RegionBSPTree2D.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.geometry.euclidean.twod;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;

import org.apache.commons.geometry.core.partitioning.Hyperplane;
import org.apache.commons.geometry.core.partitioning.Split;
import org.apache.commons.geometry.core.partitioning.bsp.AbstractBSPTree;
import org.apache.commons.geometry.core.partitioning.bsp.AbstractPartitionedRegionBuilder;
import org.apache.commons.geometry.core.partitioning.bsp.AbstractRegionBSPTree;
import org.apache.commons.geometry.core.partitioning.bsp.BSPTreeVisitor;
import org.apache.commons.geometry.core.partitioning.bsp.RegionCutBoundary;
import org.apache.commons.geometry.euclidean.twod.path.InteriorAngleLinePathConnector;
import org.apache.commons.geometry.euclidean.twod.path.LinePath;
import org.apache.commons.numbers.core.Precision;

/** Binary space partitioning (BSP) tree representing a region in two dimensional
 * Euclidean space.
 */
public final class RegionBSPTree2D extends AbstractRegionBSPTree<Vector2D, RegionBSPTree2D.RegionNode2D>
    implements BoundarySource2D {

    /** List of line subset paths comprising the region boundary. */
    private List<LinePath> boundaryPaths;

    /** Create a new, empty region.
     */
    public RegionBSPTree2D() {
        this(false);
    }

    /** Create a new region. If {@code full} is true, then the region will
     * represent the entire 2D space. Otherwise, it will be empty.
     * @param full whether or not the region should contain the entire
     *      2D space or be empty
     */
    public RegionBSPTree2D(final boolean full) {
        super(full);
    }

    /** Return a deep copy of this instance.
     * @return a deep copy of this instance.
     * @see #copy(org.apache.commons.geometry.core.partitioning.bsp.BSPTree)
     */
    public RegionBSPTree2D copy() {
        final RegionBSPTree2D result = RegionBSPTree2D.empty();
        result.copy(this);

        return result;
    }

    /** {@inheritDoc} */
    @Override
    public Iterable<LineConvexSubset> boundaries() {
        return createBoundaryIterable(LineConvexSubset.class::cast);
    }

    /** {@inheritDoc} */
    @Override
    public Stream<LineConvexSubset> boundaryStream() {
        return StreamSupport.stream(boundaries().spliterator(), false);
    }

    /** {@inheritDoc} */
    @Override
    public List<LineConvexSubset> getBoundaries() {
        return createBoundaryList(LineConvexSubset.class::cast);
    }

    /** Get the boundary of the region as a list of connected line subset paths.
     * The line subset are oriented such that their minus (left) side lies on the
     * interior of the region.
     * @return line subset paths representing the region boundary
     */
    public List<LinePath> getBoundaryPaths() {
        if (boundaryPaths == null) {
            boundaryPaths = Collections.unmodifiableList(computeBoundaryPaths());
        }
        return boundaryPaths;
    }

    /** Add a convex area to this region. The resulting region will be the
     * union of the convex area and the region represented by this instance.
     * @param area the convex area to add
     */
    public void add(final ConvexArea area) {
        union(area.toTree());
    }

    /** Return a list of {@link ConvexArea}s representing the same region
     * as this instance. One convex area is returned for each interior leaf
     * node in the tree.
     * @return a list of convex areas representing the same region as this
     *      instance
     */
    public List<ConvexArea> toConvex() {
        final List<ConvexArea> result = new ArrayList<>();

        toConvexRecursive(getRoot(), ConvexArea.full(), result);

        return result;
    }

    /** Recursive method to compute the convex areas of all inside leaf nodes in the subtree rooted at the given
     * node. The computed convex areas are added to the given list.
     * @param node root of the subtree to compute the convex areas for
     * @param nodeArea the convex area for the current node; this will be split by the node's cut hyperplane to
     *      form the convex areas for any child nodes
     * @param result list containing the results of the computation
     */
    private void toConvexRecursive(final RegionNode2D node, final ConvexArea nodeArea,
            final List<? super ConvexArea> result) {
        if (node.isLeaf()) {
            // base case; only add to the result list if the node is inside
            if (node.isInside()) {
                result.add(nodeArea);
            }
        } else {
            // recurse
            final Split<ConvexArea> split = nodeArea.split(node.getCutHyperplane());

            toConvexRecursive(node.getMinus(), split.getMinus(), result);
            toConvexRecursive(node.getPlus(), split.getPlus(), result);
        }
    }

    /** {@inheritDoc} */
    @Override
    public Split<RegionBSPTree2D> split(final Hyperplane<Vector2D> splitter) {
        return split(splitter, RegionBSPTree2D.empty(), RegionBSPTree2D.empty());
    }

    /** {@inheritDoc} */
    @Override
    public Vector2D project(final Vector2D pt) {
        // use our custom projector so that we can disambiguate points that are
        // actually equidistant from the target point
        final BoundaryProjector2D projector = new BoundaryProjector2D(pt);
        accept(projector);

        return projector.getProjected();
    }

    /** Return the current instance.
     */
    @Override
    public RegionBSPTree2D toTree() {
        return this;
    }

    /** {@inheritDoc} */
    @Override
    public List<LinecastPoint2D> linecast(final LineConvexSubset subset) {
        final LinecastVisitor visitor = new LinecastVisitor(subset, false);
        accept(visitor);

        return visitor.getResults();
    }

    /** {@inheritDoc} */
    @Override
    public LinecastPoint2D linecastFirst(final LineConvexSubset subset) {
        final LinecastVisitor visitor = new LinecastVisitor(subset, true);
        accept(visitor);

        return visitor.getFirstResult();
    }

    /** Compute the line subset paths comprising the region boundary.
     * @return the line subset paths comprising the region boundary
     */
    private List<LinePath> computeBoundaryPaths() {
        final InteriorAngleLinePathConnector connector = new InteriorAngleLinePathConnector.Minimize();
        connector.connect(boundaries());

        return connector.connectAll().stream()
                .map(LinePath::simplify).collect(Collectors.toList());
    }

    /** {@inheritDoc} */
    @Override
    protected RegionSizeProperties<Vector2D> computeRegionSizeProperties() {
        // handle simple cases
        if (isFull()) {
            return new RegionSizeProperties<>(Double.POSITIVE_INFINITY, null);
        } else if (isEmpty()) {
            return new RegionSizeProperties<>(0, null);
        }

        // compute the size based on the boundary line subsets
        double quadrilateralAreaSum = 0.0;

        double scaledSumX = 0.0;
        double scaledSumY = 0.0;

        Vector2D startPoint;
        Vector2D endPoint;
        double signedArea;

        for (final LineConvexSubset boundary : boundaries()) {

            if (boundary.isInfinite()) {
                // at least on boundary is infinite, meaning that
                // the size is also infinite
                quadrilateralAreaSum = Double.POSITIVE_INFINITY;

                break;
            }

            startPoint = boundary.getStartPoint();
            endPoint = boundary.getEndPoint();

            // compute the area
            signedArea = startPoint.signedArea(endPoint);

            quadrilateralAreaSum += signedArea;

            // compute scaled coordinate values for the centroid
            scaledSumX += signedArea * (startPoint.getX() + endPoint.getX());
            scaledSumY += signedArea * (startPoint.getY() + endPoint.getY());
        }

        double size = Double.POSITIVE_INFINITY;
        Vector2D centroid = null;

        // The area is finite only if the computed quadrilateral area is finite and non-negative.
        // Negative areas indicate that the region is inside-out, with a finite outside surrounded
        // by an infinite inside.
        if (quadrilateralAreaSum >= 0 && Double.isFinite(quadrilateralAreaSum)) {
            size = 0.5 * quadrilateralAreaSum;

            if (quadrilateralAreaSum > 0) {
                centroid = Vector2D.of(scaledSumX, scaledSumY).multiply(1.0 / (3.0 * quadrilateralAreaSum));
            }
        }

        return new RegionSizeProperties<>(size, centroid);
    }

    /** {@inheritDoc} */
    @Override
    protected void invalidate() {
        super.invalidate();

        boundaryPaths = null;
    }

    /** {@inheritDoc} */
    @Override
    protected RegionNode2D createNode() {
        return new RegionNode2D(this);
    }

    /** Return a new {@link RegionBSPTree2D} instance containing the entire space.
     * @return a new {@link RegionBSPTree2D} instance containing the entire space
     */
    public static RegionBSPTree2D full() {
        return new RegionBSPTree2D(true);
    }

    /** Return a new, empty {@link RegionBSPTree2D} instance.
     * @return a new, empty {@link RegionBSPTree2D} instance
     */
    public static RegionBSPTree2D empty() {
        return new RegionBSPTree2D(false);
    }

    /** Construct a new tree from the given boundaries. If no boundaries
     * are present, the returned tree is empty.
     * @param boundaries boundaries to construct the tree from
     * @return a new tree instance constructed from the given boundaries
     * @see #from(Iterable, boolean)
     */
    public static RegionBSPTree2D from(final Iterable<? extends LineConvexSubset> boundaries) {
        return from(boundaries, false);
    }

    /** Construct a new tree from the given boundaries. If {@code full} is true, then
     * the initial tree before boundary insertion contains the entire space. Otherwise,
     * it is empty.
     * @param boundaries boundaries to construct the tree from
     * @param full if true, the initial tree will contain the entire space
     * @return a new tree instance constructed from the given boundaries
     */
    public static RegionBSPTree2D from(final Iterable<? extends LineConvexSubset> boundaries, final boolean full) {
        final RegionBSPTree2D tree = new RegionBSPTree2D(full);
        tree.insert(boundaries);

        return tree;
    }

    /** Create a new {@link PartitionedRegionBuilder2D} instance which can be used to build balanced
     * BSP trees from region boundaries.
     * @return a new {@link PartitionedRegionBuilder2D} instance
     */
    public static PartitionedRegionBuilder2D partitionedRegionBuilder() {
        return new PartitionedRegionBuilder2D();
    }

    /** BSP tree node for two dimensional Euclidean space.
     */
    public static final class RegionNode2D extends AbstractRegionBSPTree.AbstractRegionNode<Vector2D, RegionNode2D> {
        /** Simple constructor.
         * @param tree the owning tree instance
         */
        private RegionNode2D(final AbstractBSPTree<Vector2D, RegionNode2D> tree) {
            super(tree);
        }

        /** Get the region represented by this node. The returned region contains
         * the entire area contained in this node, regardless of the attributes of
         * any child nodes.
         * @return the region represented by this node
         */
        public ConvexArea getNodeRegion() {
            ConvexArea area = ConvexArea.full();

            RegionNode2D child = this;
            RegionNode2D parent;

            while ((parent = child.getParent()) != null) {
                final Split<ConvexArea> split = area.split(parent.getCutHyperplane());

                area = child.isMinus() ? split.getMinus() : split.getPlus();

                child = parent;
            }

            return area;
        }

        /** {@inheritDoc} */
        @Override
        protected RegionNode2D getSelf() {
            return this;
        }
    }

    /** Class used to build regions in Euclidean 2D space by inserting boundaries into a BSP
     * tree containing "partitions", i.e. structural cuts where both sides of the cut have the same region location.
     * When partitions are chosen that effectively divide the region boundaries at each partition level, the
     * constructed tree is shallower and more balanced than one constructed from the region boundaries alone,
     * resulting in improved performance. For example, consider a line segment approximation of a circle. The region is
     * convex so each boundary has all of the other boundaries on its minus side; the plus sides are all empty.
     * When these boundaries are inserted directly into a tree, the tree degenerates into a simple linked list of
     * nodes with a height directly proportional to the number of boundaries. This means that many operations on the
     * tree, such as inside/outside testing of points, involve iterating through each and every region boundary. In
     * contrast, if a partition is first inserted that passes through the circle center, the first BSP tree node
     * contains region nodes on its plus <em>and</em> minus sides, cutting the height of the tree in half. Operations
     * such as inside/outside testing are then able to skip half of the tree nodes with a single test on the
     * root node, resulting in drastically improved performance. Insertion of additional partitions (using a grid
     * layout, for example) can produce even shallower trees, although there is a point unique to each boundary set at
     * which the addition of more partitions begins to decrease instead of increase performance.
     *
     * <h2>Usage</h2>
     * <p>Usage of this class consists of two phases: (1) <em>partition insertion</em> and (2) <em>boundary
     * insertion</em>. Instances begin in the <em>partition insertion</em> phase. Here, partitions can be inserted
     * into the empty tree using {@link PartitionedRegionBuilder2D#insertPartition(LineConvexSubset) insertPartition}
     * or similar methods. The {@link org.apache.commons.geometry.core.partitioning.bsp.RegionCutRule#INHERIT INHERIT}
     * cut rule is used internally to insert the cut so the represented region remains empty even as partitions are
     * inserted.
     * </p>
     *
     * <p>The instance moves into the <em>boundary insertion</em> phase when the caller inserts the first region
     * boundary, using {@link PartitionedRegionBuilder2D#insertBoundary(LineConvexSubset) insertBoundary} or
     * similar methods. Attempting to insert a partition after this point results in an {@code IllegalStateException}.
     * This ensures that partitioning cuts are always located higher up the tree than boundary cuts.</p>
     *
     * <p>After all boundaries are inserted, the {@link PartitionedRegionBuilder2D#build() build} method is used
     * to perform final processing and return the computed tree.</p>
     */
    public static final class PartitionedRegionBuilder2D
        extends AbstractPartitionedRegionBuilder<Vector2D, RegionNode2D> {

        /** Construct a new builder instance.
         */
        private PartitionedRegionBuilder2D() {
            super(RegionBSPTree2D.empty());
        }

        /** Insert a partition line.
         * @param partition partition to insert
         * @return this instance
         * @throws IllegalStateException if a boundary has previously been inserted
         */
        public PartitionedRegionBuilder2D insertPartition(final Line partition) {
            return insertPartition(partition.span());
        }

        /** Insert a line convex subset as a partition.
         * @param partition partition to insert
         * @return this instance
         * @throws IllegalStateException if a boundary has previously been inserted
         */
        public PartitionedRegionBuilder2D insertPartition(final LineConvexSubset partition) {
            insertPartitionInternal(partition);

            return this;
        }

        /** Insert two axis aligned lines intersecting at the given point as partitions.
         * The lines each contain the {@code center} point and have the directions {@code +x} and {@code +y}
         * in that order. If inserted into an empty tree, this will partition the space
         * into 4 sections.
         * @param center center point for the partitions; the inserted lines intersect at this point
         * @param precision precision context used to construct the lines
         * @return this instance
         * @throws IllegalStateException if a boundary has previously been inserted
         */
        public PartitionedRegionBuilder2D insertAxisAlignedPartitions(final Vector2D center,
                final Precision.DoubleEquivalence precision) {

            insertPartition(Lines.fromPointAndDirection(center, Vector2D.Unit.PLUS_X, precision));
            insertPartition(Lines.fromPointAndDirection(center, Vector2D.Unit.PLUS_Y, precision));

            return this;
        }

        /** Insert a grid of partitions. The partitions are constructed recursively: at each level two axis-aligned
         * partitioning lines are inserted using
         * {@link #insertAxisAlignedPartitions(Vector2D, Precision.DoubleEquivalence) insertAxisAlignedPartitions}.
         * The algorithm then recurses using bounding boxes from the min point to the center and from the center
         * point to the max. Note that this means no partitions are ever inserted directly on the boundaries of
         * the given bounding box. This is intentional and done to allow this method to be called directly with the
         * bounding box from a set of boundaries to be inserted without unnecessarily adding partitions that will
         * never have region boundaries on both sides.
         * @param bounds bounding box for the grid
         * @param level recursion level for the grid; each level subdivides each grid cube into 4 sections, making the
         *      total number of grid cubes equal to {@code 4 ^ level}
         * @param precision precision context used to construct the partition lines
         * @return this instance
         * @throws IllegalStateException if a boundary has previously been inserted
         */
        public PartitionedRegionBuilder2D insertAxisAlignedGrid(final Bounds2D bounds, final int level,
                final Precision.DoubleEquivalence precision) {

            insertAxisAlignedGridRecursive(bounds.getMin(), bounds.getMax(), level, precision);

            return this;
        }

        /** Recursively insert axis-aligned grid partitions.
         * @param min min point for the grid square to partition
         * @param max max point for the grid square to partition
         * @param level current recursion level
         * @param precision precision context used to construct the partition planes
         */
        private void insertAxisAlignedGridRecursive(final Vector2D min, final Vector2D max, final int level,
                final Precision.DoubleEquivalence precision) {
            if (level > 0) {
                final Vector2D center = min.lerp(max, 0.5);

                insertAxisAlignedPartitions(center, precision);

                final int nextLevel = level - 1;
                insertAxisAlignedGridRecursive(min, center, nextLevel, precision);
                insertAxisAlignedGridRecursive(center, max, nextLevel, precision);
            }
        }

        /** Insert a region boundary.
         * @param boundary region boundary to insert
         * @return this instance
         */
        public PartitionedRegionBuilder2D insertBoundary(final LineConvexSubset boundary) {
            insertBoundaryInternal(boundary);

            return this;
        }

        /** Insert a collection of region boundaries.
         * @param boundaries boundaries to insert
         * @return this instance
         */
        public PartitionedRegionBuilder2D insertBoundaries(final Iterable<? extends LineConvexSubset> boundaries) {
            for (final LineConvexSubset boundary : boundaries) {
                insertBoundaryInternal(boundary);
            }

            return this;
        }

        /** Insert all boundaries from the given source.
         * @param boundarySrc source of boundaries to insert
         * @return this instance
         */
        public PartitionedRegionBuilder2D insertBoundaries(final BoundarySource2D boundarySrc) {
            try (Stream<LineConvexSubset> stream = boundarySrc.boundaryStream()) {
                stream.forEach(this::insertBoundaryInternal);
            }

            return this;
        }

        /** Build and return the region BSP tree.
         * @return the region BSP tree
         */
        public RegionBSPTree2D build() {
            return (RegionBSPTree2D) buildInternal();
        }
    }

    /** Class used to project points onto the 2D region boundary.
     */
    private static final class BoundaryProjector2D extends BoundaryProjector<Vector2D, RegionNode2D> {
        /** Simple constructor.
         * @param point the point to project onto the region's boundary
         */
        BoundaryProjector2D(final Vector2D point) {
            super(point);
        }

        /** {@inheritDoc} */
        @Override
        protected Vector2D disambiguateClosestPoint(final Vector2D target, final Vector2D a, final Vector2D b) {
            // return the point with the smallest coordinate values
            final int cmp = Vector2D.COORDINATE_ASCENDING_ORDER.compare(a, b);
            return cmp < 0 ? a : b;
        }
    }

    /** BSP tree visitor that performs a linecast operation against the boundaries of the visited tree.
     */
    private static final class LinecastVisitor implements BSPTreeVisitor<Vector2D, RegionNode2D> {

        /** The line subset to intersect with the boundaries of the BSP tree. */
        private final LineConvexSubset linecastSubset;

        /** If true, the visitor will stop visiting the tree once the first linecast
         * point is determined.
         */
        private final boolean firstOnly;

        /** The minimum abscissa found during the search. */
        private double minAbscissa = Double.POSITIVE_INFINITY;

        /** List of results from the linecast operation. */
        private final List<LinecastPoint2D> results = new ArrayList<>();

        /** Create a new instance with the given intersecting line subset.
         * @param linecastSubset line subset to intersect with the BSP tree region boundary
         * @param firstOnly if true, the visitor will stop visiting the tree once the first
         *      linecast point is determined
         */
        LinecastVisitor(final LineConvexSubset linecastSubset, final boolean firstOnly) {
            this.linecastSubset = linecastSubset;
            this.firstOnly = firstOnly;
        }

        /** Get the first {@link LinecastPoint2D} resulting from the linecast operation.
         * @return the first linecast result point
         */
        public LinecastPoint2D getFirstResult() {
            final List<LinecastPoint2D> sortedResults = getResults();

            return sortedResults.isEmpty() ?
                    null :
                    sortedResults.get(0);
        }

        /** Get a list containing the results of the linecast operation. The list is
         * sorted and filtered.
         * @return list of sorted and filtered results from the linecast operation
         */
        public List<LinecastPoint2D> getResults() {
            LinecastPoint2D.sortAndFilter(results);

            return results;
        }

        /** {@inheritDoc} */
        @Override
        public Order visitOrder(final RegionNode2D internalNode) {
            final Line cut = (Line) internalNode.getCutHyperplane();
            final Line line = linecastSubset.getLine();

            final boolean plusIsNear = line.getDirection().dot(cut.getOffsetDirection()) < 0;

            return plusIsNear ?
                    Order.PLUS_NODE_MINUS :
                    Order.MINUS_NODE_PLUS;
        }

        /** {@inheritDoc} */
        @Override
        public Result visit(final RegionNode2D node) {
            if (node.isInternal()) {
                // check if the line subset intersects the node cut
                final Line line = linecastSubset.getLine();
                final Vector2D pt = ((Line) node.getCutHyperplane()).intersection(line);

                if (pt != null) {
                    if (firstOnly && !results.isEmpty() &&
                            line.getPrecision().compare(minAbscissa, line.abscissa(pt)) < 0) {
                        // we have results and we are now sure that no other intersection points will be
                        // found that are closer or at the same position on the intersecting line.
                        return Result.TERMINATE;
                    } else if (linecastSubset.contains(pt)) {
                        // we've potentially found a new linecast point; add it to the list of potential
                        // results
                        final LinecastPoint2D potentialResult = computeLinecastPoint(pt, node);
                        if (potentialResult != null) {
                            results.add(potentialResult);

                            // update the min abscissa
                            minAbscissa = Math.min(minAbscissa, potentialResult.getAbscissa());
                        }
                    }
                }
            }

            return Result.CONTINUE;
        }

        /** Compute the linecast point for the given intersection point and tree node, returning null
         * if the point does not actually lie on the region boundary.
         * @param pt intersection point
         * @param node node containing the cut that the linecast line intersected with
         * @return a new linecast point instance or null if the intersection point does not lie
         *      on the region boundary
         */
        private LinecastPoint2D computeLinecastPoint(final Vector2D pt, final RegionNode2D node) {
            final Line cut = (Line) node.getCutHyperplane();
            final RegionCutBoundary<Vector2D> boundary = node.getCutBoundary();

            boolean onBoundary = false;
            boolean negateNormal = false;

            if (boundary.containsInsideFacing(pt)) {
                // on inside-facing boundary
                onBoundary = true;
                negateNormal = true;
            } else  if (boundary.containsOutsideFacing(pt)) {
                // on outside-facing boundary
                onBoundary = true;
            }

            if (onBoundary) {
                Vector2D normal = cut.getOffsetDirection();
                if (negateNormal) {
                    normal = normal.negate();
                }

                return new LinecastPoint2D(pt, normal, linecastSubset.getLine());
            }

            return null;
        }
    }
}