Fraction.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.lang3.math;
- import java.math.BigInteger;
- import java.util.Objects;
- /**
- * {@link Fraction} is a {@link Number} implementation that
- * stores fractions accurately.
- *
- * <p>This class is immutable, and interoperable with most methods that accept
- * a {@link Number}.</p>
- *
- * <p>Note that this class is intended for common use cases, it is <em>int</em>
- * based and thus suffers from various overflow issues. For a BigInteger based
- * equivalent, please see the Commons Math BigFraction class.</p>
- *
- * @since 2.0
- */
- public final class Fraction extends Number implements Comparable<Fraction> {
- /**
- * Required for serialization support. Lang version 2.0.
- *
- * @see java.io.Serializable
- */
- private static final long serialVersionUID = 65382027393090L;
- /**
- * {@link Fraction} representation of 0.
- */
- public static final Fraction ZERO = new Fraction(0, 1);
- /**
- * {@link Fraction} representation of 1.
- */
- public static final Fraction ONE = new Fraction(1, 1);
- /**
- * {@link Fraction} representation of 1/2.
- */
- public static final Fraction ONE_HALF = new Fraction(1, 2);
- /**
- * {@link Fraction} representation of 1/3.
- */
- public static final Fraction ONE_THIRD = new Fraction(1, 3);
- /**
- * {@link Fraction} representation of 2/3.
- */
- public static final Fraction TWO_THIRDS = new Fraction(2, 3);
- /**
- * {@link Fraction} representation of 1/4.
- */
- public static final Fraction ONE_QUARTER = new Fraction(1, 4);
- /**
- * {@link Fraction} representation of 2/4.
- */
- public static final Fraction TWO_QUARTERS = new Fraction(2, 4);
- /**
- * {@link Fraction} representation of 3/4.
- */
- public static final Fraction THREE_QUARTERS = new Fraction(3, 4);
- /**
- * {@link Fraction} representation of 1/5.
- */
- public static final Fraction ONE_FIFTH = new Fraction(1, 5);
- /**
- * {@link Fraction} representation of 2/5.
- */
- public static final Fraction TWO_FIFTHS = new Fraction(2, 5);
- /**
- * {@link Fraction} representation of 3/5.
- */
- public static final Fraction THREE_FIFTHS = new Fraction(3, 5);
- /**
- * {@link Fraction} representation of 4/5.
- */
- public static final Fraction FOUR_FIFTHS = new Fraction(4, 5);
- /**
- * Add two integers, checking for overflow.
- *
- * @param x an addend
- * @param y an addend
- * @return the sum {@code x+y}
- * @throws ArithmeticException if the result can not be represented as
- * an int
- */
- private static int addAndCheck(final int x, final int y) {
- final long s = (long) x + (long) y;
- if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
- throw new ArithmeticException("overflow: add");
- }
- return (int) s;
- }
- /**
- * Creates a {@link Fraction} instance from a {@code double} value.
- *
- * <p>This method uses the <a href="https://web.archive.org/web/20210516065058/http%3A//archives.math.utk.edu/articles/atuyl/confrac/">
- * continued fraction algorithm</a>, computing a maximum of
- * 25 convergents and bounding the denominator by 10,000.</p>
- *
- * @param value the double value to convert
- * @return a new fraction instance that is close to the value
- * @throws ArithmeticException if {@code |value| > Integer.MAX_VALUE}
- * or {@code value = NaN}
- * @throws ArithmeticException if the calculated denominator is {@code zero}
- * @throws ArithmeticException if the algorithm does not converge
- */
- public static Fraction getFraction(double value) {
- final int sign = value < 0 ? -1 : 1;
- value = Math.abs(value);
- if (value > Integer.MAX_VALUE || Double.isNaN(value)) {
- throw new ArithmeticException("The value must not be greater than Integer.MAX_VALUE or NaN");
- }
- final int wholeNumber = (int) value;
- value -= wholeNumber;
- int numer0 = 0; // the pre-previous
- int denom0 = 1; // the pre-previous
- int numer1 = 1; // the previous
- int denom1 = 0; // the previous
- int numer2; // the current, setup in calculation
- int denom2; // the current, setup in calculation
- int a1 = (int) value;
- int a2;
- double x1 = 1;
- double x2;
- double y1 = value - a1;
- double y2;
- double delta1, delta2 = Double.MAX_VALUE;
- double fraction;
- int i = 1;
- do {
- delta1 = delta2;
- a2 = (int) (x1 / y1);
- x2 = y1;
- y2 = x1 - a2 * y1;
- numer2 = a1 * numer1 + numer0;
- denom2 = a1 * denom1 + denom0;
- fraction = (double) numer2 / (double) denom2;
- delta2 = Math.abs(value - fraction);
- a1 = a2;
- x1 = x2;
- y1 = y2;
- numer0 = numer1;
- denom0 = denom1;
- numer1 = numer2;
- denom1 = denom2;
- i++;
- } while (delta1 > delta2 && denom2 <= 10000 && denom2 > 0 && i < 25);
- if (i == 25) {
- throw new ArithmeticException("Unable to convert double to fraction");
- }
- return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0);
- }
- /**
- * Creates a {@link Fraction} instance with the 2 parts
- * of a fraction Y/Z.
- *
- * <p>Any negative signs are resolved to be on the numerator.</p>
- *
- * @param numerator the numerator, for example the three in 'three sevenths'
- * @param denominator the denominator, for example the seven in 'three sevenths'
- * @return a new fraction instance
- * @throws ArithmeticException if the denominator is {@code zero}
- * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE}
- */
- public static Fraction getFraction(int numerator, int denominator) {
- if (denominator == 0) {
- throw new ArithmeticException("The denominator must not be zero");
- }
- if (denominator < 0) {
- if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
- throw new ArithmeticException("overflow: can't negate");
- }
- numerator = -numerator;
- denominator = -denominator;
- }
- return new Fraction(numerator, denominator);
- }
- /**
- * Creates a {@link Fraction} instance with the 3 parts
- * of a fraction X Y/Z.
- *
- * <p>The negative sign must be passed in on the whole number part.</p>
- *
- * @param whole the whole number, for example the one in 'one and three sevenths'
- * @param numerator the numerator, for example the three in 'one and three sevenths'
- * @param denominator the denominator, for example the seven in 'one and three sevenths'
- * @return a new fraction instance
- * @throws ArithmeticException if the denominator is {@code zero}
- * @throws ArithmeticException if the denominator is negative
- * @throws ArithmeticException if the numerator is negative
- * @throws ArithmeticException if the resulting numerator exceeds
- * {@code Integer.MAX_VALUE}
- */
- public static Fraction getFraction(final int whole, final int numerator, final int denominator) {
- if (denominator == 0) {
- throw new ArithmeticException("The denominator must not be zero");
- }
- if (denominator < 0) {
- throw new ArithmeticException("The denominator must not be negative");
- }
- if (numerator < 0) {
- throw new ArithmeticException("The numerator must not be negative");
- }
- final long numeratorValue;
- if (whole < 0) {
- numeratorValue = whole * (long) denominator - numerator;
- } else {
- numeratorValue = whole * (long) denominator + numerator;
- }
- if (numeratorValue < Integer.MIN_VALUE || numeratorValue > Integer.MAX_VALUE) {
- throw new ArithmeticException("Numerator too large to represent as an Integer.");
- }
- return new Fraction((int) numeratorValue, denominator);
- }
- /**
- * Creates a Fraction from a {@link String}.
- *
- * <p>The formats accepted are:</p>
- *
- * <ol>
- * <li>{@code double} String containing a dot</li>
- * <li>'X Y/Z'</li>
- * <li>'Y/Z'</li>
- * <li>'X' (a simple whole number)</li>
- * </ol>
- * <p>and a .</p>
- *
- * @param str the string to parse, must not be {@code null}
- * @return the new {@link Fraction} instance
- * @throws NullPointerException if the string is {@code null}
- * @throws NumberFormatException if the number format is invalid
- */
- public static Fraction getFraction(String str) {
- Objects.requireNonNull(str, "str");
- // parse double format
- int pos = str.indexOf('.');
- if (pos >= 0) {
- return getFraction(Double.parseDouble(str));
- }
- // parse X Y/Z format
- pos = str.indexOf(' ');
- if (pos > 0) {
- final int whole = Integer.parseInt(str.substring(0, pos));
- str = str.substring(pos + 1);
- pos = str.indexOf('/');
- if (pos < 0) {
- throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z");
- }
- final int numer = Integer.parseInt(str.substring(0, pos));
- final int denom = Integer.parseInt(str.substring(pos + 1));
- return getFraction(whole, numer, denom);
- }
- // parse Y/Z format
- pos = str.indexOf('/');
- if (pos < 0) {
- // simple whole number
- return getFraction(Integer.parseInt(str), 1);
- }
- final int numer = Integer.parseInt(str.substring(0, pos));
- final int denom = Integer.parseInt(str.substring(pos + 1));
- return getFraction(numer, denom);
- }
- /**
- * Creates a reduced {@link Fraction} instance with the 2 parts
- * of a fraction Y/Z.
- *
- * <p>For example, if the input parameters represent 2/4, then the created
- * fraction will be 1/2.</p>
- *
- * <p>Any negative signs are resolved to be on the numerator.</p>
- *
- * @param numerator the numerator, for example the three in 'three sevenths'
- * @param denominator the denominator, for example the seven in 'three sevenths'
- * @return a new fraction instance, with the numerator and denominator reduced
- * @throws ArithmeticException if the denominator is {@code zero}
- */
- public static Fraction getReducedFraction(int numerator, int denominator) {
- if (denominator == 0) {
- throw new ArithmeticException("The denominator must not be zero");
- }
- if (numerator == 0) {
- return ZERO; // normalize zero.
- }
- // allow 2^k/-2^31 as a valid fraction (where k>0)
- if (denominator == Integer.MIN_VALUE && (numerator & 1) == 0) {
- numerator /= 2;
- denominator /= 2;
- }
- if (denominator < 0) {
- if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
- throw new ArithmeticException("overflow: can't negate");
- }
- numerator = -numerator;
- denominator = -denominator;
- }
- // simplify fraction.
- final int gcd = greatestCommonDivisor(numerator, denominator);
- numerator /= gcd;
- denominator /= gcd;
- return new Fraction(numerator, denominator);
- }
- /**
- * Gets the greatest common divisor of the absolute value of
- * two numbers, using the "binary gcd" method which avoids
- * division and modulo operations. See Knuth 4.5.2 algorithm B.
- * This algorithm is due to Josef Stein (1961).
- *
- * @param u a non-zero number
- * @param v a non-zero number
- * @return the greatest common divisor, never zero
- */
- private static int greatestCommonDivisor(int u, int v) {
- // From Commons Math:
- if (u == 0 || v == 0) {
- if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) {
- throw new ArithmeticException("overflow: gcd is 2^31");
- }
- return Math.abs(u) + Math.abs(v);
- }
- // if either operand is abs 1, return 1:
- if (Math.abs(u) == 1 || Math.abs(v) == 1) {
- return 1;
- }
- // keep u and v negative, as negative integers range down to
- // -2^31, while positive numbers can only be as large as 2^31-1
- // (i.e. we can't necessarily negate a negative number without
- // overflow)
- if (u > 0) {
- u = -u;
- } // make u negative
- if (v > 0) {
- v = -v;
- } // make v negative
- // B1. [Find power of 2]
- int k = 0;
- while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are both even...
- u /= 2;
- v /= 2;
- k++; // cast out twos.
- }
- if (k == 31) {
- throw new ArithmeticException("overflow: gcd is 2^31");
- }
- // B2. Initialize: u and v have been divided by 2^k and at least
- // one is odd.
- int t = (u & 1) == 1 ? v : -(u / 2)/* B3 */;
- // t negative: u was odd, v may be even (t replaces v)
- // t positive: u was even, v is odd (t replaces u)
- do {
- /* assert u<0 && v<0; */
- // B4/B3: cast out twos from t.
- while ((t & 1) == 0) { // while t is even.
- t /= 2; // cast out twos
- }
- // B5 [reset max(u,v)]
- if (t > 0) {
- u = -t;
- } else {
- v = t;
- }
- // B6/B3. at this point both u and v should be odd.
- t = (v - u) / 2;
- // |u| larger: t positive (replace u)
- // |v| larger: t negative (replace v)
- } while (t != 0);
- return -u * (1 << k); // gcd is u*2^k
- }
- /**
- * Multiply two integers, checking for overflow.
- *
- * @param x a factor
- * @param y a factor
- * @return the product {@code x*y}
- * @throws ArithmeticException if the result can not be represented as
- * an int
- */
- private static int mulAndCheck(final int x, final int y) {
- final long m = (long) x * (long) y;
- if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
- throw new ArithmeticException("overflow: mul");
- }
- return (int) m;
- }
- /**
- * Multiply two non-negative integers, checking for overflow.
- *
- * @param x a non-negative factor
- * @param y a non-negative factor
- * @return the product {@code x*y}
- * @throws ArithmeticException if the result can not be represented as
- * an int
- */
- private static int mulPosAndCheck(final int x, final int y) {
- /* assert x>=0 && y>=0; */
- final long m = (long) x * (long) y;
- if (m > Integer.MAX_VALUE) {
- throw new ArithmeticException("overflow: mulPos");
- }
- return (int) m;
- }
- /**
- * Subtract two integers, checking for overflow.
- *
- * @param x the minuend
- * @param y the subtrahend
- * @return the difference {@code x-y}
- * @throws ArithmeticException if the result can not be represented as
- * an int
- */
- private static int subAndCheck(final int x, final int y) {
- final long s = (long) x - (long) y;
- if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
- throw new ArithmeticException("overflow: add");
- }
- return (int) s;
- }
- /**
- * The numerator number part of the fraction (the three in three sevenths).
- */
- private final int numerator;
- /**
- * The denominator number part of the fraction (the seven in three sevenths).
- */
- private final int denominator;
- /**
- * Cached output hashCode (class is immutable).
- */
- private transient int hashCode;
- /**
- * Cached output toString (class is immutable).
- */
- private transient String toString;
- /**
- * Cached output toProperString (class is immutable).
- */
- private transient String toProperString;
- /**
- * Constructs a {@link Fraction} instance with the 2 parts
- * of a fraction Y/Z.
- *
- * @param numerator the numerator, for example the three in 'three sevenths'
- * @param denominator the denominator, for example the seven in 'three sevenths'
- */
- private Fraction(final int numerator, final int denominator) {
- this.numerator = numerator;
- this.denominator = denominator;
- }
- /**
- * Gets a fraction that is the positive equivalent of this one.
- * <p>More precisely: {@code (fraction >= 0 ? this : -fraction)}</p>
- *
- * <p>The returned fraction is not reduced.</p>
- *
- * @return {@code this} if it is positive, or a new positive fraction
- * instance with the opposite signed numerator
- */
- public Fraction abs() {
- if (numerator >= 0) {
- return this;
- }
- return negate();
- }
- /**
- * Adds the value of this fraction to another, returning the result in reduced form.
- * The algorithm follows Knuth, 4.5.1.
- *
- * @param fraction the fraction to add, must not be {@code null}
- * @return a {@link Fraction} instance with the resulting values
- * @throws NullPointerException if the fraction is {@code null}
- * @throws ArithmeticException if the resulting numerator or denominator exceeds
- * {@code Integer.MAX_VALUE}
- */
- public Fraction add(final Fraction fraction) {
- return addSub(fraction, true /* add */);
- }
- /**
- * Implement add and subtract using algorithm described in Knuth 4.5.1.
- *
- * @param fraction the fraction to subtract, must not be {@code null}
- * @param isAdd true to add, false to subtract
- * @return a {@link Fraction} instance with the resulting values
- * @throws IllegalArgumentException if the fraction is {@code null}
- * @throws ArithmeticException if the resulting numerator or denominator
- * cannot be represented in an {@code int}.
- */
- private Fraction addSub(final Fraction fraction, final boolean isAdd) {
- Objects.requireNonNull(fraction, "fraction");
- // zero is identity for addition.
- if (numerator == 0) {
- return isAdd ? fraction : fraction.negate();
- }
- if (fraction.numerator == 0) {
- return this;
- }
- // if denominators are randomly distributed, d1 will be 1 about 61%
- // of the time.
- final int d1 = greatestCommonDivisor(denominator, fraction.denominator);
- if (d1 == 1) {
- // result is ( (u*v' +/- u'v) / u'v')
- final int uvp = mulAndCheck(numerator, fraction.denominator);
- final int upv = mulAndCheck(fraction.numerator, denominator);
- return new Fraction(isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), mulPosAndCheck(denominator,
- fraction.denominator));
- }
- // the quantity 't' requires 65 bits of precision; see knuth 4.5.1
- // exercise 7. we're going to use a BigInteger.
- // t = u(v'/d1) +/- v(u'/d1)
- final BigInteger uvp = BigInteger.valueOf(numerator).multiply(BigInteger.valueOf(fraction.denominator / d1));
- final BigInteger upv = BigInteger.valueOf(fraction.numerator).multiply(BigInteger.valueOf(denominator / d1));
- final BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
- // but d2 doesn't need extra precision because
- // d2 = gcd(t,d1) = gcd(t mod d1, d1)
- final int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
- final int d2 = tmodd1 == 0 ? d1 : greatestCommonDivisor(tmodd1, d1);
- // result is (t/d2) / (u'/d1)(v'/d2)
- final BigInteger w = t.divide(BigInteger.valueOf(d2));
- if (w.bitLength() > 31) {
- throw new ArithmeticException("overflow: numerator too large after multiply");
- }
- return new Fraction(w.intValue(), mulPosAndCheck(denominator / d1, fraction.denominator / d2));
- }
- /**
- * Compares this object to another based on size.
- *
- * <p>Note: this class has a natural ordering that is inconsistent
- * with equals, because, for example, equals treats 1/2 and 2/4 as
- * different, whereas compareTo treats them as equal.
- *
- * @param other the object to compare to
- * @return -1 if this is less, 0 if equal, +1 if greater
- * @throws ClassCastException if the object is not a {@link Fraction}
- * @throws NullPointerException if the object is {@code null}
- */
- @Override
- public int compareTo(final Fraction other) {
- if (this == other) {
- return 0;
- }
- if (numerator == other.numerator && denominator == other.denominator) {
- return 0;
- }
- // otherwise see which is less
- final long first = (long) numerator * (long) other.denominator;
- final long second = (long) other.numerator * (long) denominator;
- return Long.compare(first, second);
- }
- /**
- * Divide the value of this fraction by another.
- *
- * @param fraction the fraction to divide by, must not be {@code null}
- * @return a {@link Fraction} instance with the resulting values
- * @throws NullPointerException if the fraction is {@code null}
- * @throws ArithmeticException if the fraction to divide by is zero
- * @throws ArithmeticException if the resulting numerator or denominator exceeds
- * {@code Integer.MAX_VALUE}
- */
- public Fraction divideBy(final Fraction fraction) {
- Objects.requireNonNull(fraction, "fraction");
- if (fraction.numerator == 0) {
- throw new ArithmeticException("The fraction to divide by must not be zero");
- }
- return multiplyBy(fraction.invert());
- }
- /**
- * Gets the fraction as a {@code double}. This calculates the fraction
- * as the numerator divided by denominator.
- *
- * @return the fraction as a {@code double}
- */
- @Override
- public double doubleValue() {
- return (double) numerator / (double) denominator;
- }
- /**
- * Compares this fraction to another object to test if they are equal.
- *
- * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p>
- *
- * @param obj the reference object with which to compare
- * @return {@code true} if this object is equal
- */
- @Override
- public boolean equals(final Object obj) {
- if (obj == this) {
- return true;
- }
- if (!(obj instanceof Fraction)) {
- return false;
- }
- final Fraction other = (Fraction) obj;
- return getNumerator() == other.getNumerator() && getDenominator() == other.getDenominator();
- }
- /**
- * Gets the fraction as a {@code float}. This calculates the fraction
- * as the numerator divided by denominator.
- *
- * @return the fraction as a {@code float}
- */
- @Override
- public float floatValue() {
- return (float) numerator / (float) denominator;
- }
- /**
- * Gets the denominator part of the fraction.
- *
- * @return the denominator fraction part
- */
- public int getDenominator() {
- return denominator;
- }
- /**
- * Gets the numerator part of the fraction.
- *
- * <p>This method may return a value greater than the denominator, an
- * improper fraction, such as the seven in 7/4.</p>
- *
- * @return the numerator fraction part
- */
- public int getNumerator() {
- return numerator;
- }
- /**
- * Gets the proper numerator, always positive.
- *
- * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
- * This method returns the 3 from the proper fraction.</p>
- *
- * <p>If the fraction is negative such as -7/4, it can be resolved into
- * -1 3/4, so this method returns the positive proper numerator, 3.</p>
- *
- * @return the numerator fraction part of a proper fraction, always positive
- */
- public int getProperNumerator() {
- return Math.abs(numerator % denominator);
- }
- /**
- * Gets the proper whole part of the fraction.
- *
- * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
- * This method returns the 1 from the proper fraction.</p>
- *
- * <p>If the fraction is negative such as -7/4, it can be resolved into
- * -1 3/4, so this method returns the positive whole part -1.</p>
- *
- * @return the whole fraction part of a proper fraction, that includes the sign
- */
- public int getProperWhole() {
- return numerator / denominator;
- }
- /**
- * Gets a hashCode for the fraction.
- *
- * @return a hash code value for this object
- */
- @Override
- public int hashCode() {
- if (hashCode == 0) {
- // hash code update should be atomic.
- hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator();
- }
- return hashCode;
- }
- /**
- * Gets the fraction as an {@code int}. This returns the whole number
- * part of the fraction.
- *
- * @return the whole number fraction part
- */
- @Override
- public int intValue() {
- return numerator / denominator;
- }
- /**
- * Gets a fraction that is the inverse (1/fraction) of this one.
- *
- * <p>The returned fraction is not reduced.</p>
- *
- * @return a new fraction instance with the numerator and denominator
- * inverted.
- * @throws ArithmeticException if the fraction represents zero.
- */
- public Fraction invert() {
- if (numerator == 0) {
- throw new ArithmeticException("Unable to invert zero.");
- }
- if (numerator == Integer.MIN_VALUE) {
- throw new ArithmeticException("overflow: can't negate numerator");
- }
- if (numerator < 0) {
- return new Fraction(-denominator, -numerator);
- }
- return new Fraction(denominator, numerator);
- }
- /**
- * Gets the fraction as a {@code long}. This returns the whole number
- * part of the fraction.
- *
- * @return the whole number fraction part
- */
- @Override
- public long longValue() {
- return (long) numerator / denominator;
- }
- /**
- * Multiplies the value of this fraction by another, returning the
- * result in reduced form.
- *
- * @param fraction the fraction to multiply by, must not be {@code null}
- * @return a {@link Fraction} instance with the resulting values
- * @throws NullPointerException if the fraction is {@code null}
- * @throws ArithmeticException if the resulting numerator or denominator exceeds
- * {@code Integer.MAX_VALUE}
- */
- public Fraction multiplyBy(final Fraction fraction) {
- Objects.requireNonNull(fraction, "fraction");
- if (numerator == 0 || fraction.numerator == 0) {
- return ZERO;
- }
- // knuth 4.5.1
- // make sure we don't overflow unless the result *must* overflow.
- final int d1 = greatestCommonDivisor(numerator, fraction.denominator);
- final int d2 = greatestCommonDivisor(fraction.numerator, denominator);
- return getReducedFraction(mulAndCheck(numerator / d1, fraction.numerator / d2), mulPosAndCheck(denominator / d2, fraction.denominator / d1));
- }
- /**
- * Gets a fraction that is the negative (-fraction) of this one.
- *
- * <p>The returned fraction is not reduced.</p>
- *
- * @return a new fraction instance with the opposite signed numerator
- */
- public Fraction negate() {
- // the positive range is one smaller than the negative range of an int.
- if (numerator == Integer.MIN_VALUE) {
- throw new ArithmeticException("overflow: too large to negate");
- }
- return new Fraction(-numerator, denominator);
- }
- /**
- * Gets a fraction that is raised to the passed in power.
- *
- * <p>The returned fraction is in reduced form.</p>
- *
- * @param power the power to raise the fraction to
- * @return {@code this} if the power is one, {@link #ONE} if the power
- * is zero (even if the fraction equals ZERO) or a new fraction instance
- * raised to the appropriate power
- * @throws ArithmeticException if the resulting numerator or denominator exceeds
- * {@code Integer.MAX_VALUE}
- */
- public Fraction pow(final int power) {
- if (power == 1) {
- return this;
- }
- if (power == 0) {
- return ONE;
- }
- if (power < 0) {
- if (power == Integer.MIN_VALUE) { // MIN_VALUE can't be negated.
- return this.invert().pow(2).pow(-(power / 2));
- }
- return this.invert().pow(-power);
- }
- final Fraction f = this.multiplyBy(this);
- if (power % 2 == 0) { // if even...
- return f.pow(power / 2);
- }
- return f.pow(power / 2).multiplyBy(this);
- }
- /**
- * Reduce the fraction to the smallest values for the numerator and
- * denominator, returning the result.
- *
- * <p>For example, if this fraction represents 2/4, then the result
- * will be 1/2.</p>
- *
- * @return a new reduced fraction instance, or this if no simplification possible
- */
- public Fraction reduce() {
- if (numerator == 0) {
- return equals(ZERO) ? this : ZERO;
- }
- final int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
- if (gcd == 1) {
- return this;
- }
- return getFraction(numerator / gcd, denominator / gcd);
- }
- /**
- * Subtracts the value of another fraction from the value of this one,
- * returning the result in reduced form.
- *
- * @param fraction the fraction to subtract, must not be {@code null}
- * @return a {@link Fraction} instance with the resulting values
- * @throws NullPointerException if the fraction is {@code null}
- * @throws ArithmeticException if the resulting numerator or denominator
- * cannot be represented in an {@code int}.
- */
- public Fraction subtract(final Fraction fraction) {
- return addSub(fraction, false /* subtract */);
- }
- /**
- * Gets the fraction as a proper {@link String} in the format X Y/Z.
- *
- * <p>The format used in '<em>wholeNumber</em> <em>numerator</em>/<em>denominator</em>'.
- * If the whole number is zero it will be omitted. If the numerator is zero,
- * only the whole number is returned.</p>
- *
- * @return a {@link String} form of the fraction
- */
- public String toProperString() {
- if (toProperString == null) {
- if (numerator == 0) {
- toProperString = "0";
- } else if (numerator == denominator) {
- toProperString = "1";
- } else if (numerator == -1 * denominator) {
- toProperString = "-1";
- } else if ((numerator > 0 ? -numerator : numerator) < -denominator) {
- // note that we do the magnitude comparison test above with
- // NEGATIVE (not positive) numbers, since negative numbers
- // have a larger range. otherwise numerator == Integer.MIN_VALUE
- // is handled incorrectly.
- final int properNumerator = getProperNumerator();
- if (properNumerator == 0) {
- toProperString = Integer.toString(getProperWhole());
- } else {
- toProperString = getProperWhole() + " " + properNumerator + "/" + getDenominator();
- }
- } else {
- toProperString = getNumerator() + "/" + getDenominator();
- }
- }
- return toProperString;
- }
- /**
- * Gets the fraction as a {@link String}.
- *
- * <p>The format used is '<em>numerator</em>/<em>denominator</em>' always.
- *
- * @return a {@link String} form of the fraction
- */
- @Override
- public String toString() {
- if (toString == null) {
- toString = getNumerator() + "/" + getDenominator();
- }
- return toString;
- }
- }