001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.lang3.math;
018
019import java.lang.reflect.Array;
020import java.math.BigDecimal;
021import java.math.BigInteger;
022import java.math.RoundingMode;
023import java.util.Objects;
024
025import org.apache.commons.lang3.StringUtils;
026import org.apache.commons.lang3.Validate;
027
028/**
029 * Provides extra functionality for Java Number classes.
030 *
031 * @since 2.0
032 */
033public class NumberUtils {
034
035    /** Reusable Long constant for zero. */
036    public static final Long LONG_ZERO = Long.valueOf(0L);
037    /** Reusable Long constant for one. */
038    public static final Long LONG_ONE = Long.valueOf(1L);
039    /** Reusable Long constant for minus one. */
040    public static final Long LONG_MINUS_ONE = Long.valueOf(-1L);
041    /** Reusable Integer constant for zero. */
042    public static final Integer INTEGER_ZERO = Integer.valueOf(0);
043    /** Reusable Integer constant for one. */
044    public static final Integer INTEGER_ONE = Integer.valueOf(1);
045    /** Reusable Integer constant for two */
046    public static final Integer INTEGER_TWO = Integer.valueOf(2);
047    /** Reusable Integer constant for minus one. */
048    public static final Integer INTEGER_MINUS_ONE = Integer.valueOf(-1);
049    /** Reusable Short constant for zero. */
050    public static final Short SHORT_ZERO = Short.valueOf((short) 0);
051    /** Reusable Short constant for one. */
052    public static final Short SHORT_ONE = Short.valueOf((short) 1);
053    /** Reusable Short constant for minus one. */
054    public static final Short SHORT_MINUS_ONE = Short.valueOf((short) -1);
055    /** Reusable Byte constant for zero. */
056    public static final Byte BYTE_ZERO = Byte.valueOf((byte) 0);
057    /** Reusable Byte constant for one. */
058    public static final Byte BYTE_ONE = Byte.valueOf((byte) 1);
059    /** Reusable Byte constant for minus one. */
060    public static final Byte BYTE_MINUS_ONE = Byte.valueOf((byte) -1);
061    /** Reusable Double constant for zero. */
062    public static final Double DOUBLE_ZERO = Double.valueOf(0.0d);
063    /** Reusable Double constant for one. */
064    public static final Double DOUBLE_ONE = Double.valueOf(1.0d);
065    /** Reusable Double constant for minus one. */
066    public static final Double DOUBLE_MINUS_ONE = Double.valueOf(-1.0d);
067    /** Reusable Float constant for zero. */
068    public static final Float FLOAT_ZERO = Float.valueOf(0.0f);
069    /** Reusable Float constant for one. */
070    public static final Float FLOAT_ONE = Float.valueOf(1.0f);
071    /** Reusable Float constant for minus one. */
072    public static final Float FLOAT_MINUS_ONE = Float.valueOf(-1.0f);
073
074    /**
075     * {@link Integer#MAX_VALUE} as a {@link Long}.
076     *
077     * @since 3.12.0
078     */
079    public static final Long LONG_INT_MAX_VALUE = Long.valueOf(Integer.MAX_VALUE);
080
081    /**
082     * {@link Integer#MIN_VALUE} as a {@link Long}.
083     *
084     * @since 3.12.0
085     */
086    public static final Long LONG_INT_MIN_VALUE = Long.valueOf(Integer.MIN_VALUE);
087
088    /**
089     * Compares two {@code byte} values numerically. This is the same functionality as provided in Java 7.
090     *
091     * @param x the first {@code byte} to compare
092     * @param y the second {@code byte} to compare
093     * @return the value {@code 0} if {@code x == y};
094     *         a value less than {@code 0} if {@code x < y}; and
095     *         a value greater than {@code 0} if {@code x > y}
096     * @since 3.4
097     */
098    public static int compare(final byte x, final byte y) {
099        return x - y;
100    }
101
102    /**
103     * Compares two {@code int} values numerically. This is the same functionality as provided in Java 7.
104     *
105     * @param x the first {@code int} to compare
106     * @param y the second {@code int} to compare
107     * @return the value {@code 0} if {@code x == y};
108     *         a value less than {@code 0} if {@code x < y}; and
109     *         a value greater than {@code 0} if {@code x > y}
110     * @since 3.4
111     */
112    public static int compare(final int x, final int y) {
113        if (x == y) {
114            return 0;
115        }
116        return x < y ? -1 : 1;
117    }
118
119    /**
120     * Compares to {@code long} values numerically. This is the same functionality as provided in Java 7.
121     *
122     * @param x the first {@code long} to compare
123     * @param y the second {@code long} to compare
124     * @return the value {@code 0} if {@code x == y};
125     *         a value less than {@code 0} if {@code x < y}; and
126     *         a value greater than {@code 0} if {@code x > y}
127     * @since 3.4
128     */
129    public static int compare(final long x, final long y) {
130        if (x == y) {
131            return 0;
132        }
133        return x < y ? -1 : 1;
134    }
135
136    /**
137     * Compares to {@code short} values numerically. This is the same functionality as provided in Java 7.
138     *
139     * @param x the first {@code short} to compare
140     * @param y the second {@code short} to compare
141     * @return the value {@code 0} if {@code x == y};
142     *         a value less than {@code 0} if {@code x < y}; and
143     *         a value greater than {@code 0} if {@code x > y}
144     * @since 3.4
145     */
146    public static int compare(final short x, final short y) {
147        if (x == y) {
148            return 0;
149        }
150        return x < y ? -1 : 1;
151    }
152
153    /**
154     * Creates a {@link BigDecimal} from a {@link String}.
155     *
156     * <p>Returns {@code null} if the string is {@code null}.</p>
157     *
158     * @param str  a {@link String} to convert, may be null
159     * @return converted {@link BigDecimal} (or null if the input is null)
160     * @throws NumberFormatException if the value cannot be converted
161     */
162    public static BigDecimal createBigDecimal(final String str) {
163        if (str == null) {
164            return null;
165        }
166        // handle JDK1.3.1 bug where "" throws IndexOutOfBoundsException
167        if (StringUtils.isBlank(str)) {
168            throw new NumberFormatException("A blank string is not a valid number");
169        }
170        return new BigDecimal(str);
171    }
172
173    /**
174     * Creates a {@link BigInteger} from a {@link String}.
175     *
176     * Handles hexadecimal (0x or #) and octal (0) notations.
177     *
178     * <p>Returns {@code null} if the string is {@code null}.</p>
179     *
180     * @param str  a {@link String} to convert, may be null
181     * @return converted {@link BigInteger} (or null if the input is null)
182     * @throws NumberFormatException if the value cannot be converted
183     * @since 3.2
184     */
185    public static BigInteger createBigInteger(final String str) {
186        if (str == null) {
187            return null;
188        }
189        if (str.isEmpty()) {
190            throw new NumberFormatException("An empty string is not a valid number");
191        }
192        int pos = 0; // offset within string
193        int radix = 10;
194        boolean negate = false; // need to negate later?
195        final char char0 = str.charAt(0);
196        if (char0 == '-') {
197            negate = true;
198            pos = 1;
199        } else if (char0 == '+') {
200            pos = 1;
201        }
202        if (str.startsWith("0x", pos) || str.startsWith("0X", pos)) { // hex
203            radix = 16;
204            pos += 2;
205        } else if (str.startsWith("#", pos)) { // alternative hex (allowed by Long/Integer)
206            radix = 16;
207            pos++;
208        } else if (str.startsWith("0", pos) && str.length() > pos + 1) { // octal; so long as there are additional digits
209            radix = 8;
210            pos++;
211        } // default is to treat as decimal
212
213        final BigInteger value = new BigInteger(str.substring(pos), radix);
214        return negate ? value.negate() : value;
215    }
216
217    /**
218     * Creates a {@link Double} from a {@link String}.
219     *
220     * <p>Returns {@code null} if the string is {@code null}.</p>
221     *
222     * @param str  a {@link String} to convert, may be null
223     * @return converted {@link Double} (or null if the input is null)
224     * @throws NumberFormatException if the value cannot be converted
225     */
226    public static Double createDouble(final String str) {
227        if (str == null) {
228            return null;
229        }
230        return Double.valueOf(str);
231    }
232
233    /**
234     * Creates a {@link Float} from a {@link String}.
235     *
236     * <p>Returns {@code null} if the string is {@code null}.</p>
237     *
238     * @param str  a {@link String} to convert, may be null
239     * @return converted {@link Float} (or null if the input is null)
240     * @throws NumberFormatException if the value cannot be converted
241     */
242    public static Float createFloat(final String str) {
243        if (str == null) {
244            return null;
245        }
246        return Float.valueOf(str);
247    }
248
249    /**
250     * Creates an {@link Integer} from a {@link String}.
251     *
252     * Handles hexadecimal (0xhhhh) and octal (0dddd) notations.
253     * N.B. a leading zero means octal; spaces are not trimmed.
254     *
255     * <p>Returns {@code null} if the string is {@code null}.</p>
256     *
257     * @param str  a {@link String} to convert, may be null
258     * @return converted {@link Integer} (or null if the input is null)
259     * @throws NumberFormatException if the value cannot be converted
260     */
261    public static Integer createInteger(final String str) {
262        if (str == null) {
263            return null;
264        }
265        // decode() handles 0xAABD and 0777 (hex and octal) as well.
266        return Integer.decode(str);
267    }
268
269    /**
270     * Creates a {@link Long} from a {@link String}.
271     *
272     * Handles hexadecimal (0Xhhhh) and octal (0ddd) notations.
273     * N.B. a leading zero means octal; spaces are not trimmed.
274     *
275     * <p>Returns {@code null} if the string is {@code null}.</p>
276     *
277     * @param str  a {@link String} to convert, may be null
278     * @return converted {@link Long} (or null if the input is null)
279     * @throws NumberFormatException if the value cannot be converted
280     * @since 3.1
281     */
282    public static Long createLong(final String str) {
283        if (str == null) {
284            return null;
285        }
286        return Long.decode(str);
287    }
288
289    /**
290     * Creates a {@link Number} from a {@link String}.
291     *
292     * <p>If the string starts with {@code 0x} or {@code -0x} (lower or upper case) or {@code #} or {@code -#}, it
293     * will be interpreted as a hexadecimal Integer - or Long, if the number of digits after the
294     * prefix is more than 8 - or BigInteger if there are more than 16 digits.
295     * </p>
296     * <p>Then, the value is examined for a type qualifier on the end, i.e. one of
297     * {@code 'f', 'F', 'd', 'D', 'l', 'L'}.  If it is found, it starts
298     * trying to create successively larger types from the type specified
299     * until one is found that can represent the value.</p>
300     *
301     * <p>If a type specifier is not found, it will check for a decimal point
302     * and then try successively larger types from {@link Integer} to
303     * {@link BigInteger} and from {@link Float} to
304     * {@link BigDecimal}.</p>
305     *
306     * <p>
307     * Integral values with a leading {@code 0} will be interpreted as octal; the returned number will
308     * be Integer, Long or BigDecimal as appropriate.
309     * </p>
310     *
311     * <p>Returns {@code null} if the string is {@code null}.</p>
312     *
313     * <p>This method does not trim the input string, i.e., strings with leading
314     * or trailing spaces will generate NumberFormatExceptions.</p>
315     *
316     * @param str  String containing a number, may be null
317     * @return Number created from the string (or null if the input is null)
318     * @throws NumberFormatException if the value cannot be converted
319     */
320    public static Number createNumber(final String str) {
321        if (str == null) {
322            return null;
323        }
324        if (StringUtils.isBlank(str)) {
325            throw new NumberFormatException("A blank string is not a valid number");
326        }
327        // Need to deal with all possible hex prefixes here
328        final String[] hexPrefixes = {"0x", "0X", "#"};
329        final int length = str.length();
330        final int offset = str.charAt(0) == '+' || str.charAt(0) == '-' ? 1 : 0;
331        int pfxLen = 0;
332        for (final String pfx : hexPrefixes) {
333            if (str.startsWith(pfx, offset)) {
334                pfxLen += pfx.length() + offset;
335                break;
336            }
337        }
338        if (pfxLen > 0) { // we have a hex number
339            char firstSigDigit = 0; // strip leading zeroes
340            for (int i = pfxLen; i < length; i++) {
341                firstSigDigit = str.charAt(i);
342                if (firstSigDigit != '0') {
343                    break;
344                }
345                pfxLen++;
346            }
347            final int hexDigits = length - pfxLen;
348            if (hexDigits > 16 || hexDigits == 16 && firstSigDigit > '7') { // too many for Long
349                return createBigInteger(str);
350            }
351            if (hexDigits > 8 || hexDigits == 8 && firstSigDigit > '7') { // too many for an int
352                return createLong(str);
353            }
354            return createInteger(str);
355        }
356        final char lastChar = str.charAt(length - 1);
357        final String mant;
358        final String dec;
359        final String exp;
360        final int decPos = str.indexOf('.');
361        final int expPos = str.indexOf('e') + str.indexOf('E') + 1; // assumes both not present
362        // if both e and E are present, this is caught by the checks on expPos (which prevent IOOBE)
363        // and the parsing which will detect if e or E appear in a number due to using the wrong offset
364
365        // Detect if the return type has been requested
366        final boolean requestType = !Character.isDigit(lastChar) && lastChar != '.';
367        if (decPos > -1) { // there is a decimal point
368            if (expPos > -1) { // there is an exponent
369                if (expPos <= decPos || expPos > length) { // prevents double exponent causing IOOBE
370                    throw new NumberFormatException(str + " is not a valid number.");
371                }
372                dec = str.substring(decPos + 1, expPos);
373            } else {
374                // No exponent, but there may be a type character to remove
375                dec = str.substring(decPos + 1, requestType ? length - 1 : length);
376            }
377            mant = getMantissa(str, decPos);
378        } else {
379            if (expPos > -1) {
380                if (expPos > length) { // prevents double exponent causing IOOBE
381                    throw new NumberFormatException(str + " is not a valid number.");
382                }
383                mant = getMantissa(str, expPos);
384            } else {
385                // No decimal, no exponent, but there may be a type character to remove
386                mant = getMantissa(str, requestType ? length - 1 : length);
387            }
388            dec = null;
389        }
390        if (requestType) {
391            if (expPos > -1 && expPos < length - 1) {
392                exp = str.substring(expPos + 1, length - 1);
393            } else {
394                exp = null;
395            }
396            //Requesting a specific type.
397            final String numeric = str.substring(0, length - 1);
398            switch (lastChar) {
399                case 'l' :
400                case 'L' :
401                    if (dec == null
402                        && exp == null
403                        && (!numeric.isEmpty() && numeric.charAt(0) == '-' && isDigits(numeric.substring(1)) || isDigits(numeric))) {
404                        try {
405                            return createLong(numeric);
406                        } catch (final NumberFormatException ignored) {
407                            // Too big for a long
408                        }
409                        return createBigInteger(numeric);
410
411                    }
412                    throw new NumberFormatException(str + " is not a valid number.");
413                case 'f' :
414                case 'F' :
415                    try {
416                        final Float f = createFloat(str);
417                        if (!(f.isInfinite() || f.floatValue() == 0.0F && !isZero(mant, dec))) {
418                            //If it's too big for a float or the float value = 0 and the string
419                            //has non-zeros in it, then float does not have the precision we want
420                            return f;
421                        }
422
423                    } catch (final NumberFormatException ignored) {
424                        // ignore the bad number
425                    }
426                    //$FALL-THROUGH$
427                case 'd' :
428                case 'D' :
429                    try {
430                        final Double d = createDouble(str);
431                        if (!(d.isInfinite() || d.doubleValue() == 0.0D && !isZero(mant, dec))) {
432                            return d;
433                        }
434                    } catch (final NumberFormatException ignored) {
435                        // ignore the bad number
436                    }
437                    try {
438                        return createBigDecimal(numeric);
439                    } catch (final NumberFormatException ignored) {
440                        // ignore the bad number
441                    }
442                    //$FALL-THROUGH$
443                default :
444                    throw new NumberFormatException(str + " is not a valid number.");
445
446            }
447        }
448        //User doesn't have a preference on the return type, so let's start
449        //small and go from there...
450        if (expPos > -1 && expPos < length - 1) {
451            exp = str.substring(expPos + 1);
452        } else {
453            exp = null;
454        }
455        if (dec == null && exp == null) { // no decimal point and no exponent
456            //Must be an Integer, Long, Biginteger
457            try {
458                return createInteger(str);
459            } catch (final NumberFormatException ignored) {
460                // ignore the bad number
461            }
462            try {
463                return createLong(str);
464            } catch (final NumberFormatException ignored) {
465                // ignore the bad number
466            }
467            return createBigInteger(str);
468        }
469
470        //Must be a Float, Double, BigDecimal
471        try {
472            final Float f = createFloat(str);
473            final Double d = createDouble(str);
474            if (!f.isInfinite()
475                    && !(f.floatValue() == 0.0F && !isZero(mant, dec))
476                    && f.toString().equals(d.toString())) {
477                return f;
478            }
479            if (!d.isInfinite() && !(d.doubleValue() == 0.0D && !isZero(mant, dec))) {
480                final BigDecimal b = createBigDecimal(str);
481                if (b.compareTo(BigDecimal.valueOf(d.doubleValue())) == 0) {
482                    return d;
483                }
484                return b;
485            }
486        } catch (final NumberFormatException ignored) {
487            // ignore the bad number
488        }
489        return createBigDecimal(str);
490    }
491
492     /**
493     * Utility method for {@link #createNumber(String)}.
494     *
495     * <p>Returns mantissa of the given number.</p>
496     *
497     * @param str the string representation of the number
498     * @param stopPos the position of the exponent or decimal point
499     * @return mantissa of the given number
500     * @throws NumberFormatException if no mantissa can be retrieved
501     */
502    private static String getMantissa(final String str, final int stopPos) {
503         final char firstChar = str.charAt(0);
504         final boolean hasSign = firstChar == '-' || firstChar == '+';
505         final int length = str.length();
506         if (length <= (hasSign ? 1 : 0) || length < stopPos) {
507             throw new NumberFormatException(str + " is not a valid number.");
508         }
509         return hasSign ? str.substring(1, stopPos) : str.substring(0, stopPos);
510    }
511
512    /**
513     * Utility method for {@link #createNumber(java.lang.String)}.
514     *
515     * <p>Returns {@code true} if s is {@code null} or empty.</p>
516     *
517     * @param str the String to check
518     * @return if it is all zeros or {@code null}
519     */
520    private static boolean isAllZeros(final String str) {
521        if (str == null) {
522            return true;
523        }
524        for (int i = str.length() - 1; i >= 0; i--) {
525            if (str.charAt(i) != '0') {
526                return false;
527            }
528        }
529        return true;
530    }
531
532    /**
533     * Checks whether the String is a valid Java number.
534     *
535     * <p>Valid numbers include hexadecimal marked with the {@code 0x} or
536     * {@code 0X} qualifier, octal numbers, scientific notation and
537     * numbers marked with a type qualifier (e.g. 123L).</p>
538     *
539     * <p>Non-hexadecimal strings beginning with a leading zero are
540     * treated as octal values. Thus the string {@code 09} will return
541     * {@code false}, since {@code 9} is not a valid octal value.
542     * However, numbers beginning with {@code 0.} are treated as decimal.</p>
543     *
544     * <p>{@code null} and empty/blank {@link String} will return
545     * {@code false}.</p>
546     *
547     * <p>Note, {@link #createNumber(String)} should return a number for every
548     * input resulting in {@code true}.</p>
549     *
550     * @param str  the {@link String} to check
551     * @return {@code true} if the string is a correctly formatted number
552     * @since 3.5
553     */
554    public static boolean isCreatable(final String str) {
555        if (StringUtils.isEmpty(str)) {
556            return false;
557        }
558        final char[] chars = str.toCharArray();
559        int sz = chars.length;
560        boolean hasExp = false;
561        boolean hasDecPoint = false;
562        boolean allowSigns = false;
563        boolean foundDigit = false;
564        // deal with any possible sign up front
565        final int start = chars[0] == '-' || chars[0] == '+' ? 1 : 0;
566        if (sz > start + 1 && chars[start] == '0' && !StringUtils.contains(str, '.')) { // leading 0, skip if is a decimal number
567            if (chars[start + 1] == 'x' || chars[start + 1] == 'X') { // leading 0x/0X
568                int i = start + 2;
569                if (i == sz) {
570                    return false; // str == "0x"
571                }
572                // checking hex (it can't be anything else)
573                for (; i < chars.length; i++) {
574                    if ((chars[i] < '0' || chars[i] > '9')
575                        && (chars[i] < 'a' || chars[i] > 'f')
576                        && (chars[i] < 'A' || chars[i] > 'F')) {
577                        return false;
578                    }
579                }
580                return true;
581           }
582            if (Character.isDigit(chars[start + 1])) {
583                   // leading 0, but not hex, must be octal
584                   int i = start + 1;
585                   for (; i < chars.length; i++) {
586                       if (chars[i] < '0' || chars[i] > '7') {
587                           return false;
588                       }
589                   }
590                   return true;
591               }
592        }
593        sz--; // don't want to loop to the last char, check it afterwards
594              // for type qualifiers
595        int i = start;
596        // loop to the next to last char or to the last char if we need another digit to
597        // make a valid number (e.g. chars[0..5] = "1234E")
598        while (i < sz || i < sz + 1 && allowSigns && !foundDigit) {
599            if (chars[i] >= '0' && chars[i] <= '9') {
600                foundDigit = true;
601                allowSigns = false;
602
603            } else if (chars[i] == '.') {
604                if (hasDecPoint || hasExp) {
605                    // two decimal points or dec in exponent
606                    return false;
607                }
608                hasDecPoint = true;
609            } else if (chars[i] == 'e' || chars[i] == 'E') {
610                // we've already taken care of hex.
611                if (hasExp) {
612                    // two E's
613                    return false;
614                }
615                if (!foundDigit) {
616                    return false;
617                }
618                hasExp = true;
619                allowSigns = true;
620            } else if (chars[i] == '+' || chars[i] == '-') {
621                if (!allowSigns) {
622                    return false;
623                }
624                allowSigns = false;
625                foundDigit = false; // we need a digit after the E
626            } else {
627                return false;
628            }
629            i++;
630        }
631        if (i < chars.length) {
632            if (chars[i] >= '0' && chars[i] <= '9') {
633                // no type qualifier, OK
634                return true;
635            }
636            if (chars[i] == 'e' || chars[i] == 'E') {
637                // can't have an E at the last byte
638                return false;
639            }
640            if (chars[i] == '.') {
641                if (hasDecPoint || hasExp) {
642                    // two decimal points or dec in exponent
643                    return false;
644                }
645                // single trailing decimal point after non-exponent is ok
646                return foundDigit;
647            }
648            if (!allowSigns
649                && (chars[i] == 'd'
650                    || chars[i] == 'D'
651                    || chars[i] == 'f'
652                    || chars[i] == 'F')) {
653                return foundDigit;
654            }
655            if (chars[i] == 'l'
656                || chars[i] == 'L') {
657                // not allowing L with an exponent or decimal point
658                return foundDigit && !hasExp && !hasDecPoint;
659            }
660            // last character is illegal
661            return false;
662        }
663        // allowSigns is true iff the val ends in 'E'
664        // found digit it to make sure weird stuff like '.' and '1E-' doesn't pass
665        return !allowSigns && foundDigit;
666    }
667
668    /**
669     * Checks whether the {@link String} contains only
670     * digit characters.
671     *
672     * <p>{@code null} and empty String will return
673     * {@code false}.</p>
674     *
675     * @param str  the {@link String} to check
676     * @return {@code true} if str contains only Unicode numeric
677     */
678    public static boolean isDigits(final String str) {
679        return StringUtils.isNumeric(str);
680    }
681
682    /**
683     * Checks whether the String is a valid Java number.
684     *
685     * <p>Valid numbers include hexadecimal marked with the {@code 0x} or
686     * {@code 0X} qualifier, octal numbers, scientific notation and
687     * numbers marked with a type qualifier (e.g. 123L).</p>
688     *
689     * <p>Non-hexadecimal strings beginning with a leading zero are
690     * treated as octal values. Thus the string {@code 09} will return
691     * {@code false}, since {@code 9} is not a valid octal value.
692     * However, numbers beginning with {@code 0.} are treated as decimal.</p>
693     *
694     * <p>{@code null} and empty/blank {@link String} will return
695     * {@code false}.</p>
696     *
697     * <p>Note, {@link #createNumber(String)} should return a number for every
698     * input resulting in {@code true}.</p>
699     *
700     * @param str  the {@link String} to check
701     * @return {@code true} if the string is a correctly formatted number
702     * @since 3.3 the code supports hexadecimal {@code 0Xhhh} an
703     *        octal {@code 0ddd} validation
704     * @deprecated This feature will be removed in Lang 4,
705     *             use {@link NumberUtils#isCreatable(String)} instead
706     */
707    @Deprecated
708    public static boolean isNumber(final String str) {
709        return isCreatable(str);
710    }
711
712    /**
713     * Checks whether the given String is a parsable number.
714     *
715     * <p>Parsable numbers include those Strings understood by {@link Integer#parseInt(String)},
716     * {@link Long#parseLong(String)}, {@link Float#parseFloat(String)} or
717     * {@link Double#parseDouble(String)}. This method can be used instead of catching {@link java.text.ParseException}
718     * when calling one of those methods.</p>
719     *
720     * <p>Hexadecimal and scientific notations are <strong>not</strong> considered parsable.
721     * See {@link #isCreatable(String)} on those cases.</p>
722     *
723     * <p>{@code null} and empty String will return {@code false}.</p>
724     *
725     * @param str the String to check.
726     * @return {@code true} if the string is a parsable number.
727     * @since 3.4
728     */
729    public static boolean isParsable(final String str) {
730        if (StringUtils.isEmpty(str)) {
731            return false;
732        }
733        if (str.charAt(str.length() - 1) == '.') {
734            return false;
735        }
736        if (str.charAt(0) == '-') {
737            if (str.length() == 1) {
738                return false;
739            }
740            return withDecimalsParsing(str, 1);
741        }
742        return withDecimalsParsing(str, 0);
743    }
744
745    /**
746     * Utility method for {@link #createNumber(java.lang.String)}.
747     *
748     * <p>This will check if the magnitude of the number is zero by checking if there
749     * are only zeros before and after the decimal place.</p>
750     *
751     * <p>Note: It is <strong>assumed</strong> that the input string has been converted
752     * to either a Float or Double with a value of zero when this method is called.
753     * This eliminates invalid input for example {@code ".", ".D", ".e0"}.</p>
754     *
755     * <p>Thus the method only requires checking if both arguments are null, empty or
756     * contain only zeros.</p>
757     *
758     * <p>Given {@code s = mant + "." + dec}:</p>
759     * <ul>
760     * <li>{@code true} if s is {@code "0.0"}
761     * <li>{@code true} if s is {@code "0."}
762     * <li>{@code true} if s is {@code ".0"}
763     * <li>{@code false} otherwise (this assumes {@code "."} is not possible)
764     * </ul>
765     *
766     * @param mant the mantissa decimal digits before the decimal point (sign must be removed; never null)
767     * @param dec the decimal digits after the decimal point (exponent and type specifier removed;
768     *            can be null)
769     * @return true if the magnitude is zero
770     */
771    private static boolean isZero(final String mant, final String dec) {
772        return isAllZeros(mant) && isAllZeros(dec);
773    }
774
775    /**
776     * Returns the maximum value in an array.
777     *
778     * @param array  an array, must not be null or empty
779     * @return the maximum value in the array
780     * @throws NullPointerException if {@code array} is {@code null}
781     * @throws IllegalArgumentException if {@code array} is empty
782     * @since 3.4 Changed signature from max(byte[]) to max(byte...)
783     */
784    public static byte max(final byte... array) {
785        // Validates input
786        validateArray(array);
787        // Finds and returns max
788        byte max = array[0];
789        for (int i = 1; i < array.length; i++) {
790            if (array[i] > max) {
791                max = array[i];
792            }
793        }
794        return max;
795    }
796
797    /**
798     * Gets the maximum of three {@code byte} values.
799     *
800     * @param a  value 1
801     * @param b  value 2
802     * @param c  value 3
803     * @return  the largest of the values
804     */
805    public static byte max(byte a, final byte b, final byte c) {
806        if (b > a) {
807            a = b;
808        }
809        if (c > a) {
810            a = c;
811        }
812        return a;
813    }
814
815    /**
816     * Returns the maximum value in an array.
817     *
818     * @param array  an array, must not be null or empty
819     * @return the maximum value in the array
820     * @throws NullPointerException if {@code array} is {@code null}
821     * @throws IllegalArgumentException if {@code array} is empty
822     * @see IEEE754rUtils#max(double[]) IEEE754rUtils for a version of this method that handles NaN differently
823     * @since 3.4 Changed signature from max(double[]) to max(double...)
824     */
825    public static double max(final double... array) {
826        // Validates input
827        validateArray(array);
828        // Finds and returns max
829        double max = array[0];
830        for (int j = 1; j < array.length; j++) {
831            if (Double.isNaN(array[j])) {
832                return Double.NaN;
833            }
834            if (array[j] > max) {
835                max = array[j];
836            }
837        }
838        return max;
839    }
840
841    /**
842     * Gets the maximum of three {@code double} values.
843     *
844     * <p>If any value is {@code NaN}, {@code NaN} is
845     * returned. Infinity is handled.</p>
846     *
847     * @param a  value 1
848     * @param b  value 2
849     * @param c  value 3
850     * @return  the largest of the values
851     * @see IEEE754rUtils#max(double, double, double) for a version of this method that handles NaN differently
852     */
853    public static double max(final double a, final double b, final double c) {
854        return Math.max(Math.max(a, b), c);
855    }
856
857    /**
858     * Returns the maximum value in an array.
859     *
860     * @param array  an array, must not be null or empty
861     * @return the maximum value in the array
862     * @throws NullPointerException if {@code array} is {@code null}
863     * @throws IllegalArgumentException if {@code array} is empty
864     * @see IEEE754rUtils#max(float[]) IEEE754rUtils for a version of this method that handles NaN differently
865     * @since 3.4 Changed signature from max(float[]) to max(float...)
866     */
867    public static float max(final float... array) {
868        // Validates input
869        validateArray(array);
870        // Finds and returns max
871        float max = array[0];
872        for (int j = 1; j < array.length; j++) {
873            if (Float.isNaN(array[j])) {
874                return Float.NaN;
875            }
876            if (array[j] > max) {
877                max = array[j];
878            }
879        }
880        return max;
881    }
882
883    // must handle Long, Float, Integer, Float, Short,
884    //                  BigDecimal, BigInteger and Byte
885    // useful methods:
886    // Byte.decode(String)
887    // Byte.valueOf(String, int radix)
888    // Byte.valueOf(String)
889    // Double.valueOf(String)
890    // Float.valueOf(String)
891    // Float.valueOf(String)
892    // Integer.valueOf(String, int radix)
893    // Integer.valueOf(String)
894    // Integer.decode(String)
895    // Integer.getInteger(String)
896    // Integer.getInteger(String, int val)
897    // Integer.getInteger(String, Integer val)
898    // Integer.valueOf(String)
899    // Double.valueOf(String)
900    // new Byte(String)
901    // Long.valueOf(String)
902    // Long.getLong(String)
903    // Long.getLong(String, int)
904    // Long.getLong(String, Integer)
905    // Long.valueOf(String, int)
906    // Long.valueOf(String)
907    // Short.valueOf(String)
908    // Short.decode(String)
909    // Short.valueOf(String, int)
910    // Short.valueOf(String)
911    // new BigDecimal(String)
912    // new BigInteger(String)
913    // new BigInteger(String, int radix)
914    // Possible inputs:
915    // 45 45.5 45E7 4.5E7 Hex Oct Binary xxxF xxxD xxxf xxxd
916    // plus minus everything. Prolly more. A lot are not separable.
917
918    /**
919     * Gets the maximum of three {@code float} values.
920     *
921     * <p>If any value is {@code NaN}, {@code NaN} is
922     * returned. Infinity is handled.</p>
923     *
924     * @param a  value 1
925     * @param b  value 2
926     * @param c  value 3
927     * @return  the largest of the values
928     * @see IEEE754rUtils#max(float, float, float) for a version of this method that handles NaN differently
929     */
930    public static float max(final float a, final float b, final float c) {
931        return Math.max(Math.max(a, b), c);
932    }
933
934    /**
935     * Returns the maximum value in an array.
936     *
937     * @param array  an array, must not be null or empty
938     * @return the maximum value in the array
939     * @throws NullPointerException if {@code array} is {@code null}
940     * @throws IllegalArgumentException if {@code array} is empty
941     * @since 3.4 Changed signature from max(int[]) to max(int...)
942     */
943    public static int max(final int... array) {
944        // Validates input
945        validateArray(array);
946        // Finds and returns max
947        int max = array[0];
948        for (int j = 1; j < array.length; j++) {
949            if (array[j] > max) {
950                max = array[j];
951            }
952        }
953        return max;
954    }
955
956    /**
957     * Gets the maximum of three {@code int} values.
958     *
959     * @param a  value 1
960     * @param b  value 2
961     * @param c  value 3
962     * @return  the largest of the values
963     */
964    public static int max(int a, final int b, final int c) {
965        if (b > a) {
966            a = b;
967        }
968        if (c > a) {
969            a = c;
970        }
971        return a;
972    }
973
974    /**
975     * Returns the maximum value in an array.
976     *
977     * @param array  an array, must not be null or empty
978     * @return the maximum value in the array
979     * @throws NullPointerException if {@code array} is {@code null}
980     * @throws IllegalArgumentException if {@code array} is empty
981     * @since 3.4 Changed signature from max(long[]) to max(long...)
982     */
983    public static long max(final long... array) {
984        // Validates input
985        validateArray(array);
986        // Finds and returns max
987        long max = array[0];
988        for (int j = 1; j < array.length; j++) {
989            if (array[j] > max) {
990                max = array[j];
991            }
992        }
993        return max;
994    }
995
996    // 3 param max
997    /**
998     * Gets the maximum of three {@code long} values.
999     *
1000     * @param a  value 1
1001     * @param b  value 2
1002     * @param c  value 3
1003     * @return  the largest of the values
1004     */
1005    public static long max(long a, final long b, final long c) {
1006        if (b > a) {
1007            a = b;
1008        }
1009        if (c > a) {
1010            a = c;
1011        }
1012        return a;
1013    }
1014
1015    /**
1016     * Returns the maximum value in an array.
1017     *
1018     * @param array  an array, must not be null or empty
1019     * @return the maximum value in the array
1020     * @throws NullPointerException if {@code array} is {@code null}
1021     * @throws IllegalArgumentException if {@code array} is empty
1022     * @since 3.4 Changed signature from max(short[]) to max(short...)
1023     */
1024    public static short max(final short... array) {
1025        // Validates input
1026        validateArray(array);
1027
1028        // Finds and returns max
1029        short max = array[0];
1030        for (int i = 1; i < array.length; i++) {
1031            if (array[i] > max) {
1032                max = array[i];
1033            }
1034        }
1035        return max;
1036    }
1037
1038    /**
1039     * Gets the maximum of three {@code short} values.
1040     *
1041     * @param a  value 1
1042     * @param b  value 2
1043     * @param c  value 3
1044     * @return  the largest of the values
1045     */
1046    public static short max(short a, final short b, final short c) {
1047        if (b > a) {
1048            a = b;
1049        }
1050        if (c > a) {
1051            a = c;
1052        }
1053        return a;
1054    }
1055
1056    /**
1057     * Returns the minimum value in an array.
1058     *
1059     * @param array  an array, must not be null or empty
1060     * @return the minimum value in the array
1061     * @throws NullPointerException if {@code array} is {@code null}
1062     * @throws IllegalArgumentException if {@code array} is empty
1063     * @since 3.4 Changed signature from min(byte[]) to min(byte...)
1064     */
1065    public static byte min(final byte... array) {
1066        // Validates input
1067        validateArray(array);
1068        // Finds and returns min
1069        byte min = array[0];
1070        for (int i = 1; i < array.length; i++) {
1071            if (array[i] < min) {
1072                min = array[i];
1073            }
1074        }
1075        return min;
1076    }
1077
1078    /**
1079     * Gets the minimum of three {@code byte} values.
1080     *
1081     * @param a  value 1
1082     * @param b  value 2
1083     * @param c  value 3
1084     * @return  the smallest of the values
1085     */
1086    public static byte min(byte a, final byte b, final byte c) {
1087        if (b < a) {
1088            a = b;
1089        }
1090        if (c < a) {
1091            a = c;
1092        }
1093        return a;
1094    }
1095
1096    /**
1097     * Returns the minimum value in an array.
1098     *
1099     * @param array  an array, must not be null or empty
1100     * @return the minimum value in the array
1101     * @throws NullPointerException if {@code array} is {@code null}
1102     * @throws IllegalArgumentException if {@code array} is empty
1103     * @see IEEE754rUtils#min(double[]) IEEE754rUtils for a version of this method that handles NaN differently
1104     * @since 3.4 Changed signature from min(double[]) to min(double...)
1105     */
1106    public static double min(final double... array) {
1107        // Validates input
1108        validateArray(array);
1109
1110        // Finds and returns min
1111        double min = array[0];
1112        for (int i = 1; i < array.length; i++) {
1113            if (Double.isNaN(array[i])) {
1114                return Double.NaN;
1115            }
1116            if (array[i] < min) {
1117                min = array[i];
1118            }
1119        }
1120        return min;
1121    }
1122
1123    /**
1124     * Gets the minimum of three {@code double} values.
1125     *
1126     * <p>If any value is {@code NaN}, {@code NaN} is
1127     * returned. Infinity is handled.</p>
1128     *
1129     * @param a  value 1
1130     * @param b  value 2
1131     * @param c  value 3
1132     * @return  the smallest of the values
1133     * @see IEEE754rUtils#min(double, double, double) for a version of this method that handles NaN differently
1134     */
1135    public static double min(final double a, final double b, final double c) {
1136        return Math.min(Math.min(a, b), c);
1137    }
1138
1139    /**
1140     * Returns the minimum value in an array.
1141     *
1142     * @param array  an array, must not be null or empty
1143     * @return the minimum value in the array
1144     * @throws NullPointerException if {@code array} is {@code null}
1145     * @throws IllegalArgumentException if {@code array} is empty
1146     * @see IEEE754rUtils#min(float[]) IEEE754rUtils for a version of this method that handles NaN differently
1147     * @since 3.4 Changed signature from min(float[]) to min(float...)
1148     */
1149    public static float min(final float... array) {
1150        // Validates input
1151        validateArray(array);
1152
1153        // Finds and returns min
1154        float min = array[0];
1155        for (int i = 1; i < array.length; i++) {
1156            if (Float.isNaN(array[i])) {
1157                return Float.NaN;
1158            }
1159            if (array[i] < min) {
1160                min = array[i];
1161            }
1162        }
1163        return min;
1164    }
1165
1166    /**
1167     * Gets the minimum of three {@code float} values.
1168     *
1169     * <p>If any value is {@code NaN}, {@code NaN} is
1170     * returned. Infinity is handled.</p>
1171     *
1172     * @param a  value 1
1173     * @param b  value 2
1174     * @param c  value 3
1175     * @return  the smallest of the values
1176     * @see IEEE754rUtils#min(float, float, float) for a version of this method that handles NaN differently
1177     */
1178    public static float min(final float a, final float b, final float c) {
1179        return Math.min(Math.min(a, b), c);
1180    }
1181
1182    /**
1183     * Returns the minimum value in an array.
1184     *
1185     * @param array  an array, must not be null or empty
1186     * @return the minimum value in the array
1187     * @throws NullPointerException if {@code array} is {@code null}
1188     * @throws IllegalArgumentException if {@code array} is empty
1189     * @since 3.4 Changed signature from min(int[]) to min(int...)
1190     */
1191    public static int min(final int... array) {
1192        // Validates input
1193        validateArray(array);
1194        // Finds and returns min
1195        int min = array[0];
1196        for (int j = 1; j < array.length; j++) {
1197            if (array[j] < min) {
1198                min = array[j];
1199            }
1200        }
1201        return min;
1202    }
1203
1204     /**
1205     * Gets the minimum of three {@code int} values.
1206     *
1207     * @param a  value 1
1208     * @param b  value 2
1209     * @param c  value 3
1210     * @return  the smallest of the values
1211     */
1212    public static int min(int a, final int b, final int c) {
1213        if (b < a) {
1214            a = b;
1215        }
1216        if (c < a) {
1217            a = c;
1218        }
1219        return a;
1220    }
1221
1222    /**
1223     * Returns the minimum value in an array.
1224     *
1225     * @param array  an array, must not be null or empty
1226     * @return the minimum value in the array
1227     * @throws NullPointerException if {@code array} is {@code null}
1228     * @throws IllegalArgumentException if {@code array} is empty
1229     * @since 3.4 Changed signature from min(long[]) to min(long...)
1230     */
1231    public static long min(final long... array) {
1232        // Validates input
1233        validateArray(array);
1234        // Finds and returns min
1235        long min = array[0];
1236        for (int i = 1; i < array.length; i++) {
1237            if (array[i] < min) {
1238                min = array[i];
1239            }
1240        }
1241        return min;
1242    }
1243
1244    // 3 param min
1245    /**
1246     * Gets the minimum of three {@code long} values.
1247     *
1248     * @param a  value 1
1249     * @param b  value 2
1250     * @param c  value 3
1251     * @return  the smallest of the values
1252     */
1253    public static long min(long a, final long b, final long c) {
1254        if (b < a) {
1255            a = b;
1256        }
1257        if (c < a) {
1258            a = c;
1259        }
1260        return a;
1261    }
1262
1263    /**
1264     * Returns the minimum value in an array.
1265     *
1266     * @param array  an array, must not be null or empty
1267     * @return the minimum value in the array
1268     * @throws NullPointerException if {@code array} is {@code null}
1269     * @throws IllegalArgumentException if {@code array} is empty
1270     * @since 3.4 Changed signature from min(short[]) to min(short...)
1271     */
1272    public static short min(final short... array) {
1273        // Validates input
1274        validateArray(array);
1275        // Finds and returns min
1276        short min = array[0];
1277        for (int i = 1; i < array.length; i++) {
1278            if (array[i] < min) {
1279                min = array[i];
1280            }
1281        }
1282
1283        return min;
1284    }
1285
1286    /**
1287     * Gets the minimum of three {@code short} values.
1288     *
1289     * @param a  value 1
1290     * @param b  value 2
1291     * @param c  value 3
1292     * @return  the smallest of the values
1293     */
1294    public static short min(short a, final short b, final short c) {
1295        if (b < a) {
1296            a = b;
1297        }
1298        if (c < a) {
1299            a = c;
1300        }
1301        return a;
1302    }
1303
1304    /**
1305     * Converts a {@link String} to a {@code byte}, returning
1306     * {@code zero} if the conversion fails.
1307     *
1308     * <p>If the string is {@code null}, {@code zero} is returned.</p>
1309     *
1310     * <pre>
1311     *   NumberUtils.toByte(null) = 0
1312     *   NumberUtils.toByte("")   = 0
1313     *   NumberUtils.toByte("1")  = 1
1314     * </pre>
1315     *
1316     * @param str  the string to convert, may be null
1317     * @return the byte represented by the string, or {@code zero} if
1318     *  conversion fails
1319     * @since 2.5
1320     */
1321    public static byte toByte(final String str) {
1322        return toByte(str, (byte) 0);
1323    }
1324
1325    /**
1326     * Converts a {@link String} to a {@code byte}, returning a
1327     * default value if the conversion fails.
1328     *
1329     * <p>If the string is {@code null}, the default value is returned.</p>
1330     *
1331     * <pre>
1332     *   NumberUtils.toByte(null, 1) = 1
1333     *   NumberUtils.toByte("", 1)   = 1
1334     *   NumberUtils.toByte("1", 0)  = 1
1335     * </pre>
1336     *
1337     * @param str  the string to convert, may be null
1338     * @param defaultValue  the default value
1339     * @return the byte represented by the string, or the default if conversion fails
1340     * @since 2.5
1341     */
1342    public static byte toByte(final String str, final byte defaultValue) {
1343        try {
1344            return Byte.parseByte(str);
1345        } catch (final RuntimeException e) {
1346            return defaultValue;
1347        }
1348    }
1349
1350    /**
1351     * Converts a {@link BigDecimal} to a {@code double}.
1352     *
1353     * <p>If the {@link BigDecimal} {@code value} is
1354     * {@code null}, then the specified default value is returned.</p>
1355     *
1356     * <pre>
1357     *   NumberUtils.toDouble(null)                     = 0.0d
1358     *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d)) = 8.5d
1359     * </pre>
1360     *
1361     * @param value the {@link BigDecimal} to convert, may be {@code null}.
1362     * @return the double represented by the {@link BigDecimal} or
1363     *  {@code 0.0d} if the {@link BigDecimal} is {@code null}.
1364     * @since 3.8
1365     */
1366    public static double toDouble(final BigDecimal value) {
1367        return toDouble(value, 0.0d);
1368    }
1369
1370    /**
1371     * Converts a {@link BigDecimal} to a {@code double}.
1372     *
1373     * <p>If the {@link BigDecimal} {@code value} is
1374     * {@code null}, then the specified default value is returned.</p>
1375     *
1376     * <pre>
1377     *   NumberUtils.toDouble(null, 1.1d)                     = 1.1d
1378     *   NumberUtils.toDouble(BigDecimal.valueOf(8.5d), 1.1d) = 8.5d
1379     * </pre>
1380     *
1381     * @param value the {@link BigDecimal} to convert, may be {@code null}.
1382     * @param defaultValue the default value
1383     * @return the double represented by the {@link BigDecimal} or the
1384     *  defaultValue if the {@link BigDecimal} is {@code null}.
1385     * @since 3.8
1386     */
1387    public static double toDouble(final BigDecimal value, final double defaultValue) {
1388        return value == null ? defaultValue : value.doubleValue();
1389    }
1390
1391    /**
1392     * Converts a {@link String} to a {@code double}, returning
1393     * {@code 0.0d} if the conversion fails.
1394     *
1395     * <p>If the string {@code str} is {@code null},
1396     * {@code 0.0d} is returned.</p>
1397     *
1398     * <pre>
1399     *   NumberUtils.toDouble(null)   = 0.0d
1400     *   NumberUtils.toDouble("")     = 0.0d
1401     *   NumberUtils.toDouble("1.5")  = 1.5d
1402     * </pre>
1403     *
1404     * @param str the string to convert, may be {@code null}
1405     * @return the double represented by the string, or {@code 0.0d}
1406     *  if conversion fails
1407     * @since 2.1
1408     */
1409    public static double toDouble(final String str) {
1410        return toDouble(str, 0.0d);
1411    }
1412
1413    /**
1414     * Converts a {@link String} to a {@code double}, returning a
1415     * default value if the conversion fails.
1416     *
1417     * <p>If the string {@code str} is {@code null}, the default
1418     * value is returned.</p>
1419     *
1420     * <pre>
1421     *   NumberUtils.toDouble(null, 1.1d)   = 1.1d
1422     *   NumberUtils.toDouble("", 1.1d)     = 1.1d
1423     *   NumberUtils.toDouble("1.5", 0.0d)  = 1.5d
1424     * </pre>
1425     *
1426     * @param str the string to convert, may be {@code null}
1427     * @param defaultValue the default value
1428     * @return the double represented by the string, or defaultValue
1429     *  if conversion fails
1430     * @since 2.1
1431     */
1432    public static double toDouble(final String str, final double defaultValue) {
1433      try {
1434          return Double.parseDouble(str);
1435      } catch (final RuntimeException e) {
1436          return defaultValue;
1437      }
1438    }
1439
1440    /**
1441     * Converts a {@link String} to a {@code float}, returning
1442     * {@code 0.0f} if the conversion fails.
1443     *
1444     * <p>If the string {@code str} is {@code null},
1445     * {@code 0.0f} is returned.</p>
1446     *
1447     * <pre>
1448     *   NumberUtils.toFloat(null)   = 0.0f
1449     *   NumberUtils.toFloat("")     = 0.0f
1450     *   NumberUtils.toFloat("1.5")  = 1.5f
1451     * </pre>
1452     *
1453     * @param str the string to convert, may be {@code null}
1454     * @return the float represented by the string, or {@code 0.0f}
1455     *  if conversion fails
1456     * @since 2.1
1457     */
1458    public static float toFloat(final String str) {
1459        return toFloat(str, 0.0f);
1460    }
1461
1462    /**
1463     * Converts a {@link String} to a {@code float}, returning a
1464     * default value if the conversion fails.
1465     *
1466     * <p>If the string {@code str} is {@code null}, the default
1467     * value is returned.</p>
1468     *
1469     * <pre>
1470     *   NumberUtils.toFloat(null, 1.1f)   = 1.1f
1471     *   NumberUtils.toFloat("", 1.1f)     = 1.1f
1472     *   NumberUtils.toFloat("1.5", 0.0f)  = 1.5f
1473     * </pre>
1474     *
1475     * @param str the string to convert, may be {@code null}
1476     * @param defaultValue the default value
1477     * @return the float represented by the string, or defaultValue
1478     *  if conversion fails
1479     * @since 2.1
1480     */
1481    public static float toFloat(final String str, final float defaultValue) {
1482      try {
1483          return Float.parseFloat(str);
1484      } catch (final RuntimeException e) {
1485          return defaultValue;
1486      }
1487    }
1488
1489    /**
1490     * Converts a {@link String} to an {@code int}, returning
1491     * {@code zero} if the conversion fails.
1492     *
1493     * <p>If the string is {@code null}, {@code zero} is returned.</p>
1494     *
1495     * <pre>
1496     *   NumberUtils.toInt(null) = 0
1497     *   NumberUtils.toInt("")   = 0
1498     *   NumberUtils.toInt("1")  = 1
1499     * </pre>
1500     *
1501     * @param str  the string to convert, may be null
1502     * @return the int represented by the string, or {@code zero} if
1503     *  conversion fails
1504     * @since 2.1
1505     */
1506    public static int toInt(final String str) {
1507        return toInt(str, 0);
1508    }
1509
1510    /**
1511     * Converts a {@link String} to an {@code int}, returning a
1512     * default value if the conversion fails.
1513     *
1514     * <p>If the string is {@code null}, the default value is returned.</p>
1515     *
1516     * <pre>
1517     *   NumberUtils.toInt(null, 1) = 1
1518     *   NumberUtils.toInt("", 1)   = 1
1519     *   NumberUtils.toInt("1", 0)  = 1
1520     * </pre>
1521     *
1522     * @param str  the string to convert, may be null
1523     * @param defaultValue  the default value
1524     * @return the int represented by the string, or the default if conversion fails
1525     * @since 2.1
1526     */
1527    public static int toInt(final String str, final int defaultValue) {
1528        try {
1529            return Integer.parseInt(str);
1530        } catch (final RuntimeException e) {
1531            return defaultValue;
1532        }
1533    }
1534
1535    /**
1536     * Converts a {@link String} to a {@code long}, returning
1537     * {@code zero} if the conversion fails.
1538     *
1539     * <p>If the string is {@code null}, {@code zero} is returned.</p>
1540     *
1541     * <pre>
1542     *   NumberUtils.toLong(null) = 0L
1543     *   NumberUtils.toLong("")   = 0L
1544     *   NumberUtils.toLong("1")  = 1L
1545     * </pre>
1546     *
1547     * @param str  the string to convert, may be null
1548     * @return the long represented by the string, or {@code 0} if
1549     *  conversion fails
1550     * @since 2.1
1551     */
1552    public static long toLong(final String str) {
1553        return toLong(str, 0L);
1554    }
1555
1556    /**
1557     * Converts a {@link String} to a {@code long}, returning a
1558     * default value if the conversion fails.
1559     *
1560     * <p>If the string is {@code null}, the default value is returned.</p>
1561     *
1562     * <pre>
1563     *   NumberUtils.toLong(null, 1L) = 1L
1564     *   NumberUtils.toLong("", 1L)   = 1L
1565     *   NumberUtils.toLong("1", 0L)  = 1L
1566     * </pre>
1567     *
1568     * @param str  the string to convert, may be null
1569     * @param defaultValue  the default value
1570     * @return the long represented by the string, or the default if conversion fails
1571     * @since 2.1
1572     */
1573    public static long toLong(final String str, final long defaultValue) {
1574        try {
1575            return Long.parseLong(str);
1576        } catch (final RuntimeException e) {
1577            return defaultValue;
1578        }
1579    }
1580
1581    /**
1582     * Converts a {@link BigDecimal} to a {@link BigDecimal} with a scale of
1583     * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1584     * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1585     *
1586     * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1587     * decimal point.</p>
1588     *
1589     * @param value the {@link BigDecimal} to convert, may be null.
1590     * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1591     * @since 3.8
1592     */
1593    public static BigDecimal toScaledBigDecimal(final BigDecimal value) {
1594        return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1595    }
1596
1597    /**
1598     * Converts a {@link BigDecimal} to a {@link BigDecimal} whose scale is the
1599     * specified value with a {@link RoundingMode} applied. If the input {@code value}
1600     * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1601     *
1602     * @param value the {@link BigDecimal} to convert, may be null.
1603     * @param scale the number of digits to the right of the decimal point.
1604     * @param roundingMode a rounding behavior for numerical operations capable of
1605     *  discarding precision.
1606     * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1607     * @since 3.8
1608     */
1609    public static BigDecimal toScaledBigDecimal(final BigDecimal value, final int scale, final RoundingMode roundingMode) {
1610        if (value == null) {
1611            return BigDecimal.ZERO;
1612        }
1613        return value.setScale(
1614            scale,
1615            roundingMode == null ? RoundingMode.HALF_EVEN : roundingMode
1616        );
1617    }
1618
1619    /**
1620     * Converts a {@link Double} to a {@link BigDecimal} with a scale of
1621     * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1622     * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1623     *
1624     * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1625     * decimal point.</p>
1626     *
1627     * @param value the {@link Double} to convert, may be null.
1628     * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1629     * @since 3.8
1630     */
1631    public static BigDecimal toScaledBigDecimal(final Double value) {
1632        return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1633    }
1634
1635    /**
1636     * Converts a {@link Double} to a {@link BigDecimal} whose scale is the
1637     * specified value with a {@link RoundingMode} applied. If the input {@code value}
1638     * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1639     *
1640     * @param value the {@link Double} to convert, may be null.
1641     * @param scale the number of digits to the right of the decimal point.
1642     * @param roundingMode a rounding behavior for numerical operations capable of
1643     *  discarding precision.
1644     * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1645     * @since 3.8
1646     */
1647    public static BigDecimal toScaledBigDecimal(final Double value, final int scale, final RoundingMode roundingMode) {
1648        if (value == null) {
1649            return BigDecimal.ZERO;
1650        }
1651        return toScaledBigDecimal(
1652            BigDecimal.valueOf(value),
1653            scale,
1654            roundingMode
1655        );
1656    }
1657
1658    /**
1659     * Converts a {@link Float} to a {@link BigDecimal} with a scale of
1660     * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1661     * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1662     *
1663     * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1664     * decimal point.</p>
1665     *
1666     * @param value the {@link Float} to convert, may be null.
1667     * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1668     * @since 3.8
1669     */
1670    public static BigDecimal toScaledBigDecimal(final Float value) {
1671        return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1672    }
1673
1674    /**
1675     * Converts a {@link Float} to a {@link BigDecimal} whose scale is the
1676     * specified value with a {@link RoundingMode} applied. If the input {@code value}
1677     * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1678     *
1679     * @param value the {@link Float} to convert, may be null.
1680     * @param scale the number of digits to the right of the decimal point.
1681     * @param roundingMode a rounding behavior for numerical operations capable of
1682     *  discarding precision.
1683     * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1684     * @since 3.8
1685     */
1686    public static BigDecimal toScaledBigDecimal(final Float value, final int scale, final RoundingMode roundingMode) {
1687        if (value == null) {
1688            return BigDecimal.ZERO;
1689        }
1690        return toScaledBigDecimal(
1691            BigDecimal.valueOf(value),
1692            scale,
1693            roundingMode
1694        );
1695    }
1696
1697    /**
1698     * Converts a {@link String} to a {@link BigDecimal} with a scale of
1699     * two that has been rounded using {@code RoundingMode.HALF_EVEN}. If the supplied
1700     * {@code value} is null, then {@code BigDecimal.ZERO} is returned.
1701     *
1702     * <p>Note, the scale of a {@link BigDecimal} is the number of digits to the right of the
1703     * decimal point.</p>
1704     *
1705     * @param value the {@link String} to convert, may be null.
1706     * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1707     * @since 3.8
1708     */
1709    public static BigDecimal toScaledBigDecimal(final String value) {
1710        return toScaledBigDecimal(value, INTEGER_TWO, RoundingMode.HALF_EVEN);
1711    }
1712
1713    /**
1714     * Converts a {@link String} to a {@link BigDecimal} whose scale is the
1715     * specified value with a {@link RoundingMode} applied. If the input {@code value}
1716     * is {@code null}, we simply return {@code BigDecimal.ZERO}.
1717     *
1718     * @param value the {@link String} to convert, may be null.
1719     * @param scale the number of digits to the right of the decimal point.
1720     * @param roundingMode a rounding behavior for numerical operations capable of
1721     *  discarding precision.
1722     * @return the scaled, with appropriate rounding, {@link BigDecimal}.
1723     * @since 3.8
1724     */
1725    public static BigDecimal toScaledBigDecimal(final String value, final int scale, final RoundingMode roundingMode) {
1726        if (value == null) {
1727            return BigDecimal.ZERO;
1728        }
1729        return toScaledBigDecimal(
1730            createBigDecimal(value),
1731            scale,
1732            roundingMode
1733        );
1734    }
1735
1736    /**
1737     * Converts a {@link String} to a {@code short}, returning
1738     * {@code zero} if the conversion fails.
1739     *
1740     * <p>If the string is {@code null}, {@code zero} is returned.</p>
1741     *
1742     * <pre>
1743     *   NumberUtils.toShort(null) = 0
1744     *   NumberUtils.toShort("")   = 0
1745     *   NumberUtils.toShort("1")  = 1
1746     * </pre>
1747     *
1748     * @param str  the string to convert, may be null
1749     * @return the short represented by the string, or {@code zero} if
1750     *  conversion fails
1751     * @since 2.5
1752     */
1753    public static short toShort(final String str) {
1754        return toShort(str, (short) 0);
1755    }
1756
1757    /**
1758     * Converts a {@link String} to an {@code short}, returning a
1759     * default value if the conversion fails.
1760     *
1761     * <p>If the string is {@code null}, the default value is returned.</p>
1762     *
1763     * <pre>
1764     *   NumberUtils.toShort(null, 1) = 1
1765     *   NumberUtils.toShort("", 1)   = 1
1766     *   NumberUtils.toShort("1", 0)  = 1
1767     * </pre>
1768     *
1769     * @param str  the string to convert, may be null
1770     * @param defaultValue  the default value
1771     * @return the short represented by the string, or the default if conversion fails
1772     * @since 2.5
1773     */
1774    public static short toShort(final String str, final short defaultValue) {
1775        try {
1776            return Short.parseShort(str);
1777        } catch (final RuntimeException e) {
1778            return defaultValue;
1779        }
1780    }
1781
1782    /**
1783     * Checks if the specified array is neither null nor empty.
1784     *
1785     * @param array  the array to check
1786     * @throws IllegalArgumentException if {@code array} is empty
1787     * @throws NullPointerException if {@code array} is {@code null}
1788     */
1789    private static void validateArray(final Object array) {
1790        Objects.requireNonNull(array, "array");
1791        Validate.isTrue(Array.getLength(array) != 0, "Array cannot be empty.");
1792    }
1793
1794    private static boolean withDecimalsParsing(final String str, final int beginIdx) {
1795        int decimalPoints = 0;
1796        for (int i = beginIdx; i < str.length(); i++) {
1797            final char ch = str.charAt(i);
1798            final boolean isDecimalPoint = ch == '.';
1799            if (isDecimalPoint) {
1800                decimalPoints++;
1801            }
1802            if (decimalPoints > 1) {
1803                return false;
1804            }
1805            if (!isDecimalPoint && !Character.isDigit(ch)) {
1806                return false;
1807            }
1808        }
1809        return true;
1810    }
1811
1812    /**
1813     * {@link NumberUtils} instances should NOT be constructed in standard programming.
1814     * Instead, the class should be used as {@code NumberUtils.toInt("6");}.
1815     *
1816     * <p>This constructor is public to permit tools that require a JavaBean instance
1817     * to operate.</p>
1818     *
1819     * @deprecated TODO Make private in 4.0.
1820     */
1821    @Deprecated
1822    public NumberUtils() {
1823        // empty
1824    }
1825}