001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.lang3; 018 019import java.util.ArrayList; 020import java.util.Collection; 021import java.util.Collections; 022import java.util.List; 023import java.util.Set; 024import java.util.function.BiConsumer; 025import java.util.function.BinaryOperator; 026import java.util.function.Consumer; 027import java.util.function.Function; 028import java.util.function.Predicate; 029import java.util.function.Supplier; 030import java.util.stream.Collector; 031import java.util.stream.Collectors; 032import java.util.stream.Stream; 033 034import org.apache.commons.lang3.Functions.FailableConsumer; 035import org.apache.commons.lang3.Functions.FailableFunction; 036import org.apache.commons.lang3.Functions.FailablePredicate; 037 038/** 039 * Provides utility functions, and classes for working with the 040 * {@code java.util.stream} package, or more generally, with Java 8 lambdas. More 041 * specifically, it attempts to address the fact that lambdas are supposed 042 * not to throw Exceptions, at least not checked Exceptions, AKA instances 043 * of {@link Exception}. This enforces the use of constructs like 044 * <pre>{@code 045 * Consumer<java.lang.reflect.Method> consumer = m -> { 046 * try { 047 * m.invoke(o, args); 048 * } catch (Throwable t) { 049 * throw Functions.rethrow(t); 050 * } 051 * }; 052 * stream.forEach(consumer); 053 * }</pre> 054 * Using a {@link FailableStream}, this can be rewritten as follows: 055 * <pre>{@code 056 * Streams.failable(stream).forEach(m -> m.invoke(o, args)); 057 * }</pre> 058 * Obviously, the second version is much more concise and the spirit of 059 * Lambda expressions is met better than in the first version. 060 * 061 * @see Stream 062 * @see Functions 063 * @since 3.10 064 * @deprecated Use {@link org.apache.commons.lang3.stream.Streams}. 065 */ 066@Deprecated 067public class Streams { 068 069 /** 070 * A Collector type for arrays. 071 * 072 * @param <O> The array type. 073 * @deprecated Use {@link org.apache.commons.lang3.stream.Streams.ArrayCollector}. 074 */ 075 @Deprecated 076 public static class ArrayCollector<O> implements Collector<O, List<O>, O[]> { 077 private static final Set<Characteristics> characteristics = Collections.emptySet(); 078 private final Class<O> elementType; 079 080 /** 081 * Constructs a new instance for the given element type. 082 * 083 * @param elementType The element type. 084 */ 085 public ArrayCollector(final Class<O> elementType) { 086 this.elementType = elementType; 087 } 088 089 @Override 090 public BiConsumer<List<O>, O> accumulator() { 091 return List::add; 092 } 093 094 @Override 095 public Set<Characteristics> characteristics() { 096 return characteristics; 097 } 098 099 @Override 100 public BinaryOperator<List<O>> combiner() { 101 return (left, right) -> { 102 left.addAll(right); 103 return left; 104 }; 105 } 106 107 @Override 108 public Function<List<O>, O[]> finisher() { 109 return list -> list.toArray(ArrayUtils.newInstance(elementType, list.size())); 110 } 111 112 @Override 113 public Supplier<List<O>> supplier() { 114 return ArrayList::new; 115 } 116 } 117 118 /** 119 * A reduced, and simplified version of a {@link Stream} with 120 * failable method signatures. 121 * @param <O> The streams element type. 122 * @deprecated Use {@link org.apache.commons.lang3.stream.Streams.FailableStream}. 123 */ 124 @Deprecated 125 public static class FailableStream<O> { 126 127 private Stream<O> stream; 128 private boolean terminated; 129 130 /** 131 * Constructs a new instance with the given {@code stream}. 132 * @param stream The stream. 133 */ 134 public FailableStream(final Stream<O> stream) { 135 this.stream = stream; 136 } 137 138 /** 139 * Returns whether all elements of this stream match the provided predicate. 140 * May not evaluate the predicate on all elements if not necessary for 141 * determining the result. If the stream is empty then {@code true} is 142 * returned and the predicate is not evaluated. 143 * 144 * <p> 145 * This is a short-circuiting terminal operation. 146 * </p> 147 * 148 * <p> 149 * Note 150 * This method evaluates the <em>universal quantification</em> of the 151 * predicate over the elements of the stream (for all x P(x)). If the 152 * stream is empty, the quantification is said to be <em>vacuously 153 * satisfied</em> and is always {@code true} (regardless of P(x)). 154 * </p> 155 * 156 * @param predicate A non-interfering, stateless predicate to apply to 157 * elements of this stream 158 * @return {@code true} If either all elements of the stream match the 159 * provided predicate or the stream is empty, otherwise {@code false}. 160 */ 161 public boolean allMatch(final FailablePredicate<O, ?> predicate) { 162 assertNotTerminated(); 163 return stream().allMatch(Functions.asPredicate(predicate)); 164 } 165 166 /** 167 * Returns whether any elements of this stream match the provided 168 * predicate. May not evaluate the predicate on all elements if not 169 * necessary for determining the result. If the stream is empty then 170 * {@code false} is returned and the predicate is not evaluated. 171 * 172 * <p> 173 * This is a short-circuiting terminal operation. 174 * </p> 175 * 176 * Note 177 * This method evaluates the <em>existential quantification</em> of the 178 * predicate over the elements of the stream (for some x P(x)). 179 * 180 * @param predicate A non-interfering, stateless predicate to apply to 181 * elements of this stream 182 * @return {@code true} if any elements of the stream match the provided 183 * predicate, otherwise {@code false} 184 */ 185 public boolean anyMatch(final FailablePredicate<O, ?> predicate) { 186 assertNotTerminated(); 187 return stream().anyMatch(Functions.asPredicate(predicate)); 188 } 189 190 /** 191 * Throws IllegalStateException if this stream is already terminated. 192 * 193 * @throws IllegalStateException if this stream is already terminated. 194 */ 195 protected void assertNotTerminated() { 196 if (terminated) { 197 throw new IllegalStateException("This stream is already terminated."); 198 } 199 } 200 201 /** 202 * Performs a mutable reduction operation on the elements of this stream using a 203 * {@link Collector}. A {@link Collector} 204 * encapsulates the functions used as arguments to 205 * {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of 206 * collection strategies and composition of collect operations such as 207 * multiple-level grouping or partitioning. 208 * 209 * <p> 210 * If the underlying stream is parallel, and the {@link Collector} 211 * is concurrent, and either the stream is unordered or the collector is 212 * unordered, then a concurrent reduction will be performed 213 * (see {@link Collector} for details on concurrent reduction.) 214 * </p> 215 * 216 * <p> 217 * This is an intermediate operation. 218 * </p> 219 * 220 * <p> 221 * When executed in parallel, multiple intermediate results may be 222 * instantiated, populated, and merged so as to maintain isolation of 223 * mutable data structures. Therefore, even when executed in parallel 224 * with non-thread-safe data structures (such as {@link ArrayList}), no 225 * additional synchronization is needed for a parallel reduction. 226 * </p> 227 * <p> 228 * Note 229 * The following will accumulate strings into an ArrayList: 230 * </p> 231 * <pre>{@code 232 * List<String> asList = stringStream.collect(Collectors.toList()); 233 * }</pre> 234 * 235 * <p> 236 * The following will classify {@code Person} objects by city: 237 * </p> 238 * <pre>{@code 239 * Map<String, List<Person>> peopleByCity 240 * = personStream.collect(Collectors.groupingBy(Person::getCity)); 241 * }</pre> 242 * 243 * <p> 244 * The following will classify {@code Person} objects by state and city, 245 * cascading two {@link Collector}s together: 246 * </p> 247 * <pre>{@code 248 * Map<String, Map<String, List<Person>>> peopleByStateAndCity 249 * = personStream.collect(Collectors.groupingBy(Person::getState, 250 * Collectors.groupingBy(Person::getCity))); 251 * }</pre> 252 * 253 * @param <R> the type of the result 254 * @param <A> the intermediate accumulation type of the {@link Collector} 255 * @param collector the {@link Collector} describing the reduction 256 * @return the result of the reduction 257 * @see #collect(Supplier, BiConsumer, BiConsumer) 258 * @see Collectors 259 */ 260 public <A, R> R collect(final Collector<? super O, A, R> collector) { 261 makeTerminated(); 262 return stream().collect(collector); 263 } 264 265 /** 266 * Performs a mutable reduction operation on the elements of this FailableStream. 267 * A mutable reduction is one in which the reduced value is a mutable result 268 * container, such as an {@link ArrayList}, and elements are incorporated by updating 269 * the state of the result rather than by replacing the result. This produces a result equivalent to: 270 * <pre>{@code 271 * R result = supplier.get(); 272 * for (T element : this stream) 273 * accumulator.accept(result, element); 274 * return result; 275 * }</pre> 276 * 277 * <p> 278 * Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations 279 * can be parallelized without requiring additional synchronization. 280 * </p> 281 * 282 * <p> 283 * This is an intermediate operation. 284 * </p> 285 * 286 * <p> 287 * Note There are many existing classes in the JDK whose signatures are 288 * well-suited for use with method references as arguments to {@code collect()}. 289 * For example, the following will accumulate strings into an {@link ArrayList}: 290 * </p> 291 * <pre>{@code 292 * List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add, 293 * ArrayList::addAll); 294 * }</pre> 295 * 296 * <p> 297 * The following will take a stream of strings and concatenates them into a 298 * single string: 299 * </p> 300 * <pre>{@code 301 * String concat = stringStream.collect(StringBuilder::new, StringBuilder::append, 302 * StringBuilder::append) 303 * .toString(); 304 * }</pre> 305 * 306 * @param <R> type of the result 307 * @param <A> Type of the accumulator. 308 * @param supplier a function that creates a new result container. For a 309 * parallel execution, this function may be called 310 * multiple times and must return a fresh value each time. 311 * @param accumulator An associative, non-interfering, stateless function for 312 * incorporating an additional element into a result 313 * @param combiner An associative, non-interfering, stateless 314 * function for combining two values, which must be compatible with the 315 * accumulator function 316 * @return The result of the reduction 317 */ 318 public <A, R> R collect(final Supplier<R> supplier, final BiConsumer<R, ? super O> accumulator, final BiConsumer<R, R> combiner) { 319 makeTerminated(); 320 return stream().collect(supplier, accumulator, combiner); 321 } 322 323 /** 324 * Returns a FailableStream consisting of the elements of this stream that match 325 * the given FailablePredicate. 326 * 327 * <p> 328 * This is an intermediate operation. 329 * </p> 330 * 331 * @param predicate a non-interfering, stateless predicate to apply to each 332 * element to determine if it should be included. 333 * @return the new stream 334 */ 335 public FailableStream<O> filter(final FailablePredicate<O, ?> predicate) { 336 assertNotTerminated(); 337 stream = stream.filter(Functions.asPredicate(predicate)); 338 return this; 339 } 340 341 /** 342 * Performs an action for each element of this stream. 343 * 344 * <p> 345 * This is an intermediate operation. 346 * </p> 347 * 348 * <p> 349 * The behavior of this operation is explicitly nondeterministic. 350 * For parallel stream pipelines, this operation does <em>not</em> 351 * guarantee to respect the encounter order of the stream, as doing so 352 * would sacrifice the benefit of parallelism. For any given element, the 353 * action may be performed at whatever time and in whatever thread the 354 * library chooses. If the action accesses shared state, it is 355 * responsible for providing the required synchronization. 356 * </p> 357 * 358 * @param action a non-interfering action to perform on the elements 359 */ 360 public void forEach(final FailableConsumer<O, ?> action) { 361 makeTerminated(); 362 stream().forEach(Functions.asConsumer(action)); 363 } 364 365 /** 366 * Marks this stream as terminated. 367 * 368 * @throws IllegalStateException if this stream is already terminated. 369 */ 370 protected void makeTerminated() { 371 assertNotTerminated(); 372 terminated = true; 373 } 374 375 /** 376 * Returns a stream consisting of the results of applying the given 377 * function to the elements of this stream. 378 * 379 * <p> 380 * This is an intermediate operation. 381 * </p> 382 * 383 * @param <R> The element type of the new stream 384 * @param mapper A non-interfering, stateless function to apply to each element 385 * @return the new stream 386 */ 387 public <R> FailableStream<R> map(final FailableFunction<O, R, ?> mapper) { 388 assertNotTerminated(); 389 return new FailableStream<>(stream.map(Functions.asFunction(mapper))); 390 } 391 392 /** 393 * Performs a reduction on the elements of this stream, using the provided 394 * identity value and an associative accumulation function, and returns 395 * the reduced value. This is equivalent to: 396 * <pre>{@code 397 * T result = identity; 398 * for (T element : this stream) 399 * result = accumulator.apply(result, element) 400 * return result; 401 * }</pre> 402 * 403 * but is not constrained to execute sequentially. 404 * 405 * <p> 406 * The {@code identity} value must be an identity for the accumulator 407 * function. This means that for all {@code t}, 408 * {@code accumulator.apply(identity, t)} is equal to {@code t}. 409 * The {@code accumulator} function must be an associative function. 410 * </p> 411 * 412 * <p> 413 * This is an intermediate operation. 414 * </p> 415 * 416 * Note Sum, min, max, average, and string concatenation are all special 417 * cases of reduction. Summing a stream of numbers can be expressed as: 418 * 419 * <pre>{@code 420 * Integer sum = integers.reduce(0, (a, b) -> a+b); 421 * }</pre> 422 * 423 * or: 424 * 425 * <pre>{@code 426 * Integer sum = integers.reduce(0, Integer::sum); 427 * }</pre> 428 * 429 * <p> 430 * While this may seem a more roundabout way to perform an aggregation 431 * compared to simply mutating a running total in a loop, reduction 432 * operations parallelize more gracefully, without needing additional 433 * synchronization and with greatly reduced risk of data races. 434 * </p> 435 * 436 * @param identity the identity value for the accumulating function 437 * @param accumulator an associative, non-interfering, stateless 438 * function for combining two values 439 * @return the result of the reduction 440 */ 441 public O reduce(final O identity, final BinaryOperator<O> accumulator) { 442 makeTerminated(); 443 return stream().reduce(identity, accumulator); 444 } 445 446 /** 447 * Converts the FailableStream into an equivalent stream. 448 * @return A stream, which will return the same elements, which this FailableStream would return. 449 */ 450 public Stream<O> stream() { 451 return stream; 452 } 453 } 454 455 /** 456 * Converts the given {@link Collection} into a {@link FailableStream}. 457 * This is basically a simplified, reduced version of the {@link Stream} 458 * class, with the same underlying element stream, except that failable 459 * objects, like {@link FailablePredicate}, {@link FailableFunction}, or 460 * {@link FailableConsumer} may be applied, instead of 461 * {@link Predicate}, {@link Function}, or {@link Consumer}. The idea is 462 * to rewrite a code snippet like this: 463 * <pre>{@code 464 * final List<O> list; 465 * final Method m; 466 * final Function<O,String> mapper = (o) -> { 467 * try { 468 * return (String) m.invoke(o); 469 * } catch (Throwable t) { 470 * throw Functions.rethrow(t); 471 * } 472 * }; 473 * final List<String> strList = list.stream() 474 * .map(mapper).collect(Collectors.toList()); 475 * }</pre> 476 * as follows: 477 * <pre>{@code 478 * final List<O> list; 479 * final Method m; 480 * final List<String> strList = Functions.stream(list.stream()) 481 * .map((o) -> (String) m.invoke(o)).collect(Collectors.toList()); 482 * }</pre> 483 * While the second version may not be <em>quite</em> as 484 * efficient (because it depends on the creation of additional, 485 * intermediate objects, of type FailableStream), it is much more 486 * concise, and readable, and meets the spirit of Lambdas better 487 * than the first version. 488 * @param <O> The streams element type. 489 * @param stream The stream, which is being converted. 490 * @return The {@link FailableStream}, which has been created by 491 * converting the stream. 492 */ 493 public static <O> FailableStream<O> stream(final Collection<O> stream) { 494 return stream(stream.stream()); 495 } 496 497 /** 498 * Converts the given {@link Stream stream} into a {@link FailableStream}. 499 * This is basically a simplified, reduced version of the {@link Stream} 500 * class, with the same underlying element stream, except that failable 501 * objects, like {@link FailablePredicate}, {@link FailableFunction}, or 502 * {@link FailableConsumer} may be applied, instead of 503 * {@link Predicate}, {@link Function}, or {@link Consumer}. The idea is 504 * to rewrite a code snippet like this: 505 * <pre>{@code 506 * final List<O> list; 507 * final Method m; 508 * final Function<O,String> mapper = (o) -> { 509 * try { 510 * return (String) m.invoke(o); 511 * } catch (Throwable t) { 512 * throw Functions.rethrow(t); 513 * } 514 * }; 515 * final List<String> strList = list.stream() 516 * .map(mapper).collect(Collectors.toList()); 517 * }</pre> 518 * as follows: 519 * <pre>{@code 520 * final List<O> list; 521 * final Method m; 522 * final List<String> strList = Functions.stream(list.stream()) 523 * .map((o) -> (String) m.invoke(o)).collect(Collectors.toList()); 524 * }</pre> 525 * While the second version may not be <em>quite</em> as 526 * efficient (because it depends on the creation of additional, 527 * intermediate objects, of type FailableStream), it is much more 528 * concise, and readable, and meets the spirit of Lambdas better 529 * than the first version. 530 * @param <O> The streams element type. 531 * @param stream The stream, which is being converted. 532 * @return The {@link FailableStream}, which has been created by 533 * converting the stream. 534 */ 535 public static <O> FailableStream<O> stream(final Stream<O> stream) { 536 return new FailableStream<>(stream); 537 } 538 539 /** 540 * Returns a {@link Collector} that accumulates the input elements into a 541 * new array. 542 * 543 * @param pElementType Type of an element in the array. 544 * @param <O> the type of the input elements 545 * @return a {@link Collector} which collects all the input elements into an 546 * array, in encounter order 547 */ 548 public static <O> Collector<O, ?, O[]> toArray(final Class<O> pElementType) { 549 return new ArrayCollector<>(pElementType); 550 } 551 552 /** 553 * Constructs a new instance. 554 */ 555 public Streams() { 556 // empty 557 } 558}