001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.geometry.euclidean.twod;
018
019import java.util.ArrayList;
020import java.util.Collections;
021import java.util.List;
022import java.util.stream.Collectors;
023import java.util.stream.Stream;
024import java.util.stream.StreamSupport;
025
026import org.apache.commons.geometry.core.partitioning.Hyperplane;
027import org.apache.commons.geometry.core.partitioning.Split;
028import org.apache.commons.geometry.core.partitioning.bsp.AbstractBSPTree;
029import org.apache.commons.geometry.core.partitioning.bsp.AbstractPartitionedRegionBuilder;
030import org.apache.commons.geometry.core.partitioning.bsp.AbstractRegionBSPTree;
031import org.apache.commons.geometry.core.partitioning.bsp.BSPTreeVisitor;
032import org.apache.commons.geometry.core.partitioning.bsp.RegionCutBoundary;
033import org.apache.commons.geometry.core.precision.DoublePrecisionContext;
034import org.apache.commons.geometry.euclidean.twod.path.InteriorAngleLinePathConnector;
035import org.apache.commons.geometry.euclidean.twod.path.LinePath;
036
037/** Binary space partitioning (BSP) tree representing a region in two dimensional
038 * Euclidean space.
039 */
040public final class RegionBSPTree2D extends AbstractRegionBSPTree<Vector2D, RegionBSPTree2D.RegionNode2D>
041    implements BoundarySource2D {
042
043    /** List of line subset paths comprising the region boundary. */
044    private List<LinePath> boundaryPaths;
045
046    /** Create a new, empty region.
047     */
048    public RegionBSPTree2D() {
049        this(false);
050    }
051
052    /** Create a new region. If {@code full} is true, then the region will
053     * represent the entire 2D space. Otherwise, it will be empty.
054     * @param full whether or not the region should contain the entire
055     *      2D space or be empty
056     */
057    public RegionBSPTree2D(final boolean full) {
058        super(full);
059    }
060
061    /** Return a deep copy of this instance.
062     * @return a deep copy of this instance.
063     * @see #copy(org.apache.commons.geometry.core.partitioning.bsp.BSPTree)
064     */
065    public RegionBSPTree2D copy() {
066        final RegionBSPTree2D result = RegionBSPTree2D.empty();
067        result.copy(this);
068
069        return result;
070    }
071
072    /** {@inheritDoc} */
073    @Override
074    public Iterable<LineConvexSubset> boundaries() {
075        return createBoundaryIterable(b -> (LineConvexSubset) b);
076    }
077
078    /** {@inheritDoc} */
079    @Override
080    public Stream<LineConvexSubset> boundaryStream() {
081        return StreamSupport.stream(boundaries().spliterator(), false);
082    }
083
084    /** {@inheritDoc} */
085    @Override
086    public List<LineConvexSubset> getBoundaries() {
087        return createBoundaryList(b -> (LineConvexSubset) b);
088    }
089
090    /** Get the boundary of the region as a list of connected line subset paths.
091     * The line subset are oriented such that their minus (left) side lies on the
092     * interior of the region.
093     * @return line subset paths representing the region boundary
094     */
095    public List<LinePath> getBoundaryPaths() {
096        if (boundaryPaths == null) {
097            boundaryPaths = Collections.unmodifiableList(computeBoundaryPaths());
098        }
099        return boundaryPaths;
100    }
101
102    /** Add a convex area to this region. The resulting region will be the
103     * union of the convex area and the region represented by this instance.
104     * @param area the convex area to add
105     */
106    public void add(final ConvexArea area) {
107        union(area.toTree());
108    }
109
110    /** Return a list of {@link ConvexArea}s representing the same region
111     * as this instance. One convex area is returned for each interior leaf
112     * node in the tree.
113     * @return a list of convex areas representing the same region as this
114     *      instance
115     */
116    public List<ConvexArea> toConvex() {
117        final List<ConvexArea> result = new ArrayList<>();
118
119        toConvexRecursive(getRoot(), ConvexArea.full(), result);
120
121        return result;
122    }
123
124    /** Recursive method to compute the convex areas of all inside leaf nodes in the subtree rooted at the given
125     * node. The computed convex areas are added to the given list.
126     * @param node root of the subtree to compute the convex areas for
127     * @param nodeArea the convex area for the current node; this will be split by the node's cut hyperplane to
128     *      form the convex areas for any child nodes
129     * @param result list containing the results of the computation
130     */
131    private void toConvexRecursive(final RegionNode2D node, final ConvexArea nodeArea, final List<ConvexArea> result) {
132        if (node.isLeaf()) {
133            // base case; only add to the result list if the node is inside
134            if (node.isInside()) {
135                result.add(nodeArea);
136            }
137        } else {
138            // recurse
139            final Split<ConvexArea> split = nodeArea.split(node.getCutHyperplane());
140
141            toConvexRecursive(node.getMinus(), split.getMinus(), result);
142            toConvexRecursive(node.getPlus(), split.getPlus(), result);
143        }
144    }
145
146    /** {@inheritDoc} */
147    @Override
148    public Split<RegionBSPTree2D> split(final Hyperplane<Vector2D> splitter) {
149        return split(splitter, RegionBSPTree2D.empty(), RegionBSPTree2D.empty());
150    }
151
152    /** {@inheritDoc} */
153    @Override
154    public Vector2D project(final Vector2D pt) {
155        // use our custom projector so that we can disambiguate points that are
156        // actually equidistant from the target point
157        final BoundaryProjector2D projector = new BoundaryProjector2D(pt);
158        accept(projector);
159
160        return projector.getProjected();
161    }
162
163    /** Return the current instance.
164     */
165    @Override
166    public RegionBSPTree2D toTree() {
167        return this;
168    }
169
170    /** {@inheritDoc} */
171    @Override
172    public List<LinecastPoint2D> linecast(final LineConvexSubset subset) {
173        final LinecastVisitor visitor = new LinecastVisitor(subset, false);
174        accept(visitor);
175
176        return visitor.getResults();
177    }
178
179    /** {@inheritDoc} */
180    @Override
181    public LinecastPoint2D linecastFirst(final LineConvexSubset subset) {
182        final LinecastVisitor visitor = new LinecastVisitor(subset, true);
183        accept(visitor);
184
185        return visitor.getFirstResult();
186    }
187
188    /** Compute the line subset paths comprising the region boundary.
189     * @return the line subset paths comprising the region boundary
190     */
191    private List<LinePath> computeBoundaryPaths() {
192        final InteriorAngleLinePathConnector connector = new InteriorAngleLinePathConnector.Minimize();
193        connector.connect(boundaries());
194
195        return connector.connectAll().stream()
196                .map(LinePath::simplify).collect(Collectors.toList());
197    }
198
199    /** {@inheritDoc} */
200    @Override
201    protected RegionSizeProperties<Vector2D> computeRegionSizeProperties() {
202        // handle simple cases
203        if (isFull()) {
204            return new RegionSizeProperties<>(Double.POSITIVE_INFINITY, null);
205        } else if (isEmpty()) {
206            return new RegionSizeProperties<>(0, null);
207        }
208
209        // compute the size based on the boundary line subsets
210        double quadrilateralAreaSum = 0.0;
211
212        double scaledSumX = 0.0;
213        double scaledSumY = 0.0;
214
215        Vector2D startPoint;
216        Vector2D endPoint;
217        double signedArea;
218
219        for (final LineConvexSubset boundary : boundaries()) {
220
221            if (boundary.isInfinite()) {
222                // at least on boundary is infinite, meaning that
223                // the size is also infinite
224                quadrilateralAreaSum = Double.POSITIVE_INFINITY;
225
226                break;
227            }
228
229            startPoint = boundary.getStartPoint();
230            endPoint = boundary.getEndPoint();
231
232            // compute the area
233            signedArea = startPoint.signedArea(endPoint);
234
235            quadrilateralAreaSum += signedArea;
236
237            // compute scaled coordinate values for the centroid
238            scaledSumX += signedArea * (startPoint.getX() + endPoint.getX());
239            scaledSumY += signedArea * (startPoint.getY() + endPoint.getY());
240        }
241
242        double size = Double.POSITIVE_INFINITY;
243        Vector2D centroid = null;
244
245        // The area is finite only if the computed quadrilateral area is finite and non-negative.
246        // Negative areas indicate that the region is inside-out, with a finite outside surrounded
247        // by an infinite inside.
248        if (quadrilateralAreaSum >= 0.0 && Double.isFinite(quadrilateralAreaSum)) {
249            size = 0.5 * quadrilateralAreaSum;
250
251            if (quadrilateralAreaSum > 0.0) {
252                centroid = Vector2D.of(scaledSumX, scaledSumY).multiply(1.0 / (3.0 * quadrilateralAreaSum));
253            }
254        }
255
256        return new RegionSizeProperties<>(size, centroid);
257    }
258
259    /** {@inheritDoc} */
260    @Override
261    protected void invalidate() {
262        super.invalidate();
263
264        boundaryPaths = null;
265    }
266
267    /** {@inheritDoc} */
268    @Override
269    protected RegionNode2D createNode() {
270        return new RegionNode2D(this);
271    }
272
273    /** Return a new {@link RegionBSPTree2D} instance containing the entire space.
274     * @return a new {@link RegionBSPTree2D} instance containing the entire space
275     */
276    public static RegionBSPTree2D full() {
277        return new RegionBSPTree2D(true);
278    }
279
280    /** Return a new, empty {@link RegionBSPTree2D} instance.
281     * @return a new, empty {@link RegionBSPTree2D} instance
282     */
283    public static RegionBSPTree2D empty() {
284        return new RegionBSPTree2D(false);
285    }
286
287    /** Construct a new tree from the given boundaries. If no boundaries
288     * are present, the returned tree is empty.
289     * @param boundaries boundaries to construct the tree from
290     * @return a new tree instance constructed from the given boundaries
291     * @see #from(Iterable, boolean)
292     */
293    public static RegionBSPTree2D from(final Iterable<? extends LineConvexSubset> boundaries) {
294        return from(boundaries, false);
295    }
296
297    /** Construct a new tree from the given boundaries. If {@code full} is true, then
298     * the initial tree before boundary insertion contains the entire space. Otherwise,
299     * it is empty.
300     * @param boundaries boundaries to construct the tree from
301     * @param full if true, the initial tree will contain the entire space
302     * @return a new tree instance constructed from the given boundaries
303     */
304    public static RegionBSPTree2D from(final Iterable<? extends LineConvexSubset> boundaries, final boolean full) {
305        final RegionBSPTree2D tree = new RegionBSPTree2D(full);
306        tree.insert(boundaries);
307
308        return tree;
309    }
310
311    /** Create a new {@link PartitionedRegionBuilder2D} instance which can be used to build balanced
312     * BSP trees from region boundaries.
313     * @return a new {@link PartitionedRegionBuilder2D} instance
314     */
315    public static PartitionedRegionBuilder2D partitionedRegionBuilder() {
316        return new PartitionedRegionBuilder2D();
317    }
318
319    /** BSP tree node for two dimensional Euclidean space.
320     */
321    public static final class RegionNode2D extends AbstractRegionBSPTree.AbstractRegionNode<Vector2D, RegionNode2D> {
322        /** Simple constructor.
323         * @param tree the owning tree instance
324         */
325        private RegionNode2D(final AbstractBSPTree<Vector2D, RegionNode2D> tree) {
326            super(tree);
327        }
328
329        /** Get the region represented by this node. The returned region contains
330         * the entire area contained in this node, regardless of the attributes of
331         * any child nodes.
332         * @return the region represented by this node
333         */
334        public ConvexArea getNodeRegion() {
335            ConvexArea area = ConvexArea.full();
336
337            RegionNode2D child = this;
338            RegionNode2D parent;
339
340            while ((parent = child.getParent()) != null) {
341                final Split<ConvexArea> split = area.split(parent.getCutHyperplane());
342
343                area = child.isMinus() ? split.getMinus() : split.getPlus();
344
345                child = parent;
346            }
347
348            return area;
349        }
350
351        /** {@inheritDoc} */
352        @Override
353        protected RegionNode2D getSelf() {
354            return this;
355        }
356    }
357
358    /** Class used to build regions in Euclidean 2D space by inserting boundaries into a BSP
359     * tree containing "partitions", i.e. structural cuts where both sides of the cut have the same region location.
360     * When partitions are chosen that effectively divide the region boundaries at each partition level, the
361     * constructed tree is shallower and more balanced than one constructed from the region boundaries alone,
362     * resulting in improved performance. For example, consider a line segment approximation of a circle. The region is
363     * convex so each boundary has all of the other boundaries on its minus side; the plus sides are all empty.
364     * When these boundaries are inserted directly into a tree, the tree degenerates into a simple linked list of
365     * nodes with a height directly proportional to the number of boundaries. This means that many operations on the
366     * tree, such as inside/outside testing of points, involve iterating through each and every region boundary. In
367     * contrast, if a partition is first inserted that passes through the circle center, the first BSP tree node
368     * contains region nodes on its plus <em>and</em> minus sides, cutting the height of the tree in half. Operations
369     * such as inside/outside testing are then able to skip half of the tree nodes with a single test on the
370     * root node, resulting in drastically improved performance. Insertion of additional partitions (using a grid
371     * layout, for example) can produce even shallower trees, although there is a point unique to each boundary set at
372     * which the addition of more partitions begins to decrease instead of increase performance.
373     *
374     * <h2>Usage</h2>
375     * <p>Usage of this class consists of two phases: (1) <em>partition insertion</em> and (2) <em>boundary
376     * insertion</em>. Instances begin in the <em>partition insertion</em> phase. Here, partitions can be inserted
377     * into the empty tree using {@link PartitionedRegionBuilder2D#insertPartition(LineConvexSubset) insertPartition}
378     * or similar methods. The {@link org.apache.commons.geometry.core.partitioning.bsp.RegionCutRule#INHERIT INHERIT}
379     * cut rule is used internally to insert the cut so the represented region remains empty even as partitions are
380     * inserted.
381     * </p>
382     *
383     * <p>The instance moves into the <em>boundary insertion</em> phase when the caller inserts the first region
384     * boundary, using {@link PartitionedRegionBuilder2D#insertBoundary(LineConvexSubset) insertBoundary} or
385     * similar methods. Attempting to insert a partition after this point results in an {@code IllegalStateException}.
386     * This ensures that partitioning cuts are always located higher up the tree than boundary cuts.</p>
387     *
388     * <p>After all boundaries are inserted, the {@link PartitionedRegionBuilder2D#build() build} method is used
389     * to perform final processing and return the computed tree.</p>
390     */
391    public static final class PartitionedRegionBuilder2D
392        extends AbstractPartitionedRegionBuilder<Vector2D, RegionNode2D> {
393
394        /** Construct a new builder instance.
395         */
396        private PartitionedRegionBuilder2D() {
397            super(RegionBSPTree2D.empty());
398        }
399
400        /** Insert a partition line.
401         * @param partition partition to insert
402         * @return this instance
403         * @throws IllegalStateException if a boundary has previously been inserted
404         */
405        public PartitionedRegionBuilder2D insertPartition(final Line partition) {
406            return insertPartition(partition.span());
407        }
408
409        /** Insert a line convex subset as a partition.
410         * @param partition partition to insert
411         * @return this instance
412         * @throws IllegalStateException if a boundary has previously been inserted
413         */
414        public PartitionedRegionBuilder2D insertPartition(final LineConvexSubset partition) {
415            insertPartitionInternal(partition);
416
417            return this;
418        }
419
420        /** Insert two axis aligned lines intersecting at the given point as partitions.
421         * The lines each contain the {@code center} point and have the directions {@code +x} and {@code +y}
422         * in that order. If inserted into an empty tree, this will partition the space
423         * into 4 sections.
424         * @param center center point for the partitions; the inserted lines intersect at this point
425         * @param precision precision context used to construct the lines
426         * @return this instance
427         * @throws IllegalStateException if a boundary has previously been inserted
428         */
429        public PartitionedRegionBuilder2D insertAxisAlignedPartitions(final Vector2D center,
430                final DoublePrecisionContext precision) {
431
432            insertPartition(Lines.fromPointAndDirection(center, Vector2D.Unit.PLUS_X, precision));
433            insertPartition(Lines.fromPointAndDirection(center, Vector2D.Unit.PLUS_Y, precision));
434
435            return this;
436        }
437
438        /** Insert a grid of partitions. The partitions are constructed recursively: at each level two axis-aligned
439         * partitioning lines are inserted using
440         * {@link #insertAxisAlignedPartitions(Vector2D, DoublePrecisionContext) insertAxisAlignedPartitions}.
441         * The algorithm then recurses using bounding boxes from the min point to the center and from the center
442         * point to the max. Note that this means no partitions are ever inserted directly on the boundaries of
443         * the given bounding box. This is intentional and done to allow this method to be called directly with the
444         * bounding box from a set of boundaries to be inserted without unnecessarily adding partitions that will
445         * never have region boundaries on both sides.
446         * @param bounds bounding box for the grid
447         * @param level recursion level for the grid; each level subdivides each grid cube into 4 sections, making the
448         *      total number of grid cubes equal to {@code 4 ^ level}
449         * @param precision precision context used to construct the partition lines
450         * @return this instance
451         * @throws IllegalStateException if a boundary has previously been inserted
452         */
453        public PartitionedRegionBuilder2D insertAxisAlignedGrid(final Bounds2D bounds, final int level,
454                final DoublePrecisionContext precision) {
455
456            insertAxisAlignedGridRecursive(bounds.getMin(), bounds.getMax(), level, precision);
457
458            return this;
459        }
460
461        /** Recursively insert axis-aligned grid partitions.
462         * @param min min point for the grid square to partition
463         * @param max max point for the grid square to partition
464         * @param level current recursion level
465         * @param precision precision context used to construct the partition planes
466         */
467        private void insertAxisAlignedGridRecursive(final Vector2D min, final Vector2D max, final int level,
468                final DoublePrecisionContext precision) {
469            if (level > 0) {
470                final Vector2D center = min.lerp(max, 0.5);
471
472                insertAxisAlignedPartitions(center, precision);
473
474                final int nextLevel = level - 1;
475                insertAxisAlignedGridRecursive(min, center, nextLevel, precision);
476                insertAxisAlignedGridRecursive(center, max, nextLevel, precision);
477            }
478        }
479
480        /** Insert a region boundary.
481         * @param boundary region boundary to insert
482         * @return this instance
483         */
484        public PartitionedRegionBuilder2D insertBoundary(final LineConvexSubset boundary) {
485            insertBoundaryInternal(boundary);
486
487            return this;
488        }
489
490        /** Insert a collection of region boundaries.
491         * @param boundaries boundaries to insert
492         * @return this instance
493         */
494        public PartitionedRegionBuilder2D insertBoundaries(final Iterable<? extends LineConvexSubset> boundaries) {
495            for (final LineConvexSubset boundary : boundaries) {
496                insertBoundaryInternal(boundary);
497            }
498
499            return this;
500        }
501
502        /** Insert all boundaries from the given source.
503         * @param boundarySrc source of boundaries to insert
504         * @return this instance
505         */
506        public PartitionedRegionBuilder2D insertBoundaries(final BoundarySource2D boundarySrc) {
507            try (Stream<LineConvexSubset> stream = boundarySrc.boundaryStream()) {
508                stream.forEach(this::insertBoundaryInternal);
509            }
510
511            return this;
512        }
513
514        /** Build and return the region BSP tree.
515         * @return the region BSP tree
516         */
517        public RegionBSPTree2D build() {
518            return (RegionBSPTree2D) buildInternal();
519        }
520    }
521
522    /** Class used to project points onto the 2D region boundary.
523     */
524    private static final class BoundaryProjector2D extends BoundaryProjector<Vector2D, RegionNode2D> {
525        /** Simple constructor.
526         * @param point the point to project onto the region's boundary
527         */
528        BoundaryProjector2D(final Vector2D point) {
529            super(point);
530        }
531
532        /** {@inheritDoc} */
533        @Override
534        protected Vector2D disambiguateClosestPoint(final Vector2D target, final Vector2D a, final Vector2D b) {
535            // return the point with the smallest coordinate values
536            final int cmp = Vector2D.COORDINATE_ASCENDING_ORDER.compare(a, b);
537            return cmp < 0 ? a : b;
538        }
539    }
540
541    /** BSP tree visitor that performs a linecast operation against the boundaries of the visited tree.
542     */
543    private static final class LinecastVisitor implements BSPTreeVisitor<Vector2D, RegionNode2D> {
544
545        /** The line subset to intersect with the boundaries of the BSP tree. */
546        private final LineConvexSubset linecastSubset;
547
548        /** If true, the visitor will stop visiting the tree once the first linecast
549         * point is determined.
550         */
551        private final boolean firstOnly;
552
553        /** The minimum abscissa found during the search. */
554        private double minAbscissa = Double.POSITIVE_INFINITY;
555
556        /** List of results from the linecast operation. */
557        private final List<LinecastPoint2D> results = new ArrayList<>();
558
559        /** Create a new instance with the given intersecting line subset.
560         * @param linecastSubset line subset to intersect with the BSP tree region boundary
561         * @param firstOnly if true, the visitor will stop visiting the tree once the first
562         *      linecast point is determined
563         */
564        LinecastVisitor(final LineConvexSubset linecastSubset, final boolean firstOnly) {
565            this.linecastSubset = linecastSubset;
566            this.firstOnly = firstOnly;
567        }
568
569        /** Get the first {@link LinecastPoint2D} resulting from the linecast operation.
570         * @return the first linecast result point
571         */
572        public LinecastPoint2D getFirstResult() {
573            final List<LinecastPoint2D> sortedResults = getResults();
574
575            return sortedResults.isEmpty() ?
576                    null :
577                    sortedResults.get(0);
578        }
579
580        /** Get a list containing the results of the linecast operation. The list is
581         * sorted and filtered.
582         * @return list of sorted and filtered results from the linecast operation
583         */
584        public List<LinecastPoint2D> getResults() {
585            LinecastPoint2D.sortAndFilter(results);
586
587            return results;
588        }
589
590        /** {@inheritDoc} */
591        @Override
592        public Order visitOrder(final RegionNode2D internalNode) {
593            final Line cut = (Line) internalNode.getCutHyperplane();
594            final Line line = linecastSubset.getLine();
595
596            final boolean plusIsNear = line.getDirection().dot(cut.getOffsetDirection()) < 0;
597
598            return plusIsNear ?
599                    Order.PLUS_NODE_MINUS :
600                    Order.MINUS_NODE_PLUS;
601        }
602
603        /** {@inheritDoc} */
604        @Override
605        public Result visit(final RegionNode2D node) {
606            if (node.isInternal()) {
607                // check if the line subset intersects the node cut
608                final Line line = linecastSubset.getLine();
609                final Vector2D pt = ((Line) node.getCutHyperplane()).intersection(line);
610
611                if (pt != null) {
612                    if (firstOnly && !results.isEmpty() &&
613                            line.getPrecision().compare(minAbscissa, line.abscissa(pt)) < 0) {
614                        // we have results and we are now sure that no other intersection points will be
615                        // found that are closer or at the same position on the intersecting line.
616                        return Result.TERMINATE;
617                    } else if (linecastSubset.contains(pt)) {
618                        // we've potentially found a new linecast point; add it to the list of potential
619                        // results
620                        final LinecastPoint2D potentialResult = computeLinecastPoint(pt, node);
621                        if (potentialResult != null) {
622                            results.add(potentialResult);
623
624                            // update the min abscissa
625                            minAbscissa = Math.min(minAbscissa, potentialResult.getAbscissa());
626                        }
627                    }
628                }
629            }
630
631            return Result.CONTINUE;
632        }
633
634        /** Compute the linecast point for the given intersection point and tree node, returning null
635         * if the point does not actually lie on the region boundary.
636         * @param pt intersection point
637         * @param node node containing the cut that the linecast line intersected with
638         * @return a new linecast point instance or null if the intersection point does not lie
639         *      on the region boundary
640         */
641        private LinecastPoint2D computeLinecastPoint(final Vector2D pt, final RegionNode2D node) {
642            final Line cut = (Line) node.getCutHyperplane();
643            final RegionCutBoundary<Vector2D> boundary = node.getCutBoundary();
644
645            boolean onBoundary = false;
646            boolean negateNormal = false;
647
648            if (boundary.containsInsideFacing(pt)) {
649                // on inside-facing boundary
650                onBoundary = true;
651                negateNormal = true;
652            } else  if (boundary.containsOutsideFacing(pt)) {
653                // on outside-facing boundary
654                onBoundary = true;
655            }
656
657            if (onBoundary) {
658                Vector2D normal = cut.getOffsetDirection();
659                if (negateNormal) {
660                    normal = normal.negate();
661                }
662
663                return new LinecastPoint2D(pt, normal, linecastSubset.getLine());
664            }
665
666            return null;
667        }
668    }
669}