Fraction.java

  1. /*
  2.  * Licensed to the Apache Software Foundation (ASF) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The ASF licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.apache.commons.lang3.math;

  18. import java.math.BigInteger;
  19. import java.util.Objects;

  20. /**
  21.  * {@link Fraction} is a {@link Number} implementation that
  22.  * stores fractions accurately.
  23.  *
  24.  * <p>This class is immutable, and interoperable with most methods that accept
  25.  * a {@link Number}.</p>
  26.  *
  27.  * <p>Note that this class is intended for common use cases, it is <em>int</em>
  28.  * based and thus suffers from various overflow issues. For a BigInteger based
  29.  * equivalent, please see the Commons Math BigFraction class.</p>
  30.  *
  31.  * @since 2.0
  32.  */
  33. public final class Fraction extends Number implements Comparable<Fraction> {

  34.     /**
  35.      * Required for serialization support. Lang version 2.0.
  36.      *
  37.      * @see java.io.Serializable
  38.      */
  39.     private static final long serialVersionUID = 65382027393090L;

  40.     /**
  41.      * {@link Fraction} representation of 0.
  42.      */
  43.     public static final Fraction ZERO = new Fraction(0, 1);
  44.     /**
  45.      * {@link Fraction} representation of 1.
  46.      */
  47.     public static final Fraction ONE = new Fraction(1, 1);
  48.     /**
  49.      * {@link Fraction} representation of 1/2.
  50.      */
  51.     public static final Fraction ONE_HALF = new Fraction(1, 2);
  52.     /**
  53.      * {@link Fraction} representation of 1/3.
  54.      */
  55.     public static final Fraction ONE_THIRD = new Fraction(1, 3);
  56.     /**
  57.      * {@link Fraction} representation of 2/3.
  58.      */
  59.     public static final Fraction TWO_THIRDS = new Fraction(2, 3);
  60.     /**
  61.      * {@link Fraction} representation of 1/4.
  62.      */
  63.     public static final Fraction ONE_QUARTER = new Fraction(1, 4);
  64.     /**
  65.      * {@link Fraction} representation of 2/4.
  66.      */
  67.     public static final Fraction TWO_QUARTERS = new Fraction(2, 4);
  68.     /**
  69.      * {@link Fraction} representation of 3/4.
  70.      */
  71.     public static final Fraction THREE_QUARTERS = new Fraction(3, 4);
  72.     /**
  73.      * {@link Fraction} representation of 1/5.
  74.      */
  75.     public static final Fraction ONE_FIFTH = new Fraction(1, 5);
  76.     /**
  77.      * {@link Fraction} representation of 2/5.
  78.      */
  79.     public static final Fraction TWO_FIFTHS = new Fraction(2, 5);
  80.     /**
  81.      * {@link Fraction} representation of 3/5.
  82.      */
  83.     public static final Fraction THREE_FIFTHS = new Fraction(3, 5);
  84.     /**
  85.      * {@link Fraction} representation of 4/5.
  86.      */
  87.     public static final Fraction FOUR_FIFTHS = new Fraction(4, 5);

  88.     /**
  89.      * Add two integers, checking for overflow.
  90.      *
  91.      * @param x an addend
  92.      * @param y an addend
  93.      * @return the sum {@code x+y}
  94.      * @throws ArithmeticException if the result can not be represented as
  95.      * an int
  96.      */
  97.     private static int addAndCheck(final int x, final int y) {
  98.         final long s = (long) x + (long) y;
  99.         if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
  100.             throw new ArithmeticException("overflow: add");
  101.         }
  102.         return (int) s;
  103.     }
  104.     /**
  105.      * Creates a {@link Fraction} instance from a {@code double} value.
  106.      *
  107.      * <p>This method uses the <a href="https://web.archive.org/web/20210516065058/http%3A//archives.math.utk.edu/articles/atuyl/confrac/">
  108.      *  continued fraction algorithm</a>, computing a maximum of
  109.      *  25 convergents and bounding the denominator by 10,000.</p>
  110.      *
  111.      * @param value  the double value to convert
  112.      * @return a new fraction instance that is close to the value
  113.      * @throws ArithmeticException if {@code |value| &gt; Integer.MAX_VALUE}
  114.      *  or {@code value = NaN}
  115.      * @throws ArithmeticException if the calculated denominator is {@code zero}
  116.      * @throws ArithmeticException if the algorithm does not converge
  117.      */
  118.     public static Fraction getFraction(double value) {
  119.         final int sign = value < 0 ? -1 : 1;
  120.         value = Math.abs(value);
  121.         if (value > Integer.MAX_VALUE || Double.isNaN(value)) {
  122.             throw new ArithmeticException("The value must not be greater than Integer.MAX_VALUE or NaN");
  123.         }
  124.         final int wholeNumber = (int) value;
  125.         value -= wholeNumber;

  126.         int numer0 = 0; // the pre-previous
  127.         int denom0 = 1; // the pre-previous
  128.         int numer1 = 1; // the previous
  129.         int denom1 = 0; // the previous
  130.         int numer2; // the current, setup in calculation
  131.         int denom2; // the current, setup in calculation
  132.         int a1 = (int) value;
  133.         int a2;
  134.         double x1 = 1;
  135.         double x2;
  136.         double y1 = value - a1;
  137.         double y2;
  138.         double delta1, delta2 = Double.MAX_VALUE;
  139.         double fraction;
  140.         int i = 1;
  141.         do {
  142.             delta1 = delta2;
  143.             a2 = (int) (x1 / y1);
  144.             x2 = y1;
  145.             y2 = x1 - a2 * y1;
  146.             numer2 = a1 * numer1 + numer0;
  147.             denom2 = a1 * denom1 + denom0;
  148.             fraction = (double) numer2 / (double) denom2;
  149.             delta2 = Math.abs(value - fraction);
  150.             a1 = a2;
  151.             x1 = x2;
  152.             y1 = y2;
  153.             numer0 = numer1;
  154.             denom0 = denom1;
  155.             numer1 = numer2;
  156.             denom1 = denom2;
  157.             i++;
  158.         } while (delta1 > delta2 && denom2 <= 10000 && denom2 > 0 && i < 25);
  159.         if (i == 25) {
  160.             throw new ArithmeticException("Unable to convert double to fraction");
  161.         }
  162.         return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0);
  163.     }

  164.     /**
  165.      * Creates a {@link Fraction} instance with the 2 parts
  166.      * of a fraction Y/Z.
  167.      *
  168.      * <p>Any negative signs are resolved to be on the numerator.</p>
  169.      *
  170.      * @param numerator  the numerator, for example the three in 'three sevenths'
  171.      * @param denominator  the denominator, for example the seven in 'three sevenths'
  172.      * @return a new fraction instance
  173.      * @throws ArithmeticException if the denominator is {@code zero}
  174.      * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE}
  175.      */
  176.     public static Fraction getFraction(int numerator, int denominator) {
  177.         if (denominator == 0) {
  178.             throw new ArithmeticException("The denominator must not be zero");
  179.         }
  180.         if (denominator < 0) {
  181.             if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
  182.                 throw new ArithmeticException("overflow: can't negate");
  183.             }
  184.             numerator = -numerator;
  185.             denominator = -denominator;
  186.         }
  187.         return new Fraction(numerator, denominator);
  188.     }
  189.     /**
  190.      * Creates a {@link Fraction} instance with the 3 parts
  191.      * of a fraction X Y/Z.
  192.      *
  193.      * <p>The negative sign must be passed in on the whole number part.</p>
  194.      *
  195.      * @param whole  the whole number, for example the one in 'one and three sevenths'
  196.      * @param numerator  the numerator, for example the three in 'one and three sevenths'
  197.      * @param denominator  the denominator, for example the seven in 'one and three sevenths'
  198.      * @return a new fraction instance
  199.      * @throws ArithmeticException if the denominator is {@code zero}
  200.      * @throws ArithmeticException if the denominator is negative
  201.      * @throws ArithmeticException if the numerator is negative
  202.      * @throws ArithmeticException if the resulting numerator exceeds
  203.      *  {@code Integer.MAX_VALUE}
  204.      */
  205.     public static Fraction getFraction(final int whole, final int numerator, final int denominator) {
  206.         if (denominator == 0) {
  207.             throw new ArithmeticException("The denominator must not be zero");
  208.         }
  209.         if (denominator < 0) {
  210.             throw new ArithmeticException("The denominator must not be negative");
  211.         }
  212.         if (numerator < 0) {
  213.             throw new ArithmeticException("The numerator must not be negative");
  214.         }
  215.         final long numeratorValue;
  216.         if (whole < 0) {
  217.             numeratorValue = whole * (long) denominator - numerator;
  218.         } else {
  219.             numeratorValue = whole * (long) denominator + numerator;
  220.         }
  221.         if (numeratorValue < Integer.MIN_VALUE || numeratorValue > Integer.MAX_VALUE) {
  222.             throw new ArithmeticException("Numerator too large to represent as an Integer.");
  223.         }
  224.         return new Fraction((int) numeratorValue, denominator);
  225.     }
  226.     /**
  227.      * Creates a Fraction from a {@link String}.
  228.      *
  229.      * <p>The formats accepted are:</p>
  230.      *
  231.      * <ol>
  232.      *  <li>{@code double} String containing a dot</li>
  233.      *  <li>'X Y/Z'</li>
  234.      *  <li>'Y/Z'</li>
  235.      *  <li>'X' (a simple whole number)</li>
  236.      * </ol>
  237.      * <p>and a .</p>
  238.      *
  239.      * @param str  the string to parse, must not be {@code null}
  240.      * @return the new {@link Fraction} instance
  241.      * @throws NullPointerException if the string is {@code null}
  242.      * @throws NumberFormatException if the number format is invalid
  243.      */
  244.     public static Fraction getFraction(String str) {
  245.         Objects.requireNonNull(str, "str");
  246.         // parse double format
  247.         int pos = str.indexOf('.');
  248.         if (pos >= 0) {
  249.             return getFraction(Double.parseDouble(str));
  250.         }

  251.         // parse X Y/Z format
  252.         pos = str.indexOf(' ');
  253.         if (pos > 0) {
  254.             final int whole = Integer.parseInt(str.substring(0, pos));
  255.             str = str.substring(pos + 1);
  256.             pos = str.indexOf('/');
  257.             if (pos < 0) {
  258.                 throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z");
  259.             }
  260.             final int numer = Integer.parseInt(str.substring(0, pos));
  261.             final int denom = Integer.parseInt(str.substring(pos + 1));
  262.             return getFraction(whole, numer, denom);
  263.         }

  264.         // parse Y/Z format
  265.         pos = str.indexOf('/');
  266.         if (pos < 0) {
  267.             // simple whole number
  268.             return getFraction(Integer.parseInt(str), 1);
  269.         }
  270.         final int numer = Integer.parseInt(str.substring(0, pos));
  271.         final int denom = Integer.parseInt(str.substring(pos + 1));
  272.         return getFraction(numer, denom);
  273.     }

  274.     /**
  275.      * Creates a reduced {@link Fraction} instance with the 2 parts
  276.      * of a fraction Y/Z.
  277.      *
  278.      * <p>For example, if the input parameters represent 2/4, then the created
  279.      * fraction will be 1/2.</p>
  280.      *
  281.      * <p>Any negative signs are resolved to be on the numerator.</p>
  282.      *
  283.      * @param numerator  the numerator, for example the three in 'three sevenths'
  284.      * @param denominator  the denominator, for example the seven in 'three sevenths'
  285.      * @return a new fraction instance, with the numerator and denominator reduced
  286.      * @throws ArithmeticException if the denominator is {@code zero}
  287.      */
  288.     public static Fraction getReducedFraction(int numerator, int denominator) {
  289.         if (denominator == 0) {
  290.             throw new ArithmeticException("The denominator must not be zero");
  291.         }
  292.         if (numerator == 0) {
  293.             return ZERO; // normalize zero.
  294.         }
  295.         // allow 2^k/-2^31 as a valid fraction (where k>0)
  296.         if (denominator == Integer.MIN_VALUE && (numerator & 1) == 0) {
  297.             numerator /= 2;
  298.             denominator /= 2;
  299.         }
  300.         if (denominator < 0) {
  301.             if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
  302.                 throw new ArithmeticException("overflow: can't negate");
  303.             }
  304.             numerator = -numerator;
  305.             denominator = -denominator;
  306.         }
  307.         // simplify fraction.
  308.         final int gcd = greatestCommonDivisor(numerator, denominator);
  309.         numerator /= gcd;
  310.         denominator /= gcd;
  311.         return new Fraction(numerator, denominator);
  312.     }

  313.     /**
  314.      * Gets the greatest common divisor of the absolute value of
  315.      * two numbers, using the "binary gcd" method which avoids
  316.      * division and modulo operations.  See Knuth 4.5.2 algorithm B.
  317.      * This algorithm is due to Josef Stein (1961).
  318.      *
  319.      * @param u  a non-zero number
  320.      * @param v  a non-zero number
  321.      * @return the greatest common divisor, never zero
  322.      */
  323.     private static int greatestCommonDivisor(int u, int v) {
  324.         // From Commons Math:
  325.         if (u == 0 || v == 0) {
  326.             if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) {
  327.                 throw new ArithmeticException("overflow: gcd is 2^31");
  328.             }
  329.             return Math.abs(u) + Math.abs(v);
  330.         }
  331.         // if either operand is abs 1, return 1:
  332.         if (Math.abs(u) == 1 || Math.abs(v) == 1) {
  333.             return 1;
  334.         }
  335.         // keep u and v negative, as negative integers range down to
  336.         // -2^31, while positive numbers can only be as large as 2^31-1
  337.         // (i.e. we can't necessarily negate a negative number without
  338.         // overflow)
  339.         if (u > 0) {
  340.             u = -u;
  341.         } // make u negative
  342.         if (v > 0) {
  343.             v = -v;
  344.         } // make v negative
  345.         // B1. [Find power of 2]
  346.         int k = 0;
  347.         while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are both even...
  348.             u /= 2;
  349.             v /= 2;
  350.             k++; // cast out twos.
  351.         }
  352.         if (k == 31) {
  353.             throw new ArithmeticException("overflow: gcd is 2^31");
  354.         }
  355.         // B2. Initialize: u and v have been divided by 2^k and at least
  356.         // one is odd.
  357.         int t = (u & 1) == 1 ? v : -(u / 2)/* B3 */;
  358.         // t negative: u was odd, v may be even (t replaces v)
  359.         // t positive: u was even, v is odd (t replaces u)
  360.         do {
  361.             /* assert u<0 && v<0; */
  362.             // B4/B3: cast out twos from t.
  363.             while ((t & 1) == 0) { // while t is even.
  364.                 t /= 2; // cast out twos
  365.             }
  366.             // B5 [reset max(u,v)]
  367.             if (t > 0) {
  368.                 u = -t;
  369.             } else {
  370.                 v = t;
  371.             }
  372.             // B6/B3. at this point both u and v should be odd.
  373.             t = (v - u) / 2;
  374.             // |u| larger: t positive (replace u)
  375.             // |v| larger: t negative (replace v)
  376.         } while (t != 0);
  377.         return -u * (1 << k); // gcd is u*2^k
  378.     }

  379.     /**
  380.      * Multiply two integers, checking for overflow.
  381.      *
  382.      * @param x a factor
  383.      * @param y a factor
  384.      * @return the product {@code x*y}
  385.      * @throws ArithmeticException if the result can not be represented as
  386.      *                             an int
  387.      */
  388.     private static int mulAndCheck(final int x, final int y) {
  389.         final long m = (long) x * (long) y;
  390.         if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
  391.             throw new ArithmeticException("overflow: mul");
  392.         }
  393.         return (int) m;
  394.     }

  395.     /**
  396.      *  Multiply two non-negative integers, checking for overflow.
  397.      *
  398.      * @param x a non-negative factor
  399.      * @param y a non-negative factor
  400.      * @return the product {@code x*y}
  401.      * @throws ArithmeticException if the result can not be represented as
  402.      * an int
  403.      */
  404.     private static int mulPosAndCheck(final int x, final int y) {
  405.         /* assert x>=0 && y>=0; */
  406.         final long m = (long) x * (long) y;
  407.         if (m > Integer.MAX_VALUE) {
  408.             throw new ArithmeticException("overflow: mulPos");
  409.         }
  410.         return (int) m;
  411.     }

  412.     /**
  413.      * Subtract two integers, checking for overflow.
  414.      *
  415.      * @param x the minuend
  416.      * @param y the subtrahend
  417.      * @return the difference {@code x-y}
  418.      * @throws ArithmeticException if the result can not be represented as
  419.      * an int
  420.      */
  421.     private static int subAndCheck(final int x, final int y) {
  422.         final long s = (long) x - (long) y;
  423.         if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
  424.             throw new ArithmeticException("overflow: add");
  425.         }
  426.         return (int) s;
  427.     }

  428.     /**
  429.      * The numerator number part of the fraction (the three in three sevenths).
  430.      */
  431.     private final int numerator;

  432.     /**
  433.      * The denominator number part of the fraction (the seven in three sevenths).
  434.      */
  435.     private final int denominator;

  436.     /**
  437.      * Cached output hashCode (class is immutable).
  438.      */
  439.     private transient int hashCode;

  440.     /**
  441.      * Cached output toString (class is immutable).
  442.      */
  443.     private transient String toString;

  444.     /**
  445.      * Cached output toProperString (class is immutable).
  446.      */
  447.     private transient String toProperString;

  448.     /**
  449.      * Constructs a {@link Fraction} instance with the 2 parts
  450.      * of a fraction Y/Z.
  451.      *
  452.      * @param numerator  the numerator, for example the three in 'three sevenths'
  453.      * @param denominator  the denominator, for example the seven in 'three sevenths'
  454.      */
  455.     private Fraction(final int numerator, final int denominator) {
  456.         this.numerator = numerator;
  457.         this.denominator = denominator;
  458.     }

  459.     /**
  460.      * Gets a fraction that is the positive equivalent of this one.
  461.      * <p>More precisely: {@code (fraction &gt;= 0 ? this : -fraction)}</p>
  462.      *
  463.      * <p>The returned fraction is not reduced.</p>
  464.      *
  465.      * @return {@code this} if it is positive, or a new positive fraction
  466.      *  instance with the opposite signed numerator
  467.      */
  468.     public Fraction abs() {
  469.         if (numerator >= 0) {
  470.             return this;
  471.         }
  472.         return negate();
  473.     }

  474.     /**
  475.      * Adds the value of this fraction to another, returning the result in reduced form.
  476.      * The algorithm follows Knuth, 4.5.1.
  477.      *
  478.      * @param fraction  the fraction to add, must not be {@code null}
  479.      * @return a {@link Fraction} instance with the resulting values
  480.      * @throws NullPointerException if the fraction is {@code null}
  481.      * @throws ArithmeticException if the resulting numerator or denominator exceeds
  482.      *  {@code Integer.MAX_VALUE}
  483.      */
  484.     public Fraction add(final Fraction fraction) {
  485.         return addSub(fraction, true /* add */);
  486.     }

  487.     /**
  488.      * Implement add and subtract using algorithm described in Knuth 4.5.1.
  489.      *
  490.      * @param fraction the fraction to subtract, must not be {@code null}
  491.      * @param isAdd true to add, false to subtract
  492.      * @return a {@link Fraction} instance with the resulting values
  493.      * @throws IllegalArgumentException if the fraction is {@code null}
  494.      * @throws ArithmeticException if the resulting numerator or denominator
  495.      *   cannot be represented in an {@code int}.
  496.      */
  497.     private Fraction addSub(final Fraction fraction, final boolean isAdd) {
  498.         Objects.requireNonNull(fraction, "fraction");
  499.         // zero is identity for addition.
  500.         if (numerator == 0) {
  501.             return isAdd ? fraction : fraction.negate();
  502.         }
  503.         if (fraction.numerator == 0) {
  504.             return this;
  505.         }
  506.         // if denominators are randomly distributed, d1 will be 1 about 61%
  507.         // of the time.
  508.         final int d1 = greatestCommonDivisor(denominator, fraction.denominator);
  509.         if (d1 == 1) {
  510.             // result is ( (u*v' +/- u'v) / u'v')
  511.             final int uvp = mulAndCheck(numerator, fraction.denominator);
  512.             final int upv = mulAndCheck(fraction.numerator, denominator);
  513.             return new Fraction(isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), mulPosAndCheck(denominator,
  514.                     fraction.denominator));
  515.         }
  516.         // the quantity 't' requires 65 bits of precision; see knuth 4.5.1
  517.         // exercise 7. we're going to use a BigInteger.
  518.         // t = u(v'/d1) +/- v(u'/d1)
  519.         final BigInteger uvp = BigInteger.valueOf(numerator).multiply(BigInteger.valueOf(fraction.denominator / d1));
  520.         final BigInteger upv = BigInteger.valueOf(fraction.numerator).multiply(BigInteger.valueOf(denominator / d1));
  521.         final BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
  522.         // but d2 doesn't need extra precision because
  523.         // d2 = gcd(t,d1) = gcd(t mod d1, d1)
  524.         final int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
  525.         final int d2 = tmodd1 == 0 ? d1 : greatestCommonDivisor(tmodd1, d1);

  526.         // result is (t/d2) / (u'/d1)(v'/d2)
  527.         final BigInteger w = t.divide(BigInteger.valueOf(d2));
  528.         if (w.bitLength() > 31) {
  529.             throw new ArithmeticException("overflow: numerator too large after multiply");
  530.         }
  531.         return new Fraction(w.intValue(), mulPosAndCheck(denominator / d1, fraction.denominator / d2));
  532.     }

  533.     /**
  534.      * Compares this object to another based on size.
  535.      *
  536.      * <p>Note: this class has a natural ordering that is inconsistent
  537.      * with equals, because, for example, equals treats 1/2 and 2/4 as
  538.      * different, whereas compareTo treats them as equal.
  539.      *
  540.      * @param other  the object to compare to
  541.      * @return -1 if this is less, 0 if equal, +1 if greater
  542.      * @throws ClassCastException if the object is not a {@link Fraction}
  543.      * @throws NullPointerException if the object is {@code null}
  544.      */
  545.     @Override
  546.     public int compareTo(final Fraction other) {
  547.         if (this == other) {
  548.             return 0;
  549.         }
  550.         if (numerator == other.numerator && denominator == other.denominator) {
  551.             return 0;
  552.         }

  553.         // otherwise see which is less
  554.         final long first = (long) numerator * (long) other.denominator;
  555.         final long second = (long) other.numerator * (long) denominator;
  556.         return Long.compare(first, second);
  557.     }

  558.     /**
  559.      * Divide the value of this fraction by another.
  560.      *
  561.      * @param fraction  the fraction to divide by, must not be {@code null}
  562.      * @return a {@link Fraction} instance with the resulting values
  563.      * @throws NullPointerException if the fraction is {@code null}
  564.      * @throws ArithmeticException if the fraction to divide by is zero
  565.      * @throws ArithmeticException if the resulting numerator or denominator exceeds
  566.      *  {@code Integer.MAX_VALUE}
  567.      */
  568.     public Fraction divideBy(final Fraction fraction) {
  569.         Objects.requireNonNull(fraction, "fraction");
  570.         if (fraction.numerator == 0) {
  571.             throw new ArithmeticException("The fraction to divide by must not be zero");
  572.         }
  573.         return multiplyBy(fraction.invert());
  574.     }

  575.     /**
  576.      * Gets the fraction as a {@code double}. This calculates the fraction
  577.      * as the numerator divided by denominator.
  578.      *
  579.      * @return the fraction as a {@code double}
  580.      */
  581.     @Override
  582.     public double doubleValue() {
  583.         return (double) numerator / (double) denominator;
  584.     }

  585.     /**
  586.      * Compares this fraction to another object to test if they are equal.
  587.      *
  588.      * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p>
  589.      *
  590.      * @param obj the reference object with which to compare
  591.      * @return {@code true} if this object is equal
  592.      */
  593.     @Override
  594.     public boolean equals(final Object obj) {
  595.         if (obj == this) {
  596.             return true;
  597.         }
  598.         if (!(obj instanceof Fraction)) {
  599.             return false;
  600.         }
  601.         final Fraction other = (Fraction) obj;
  602.         return getNumerator() == other.getNumerator() && getDenominator() == other.getDenominator();
  603.     }

  604.     /**
  605.      * Gets the fraction as a {@code float}. This calculates the fraction
  606.      * as the numerator divided by denominator.
  607.      *
  608.      * @return the fraction as a {@code float}
  609.      */
  610.     @Override
  611.     public float floatValue() {
  612.         return (float) numerator / (float) denominator;
  613.     }

  614.     /**
  615.      * Gets the denominator part of the fraction.
  616.      *
  617.      * @return the denominator fraction part
  618.      */
  619.     public int getDenominator() {
  620.         return denominator;
  621.     }

  622.     /**
  623.      * Gets the numerator part of the fraction.
  624.      *
  625.      * <p>This method may return a value greater than the denominator, an
  626.      * improper fraction, such as the seven in 7/4.</p>
  627.      *
  628.      * @return the numerator fraction part
  629.      */
  630.     public int getNumerator() {
  631.         return numerator;
  632.     }

  633.     /**
  634.      * Gets the proper numerator, always positive.
  635.      *
  636.      * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
  637.      * This method returns the 3 from the proper fraction.</p>
  638.      *
  639.      * <p>If the fraction is negative such as -7/4, it can be resolved into
  640.      * -1 3/4, so this method returns the positive proper numerator, 3.</p>
  641.      *
  642.      * @return the numerator fraction part of a proper fraction, always positive
  643.      */
  644.     public int getProperNumerator() {
  645.         return Math.abs(numerator % denominator);
  646.     }

  647.     /**
  648.      * Gets the proper whole part of the fraction.
  649.      *
  650.      * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
  651.      * This method returns the 1 from the proper fraction.</p>
  652.      *
  653.      * <p>If the fraction is negative such as -7/4, it can be resolved into
  654.      * -1 3/4, so this method returns the positive whole part -1.</p>
  655.      *
  656.      * @return the whole fraction part of a proper fraction, that includes the sign
  657.      */
  658.     public int getProperWhole() {
  659.         return numerator / denominator;
  660.     }

  661.     /**
  662.      * Gets a hashCode for the fraction.
  663.      *
  664.      * @return a hash code value for this object
  665.      */
  666.     @Override
  667.     public int hashCode() {
  668.         if (hashCode == 0) {
  669.             // hash code update should be atomic.
  670.             hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator();
  671.         }
  672.         return hashCode;
  673.     }

  674.     /**
  675.      * Gets the fraction as an {@code int}. This returns the whole number
  676.      * part of the fraction.
  677.      *
  678.      * @return the whole number fraction part
  679.      */
  680.     @Override
  681.     public int intValue() {
  682.         return numerator / denominator;
  683.     }

  684.     /**
  685.      * Gets a fraction that is the inverse (1/fraction) of this one.
  686.      *
  687.      * <p>The returned fraction is not reduced.</p>
  688.      *
  689.      * @return a new fraction instance with the numerator and denominator
  690.      *         inverted.
  691.      * @throws ArithmeticException if the fraction represents zero.
  692.      */
  693.     public Fraction invert() {
  694.         if (numerator == 0) {
  695.             throw new ArithmeticException("Unable to invert zero.");
  696.         }
  697.         if (numerator == Integer.MIN_VALUE) {
  698.             throw new ArithmeticException("overflow: can't negate numerator");
  699.         }
  700.         if (numerator < 0) {
  701.             return new Fraction(-denominator, -numerator);
  702.         }
  703.         return new Fraction(denominator, numerator);
  704.     }

  705.     /**
  706.      * Gets the fraction as a {@code long}. This returns the whole number
  707.      * part of the fraction.
  708.      *
  709.      * @return the whole number fraction part
  710.      */
  711.     @Override
  712.     public long longValue() {
  713.         return (long) numerator / denominator;
  714.     }

  715.     /**
  716.      * Multiplies the value of this fraction by another, returning the
  717.      * result in reduced form.
  718.      *
  719.      * @param fraction  the fraction to multiply by, must not be {@code null}
  720.      * @return a {@link Fraction} instance with the resulting values
  721.      * @throws NullPointerException if the fraction is {@code null}
  722.      * @throws ArithmeticException if the resulting numerator or denominator exceeds
  723.      *  {@code Integer.MAX_VALUE}
  724.      */
  725.     public Fraction multiplyBy(final Fraction fraction) {
  726.         Objects.requireNonNull(fraction, "fraction");
  727.         if (numerator == 0 || fraction.numerator == 0) {
  728.             return ZERO;
  729.         }
  730.         // knuth 4.5.1
  731.         // make sure we don't overflow unless the result *must* overflow.
  732.         final int d1 = greatestCommonDivisor(numerator, fraction.denominator);
  733.         final int d2 = greatestCommonDivisor(fraction.numerator, denominator);
  734.         return getReducedFraction(mulAndCheck(numerator / d1, fraction.numerator / d2), mulPosAndCheck(denominator / d2, fraction.denominator / d1));
  735.     }

  736.     /**
  737.      * Gets a fraction that is the negative (-fraction) of this one.
  738.      *
  739.      * <p>The returned fraction is not reduced.</p>
  740.      *
  741.      * @return a new fraction instance with the opposite signed numerator
  742.      */
  743.     public Fraction negate() {
  744.         // the positive range is one smaller than the negative range of an int.
  745.         if (numerator == Integer.MIN_VALUE) {
  746.             throw new ArithmeticException("overflow: too large to negate");
  747.         }
  748.         return new Fraction(-numerator, denominator);
  749.     }

  750.     /**
  751.      * Gets a fraction that is raised to the passed in power.
  752.      *
  753.      * <p>The returned fraction is in reduced form.</p>
  754.      *
  755.      * @param power  the power to raise the fraction to
  756.      * @return {@code this} if the power is one, {@link #ONE} if the power
  757.      * is zero (even if the fraction equals ZERO) or a new fraction instance
  758.      * raised to the appropriate power
  759.      * @throws ArithmeticException if the resulting numerator or denominator exceeds
  760.      *  {@code Integer.MAX_VALUE}
  761.      */
  762.     public Fraction pow(final int power) {
  763.         if (power == 1) {
  764.             return this;
  765.         }
  766.         if (power == 0) {
  767.             return ONE;
  768.         }
  769.         if (power < 0) {
  770.             if (power == Integer.MIN_VALUE) { // MIN_VALUE can't be negated.
  771.                 return this.invert().pow(2).pow(-(power / 2));
  772.             }
  773.             return this.invert().pow(-power);
  774.         }
  775.         final Fraction f = this.multiplyBy(this);
  776.         if (power % 2 == 0) { // if even...
  777.             return f.pow(power / 2);
  778.         }
  779.         return f.pow(power / 2).multiplyBy(this);
  780.     }

  781.     /**
  782.      * Reduce the fraction to the smallest values for the numerator and
  783.      * denominator, returning the result.
  784.      *
  785.      * <p>For example, if this fraction represents 2/4, then the result
  786.      * will be 1/2.</p>
  787.      *
  788.      * @return a new reduced fraction instance, or this if no simplification possible
  789.      */
  790.     public Fraction reduce() {
  791.         if (numerator == 0) {
  792.             return equals(ZERO) ? this : ZERO;
  793.         }
  794.         final int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
  795.         if (gcd == 1) {
  796.             return this;
  797.         }
  798.         return getFraction(numerator / gcd, denominator / gcd);
  799.     }

  800.     /**
  801.      * Subtracts the value of another fraction from the value of this one,
  802.      * returning the result in reduced form.
  803.      *
  804.      * @param fraction  the fraction to subtract, must not be {@code null}
  805.      * @return a {@link Fraction} instance with the resulting values
  806.      * @throws NullPointerException if the fraction is {@code null}
  807.      * @throws ArithmeticException if the resulting numerator or denominator
  808.      *   cannot be represented in an {@code int}.
  809.      */
  810.     public Fraction subtract(final Fraction fraction) {
  811.         return addSub(fraction, false /* subtract */);
  812.     }

  813.     /**
  814.      * Gets the fraction as a proper {@link String} in the format X Y/Z.
  815.      *
  816.      * <p>The format used in '<em>wholeNumber</em> <em>numerator</em>/<em>denominator</em>'.
  817.      * If the whole number is zero it will be omitted. If the numerator is zero,
  818.      * only the whole number is returned.</p>
  819.      *
  820.      * @return a {@link String} form of the fraction
  821.      */
  822.     public String toProperString() {
  823.         if (toProperString == null) {
  824.             if (numerator == 0) {
  825.                 toProperString = "0";
  826.             } else if (numerator == denominator) {
  827.                 toProperString = "1";
  828.             } else if (numerator == -1 * denominator) {
  829.                 toProperString = "-1";
  830.             } else if ((numerator > 0 ? -numerator : numerator) < -denominator) {
  831.                 // note that we do the magnitude comparison test above with
  832.                 // NEGATIVE (not positive) numbers, since negative numbers
  833.                 // have a larger range. otherwise numerator == Integer.MIN_VALUE
  834.                 // is handled incorrectly.
  835.                 final int properNumerator = getProperNumerator();
  836.                 if (properNumerator == 0) {
  837.                     toProperString = Integer.toString(getProperWhole());
  838.                 } else {
  839.                     toProperString = getProperWhole() + " " + properNumerator + "/" + getDenominator();
  840.                 }
  841.             } else {
  842.                 toProperString = getNumerator() + "/" + getDenominator();
  843.             }
  844.         }
  845.         return toProperString;
  846.     }

  847.     /**
  848.      * Gets the fraction as a {@link String}.
  849.      *
  850.      * <p>The format used is '<em>numerator</em>/<em>denominator</em>' always.
  851.      *
  852.      * @return a {@link String} form of the fraction
  853.      */
  854.     @Override
  855.     public String toString() {
  856.         if (toString == null) {
  857.             toString = getNumerator() + "/" + getDenominator();
  858.         }
  859.         return toString;
  860.     }
  861. }