of the tree in half. Operations
- * such as inside/outside testing are then able to skip half of the tree nodes with a single test on the
- * root node, resulting in drastically improved performance. Insertion of additional partitions (using a grid
- * layout, for example) can produce even shallower trees, although there is a point unique to each boundary set at
- * which the addition of more partitions begins to decrease instead of increase performance.
- *
- * <h2>Usage</h2>
- * <p>Usage of this class consists of two phases: (1) <em>partition insertion</em> and (2) <em>boundary
- * insertion</em>. Instances begin in the <em>partition insertion</em> phase. Here, partitions can be inserted
- * into the empty tree using {@link PartitionedRegionBuilder2D#insertPartition(LineConvexSubset) insertPartition}
- * or similar methods. The {@link org.apache.commons.geometry.core.partitioning.bsp.RegionCutRule#INHERIT INHERIT}
- * cut rule is used internally to insert the cut so the represented region remains empty even as partitions are
- * inserted.
- * </p>
- *
- * <p>The instance moves into the <em>boundary insertion</em> phase when the caller inserts the first region
- * boundary, using {@link PartitionedRegionBuilder2D#insertBoundary(LineConvexSubset) insertBoundary} or
- * similar methods. Attempting to insert a partition after this point results in an {@code IllegalStateException}.
- * This ensures that partitioning cuts are always located higher up the tree than boundary cuts.</p>
- *
- * <p>After all boundaries are inserted, the {@link PartitionedRegionBuilder2D#build() build} method is used
- * to perform final processing and return the computed tree.</p>
- */
- public static final class PartitionedRegionBuilder2D
- extends AbstractPartitionedRegionBuilder<Vector2D, RegionNode2D> {
- /** Construct a new builder instance.
- */
- private PartitionedRegionBuilder2D() {
- super(RegionBSPTree2D.empty());
- }
- /** Insert a partition line.
- * @param partition partition to insert
- * @return this instance
- * @throws IllegalStateException if a boundary has previously been inserted
- */
- public PartitionedRegionBuilder2D insertPartition(final Line partition) {
- return insertPartition(partition.span());
- }
- /** Insert a line convex subset as a partition.
- * @param partition partition to insert
- * @return this instance
- * @throws IllegalStateException if a boundary has previously been inserted
- */
- public PartitionedRegionBuilder2D insertPartition(final LineConvexSubset partition) {
- insertPartitionInternal(partition);
- return this;
- }
- /** Insert two axis aligned lines intersecting at the given point as partitions.
- * The lines each contain the {@code center} point and have the directions {@code +x} and {@code +y}
- * in that order. If inserted into an empty tree, this will partition the space
- * into 4 sections.
- * @param center center point for the partitions; the inserted lines intersect at this point
- * @param precision precision context used to construct the lines
- * @return this instance
- * @throws IllegalStateException if a boundary has previously been inserted
- */
- public PartitionedRegionBuilder2D insertAxisAlignedPartitions(final Vector2D center,
- final Precision.DoubleEquivalence precision) {
- insertPartition(Lines.fromPointAndDirection(center, Vector2D.Unit.PLUS_X, precision));
- insertPartition(Lines.fromPointAndDirection(center, Vector2D.Unit.PLUS_Y, precision));
- return this;
- }
- /** Insert a grid of partitions. The partitions are constructed recursively: at each level two axis-aligned
- * partitioning lines are inserted using
- * {@link #insertAxisAlignedPartitions(Vector2D, Precision.DoubleEquivalence) insertAxisAlignedPartitions}.
- * The algorithm then recurses using bounding boxes from the min point to the center and from the center
- * point to the max. Note that this means no partitions are ever inserted directly on the boundaries of
- * the given bounding box. This is intentional and done to allow this method to be called directly with the
- * bounding box from a set of boundaries to be inserted without unnecessarily adding partitions that will
- * never have region boundaries on both sides.
- * @param bounds bounding box for the grid
- * @param level recursion level for the grid; each level subdivides each grid cube into 4 sections, making the
- * total number of grid cubes equal to {@code 4 ^ level}
- * @param precision precision context used to construct the partition lines
- * @return this instance
- * @throws IllegalStateException if a boundary has previously been inserted
- */
- public PartitionedRegionBuilder2D insertAxisAlignedGrid(final Bounds2D bounds, final int level,
- final Precision.DoubleEquivalence precision) {
- insertAxisAlignedGridRecursive(bounds.getMin(), bounds.getMax(), level, precision);
- return this;
- }
- /** Recursively insert axis-aligned grid partitions.
- * @param min min point for the grid square to partition
- * @param max max point for the grid square to partition
- * @param level current recursion level
- * @param precision precision context used to construct the partition planes
- */
- private void insertAxisAlignedGridRecursive(final Vector2D min, final Vector2D max, final int level,
- final Precision.DoubleEquivalence precision) {
- if (level > 0) {
- final Vector2D center = min.lerp(max, 0.5);
- insertAxisAlignedPartitions(center, precision);
- final int nextLevel = level - 1;
- insertAxisAlignedGridRecursive(min, center, nextLevel, precision);
- insertAxisAlignedGridRecursive(center, max, nextLevel, precision);
- }
- }
- /** Insert a region boundary.
- * @param boundary region boundary to insert
- * @return this instance
- */
- public PartitionedRegionBuilder2D insertBoundary(final LineConvexSubset boundary) {
- insertBoundaryInternal(boundary);
- return this;
- }
- /** Insert a collection of region boundaries.
- * @param boundaries boundaries to insert
- * @return this instance
- */
- public PartitionedRegionBuilder2D insertBoundaries(final Iterable<? extends LineConvexSubset> boundaries) {
- for (final LineConvexSubset boundary : boundaries) {
- insertBoundaryInternal(boundary);
- }
- return this;
- }
- /** Insert all boundaries from the given source.
- * @param boundarySrc source of boundaries to insert
- * @return this instance
- */
- public PartitionedRegionBuilder2D insertBoundaries(final BoundarySource2D boundarySrc) {
- try (Stream<LineConvexSubset> stream = boundarySrc.boundaryStream()) {
- stream.forEach(this::insertBoundaryInternal);
- }
- return this;
- }
- /** Build and return the region BSP tree.
- * @return the region BSP tree
- */
- public RegionBSPTree2D build() {
- return (RegionBSPTree2D) buildInternal();
- }
- }
- /** Class used to project points onto the 2D region boundary.
- */
- private static final class BoundaryProjector2D extends BoundaryProjector<Vector2D, RegionNode2D> {
- /** Simple constructor.
- * @param point the point to project onto the region's boundary
- */
- BoundaryProjector2D(final Vector2D point) {
- super(point);
- }
- /** {@inheritDoc} */
- @Override
- protected Vector2D disambiguateClosestPoint(final Vector2D target, final Vector2D a, final Vector2D b) {
- // return the point with the smallest coordinate values
- final int cmp = Vector2D.COORDINATE_ASCENDING_ORDER.compare(a, b);
- return cmp < 0 ? a : b;
- }
- }
- /** BSP tree visitor that performs a linecast operation against the boundaries of the visited tree.
- */
- private static final class LinecastVisitor implements BSPTreeVisitor<Vector2D, RegionNode2D> {
- /** The line subset to intersect with the boundaries of the BSP tree. */
- private final LineConvexSubset linecastSubset;
- /** If true, the visitor will stop visiting the tree once the first linecast
- * point is determined.
- */
- private final boolean firstOnly;
- /** The minimum abscissa found during the search. */
- private double minAbscissa = Double.POSITIVE_INFINITY;
- /** List of results from the linecast operation. */
- private final List<LinecastPoint2D> results = new ArrayList<>();
- /** Create a new instance with the given intersecting line subset.
- * @param linecastSubset line subset to intersect with the BSP tree region boundary
- * @param firstOnly if true, the visitor will stop visiting the tree once the first
- * linecast point is determined
- */
- LinecastVisitor(final LineConvexSubset linecastSubset, final boolean firstOnly) {
- this.linecastSubset = linecastSubset;
- this.firstOnly = firstOnly;
- }
- /** Get the first {@link LinecastPoint2D} resulting from the linecast operation.
- * @return the first linecast result point
- */
- public LinecastPoint2D getFirstResult() {
- final List<LinecastPoint2D> sortedResults = getResults();
- return sortedResults.isEmpty() ?
- null :
- sortedResults.get(0);
- }
- /** Get a list containing the results of the linecast operation. The list is
- * sorted and filtered.
- * @return list of sorted and filtered results from the linecast operation
- */
- public List<LinecastPoint2D> getResults() {
- LinecastPoint2D.sortAndFilter(results);
- return results;
- }
- /** {@inheritDoc} */
- @Override
- public Order visitOrder(final RegionNode2D internalNode) {
- final Line cut = (Line) internalNode.getCutHyperplane();
- final Line line = linecastSubset.getLine();
- final boolean plusIsNear = line.getDirection().dot(cut.getOffsetDirection()) < 0;
- return plusIsNear ?
- Order.PLUS_NODE_MINUS :
- Order.MINUS_NODE_PLUS;
- }
- /** {@inheritDoc} */
- @Override
- public Result visit(final RegionNode2D node) {
- if (node.isInternal()) {
- // check if the line subset intersects the node cut
- final Line line = linecastSubset.getLine();
- final Vector2D pt = ((Line) node.getCutHyperplane()).intersection(line);
- if (pt != null) {
- if (firstOnly && !results.isEmpty() &&
- line.getPrecision().compare(minAbscissa, line.abscissa(pt)) < 0) {
- // we have results and we are now sure that no other intersection points will be
- // found that are closer or at the same position on the intersecting line.
- return Result.TERMINATE;
- } else if (linecastSubset.contains(pt)) {
- // we've potentially found a new linecast point; add it to the list of potential
- // results
- final LinecastPoint2D potentialResult = computeLinecastPoint(pt, node);
- if (potentialResult != null) {
- results.add(potentialResult);
- // update the min abscissa
- minAbscissa = Math.min(minAbscissa, potentialResult.getAbscissa());
- }
- }
- }
- }
- return Result.CONTINUE;
- }
- /** Compute the linecast point for the given intersection point and tree node, returning null
- * if the point does not actually lie on the region boundary.
- * @param pt intersection point
- * @param node node containing the cut that the linecast line intersected with
- * @return a new linecast point instance or null if the intersection point does not lie
- * on the region boundary
- */
- private LinecastPoint2D computeLinecastPoint(final Vector2D pt, final RegionNode2D node) {
- final Line cut = (Line) node.getCutHyperplane();
- final RegionCutBoundary<Vector2D> boundary = node.getCutBoundary();
- boolean onBoundary = false;
- boolean negateNormal = false;
- if (boundary.containsInsideFacing(pt)) {
- // on inside-facing boundary
- onBoundary = true;
- negateNormal = true;
- } else if (boundary.containsOutsideFacing(pt)) {
- // on outside-facing boundary
- onBoundary = true;
- }
- if (onBoundary) {
- Vector2D normal = cut.getOffsetDirection();
- if (negateNormal) {
- normal = normal.negate();
- }
- return new LinecastPoint2D(pt, normal, linecastSubset.getLine());
- }
- return null;
- }
- }
- }