001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.lang.math; 018 019 import java.math.BigInteger; 020 021 /** 022 * <p><code>Fraction</code> is a <code>Number</code> implementation that 023 * stores fractions accurately.</p> 024 * 025 * <p>This class is immutable, and interoperable with most methods that accept 026 * a <code>Number</code>.</p> 027 * 028 * @author Apache Software Foundation 029 * @author Travis Reeder 030 * @author Tim O'Brien 031 * @author Pete Gieser 032 * @author C. Scott Ananian 033 * @since 2.0 034 * @version $Id: Fraction.java 905636 2010-02-02 14:03:32Z niallp $ 035 */ 036 public final class Fraction extends Number implements Comparable { 037 038 /** 039 * Required for serialization support. Lang version 2.0. 040 * 041 * @see java.io.Serializable 042 */ 043 private static final long serialVersionUID = 65382027393090L; 044 045 /** 046 * <code>Fraction</code> representation of 0. 047 */ 048 public static final Fraction ZERO = new Fraction(0, 1); 049 /** 050 * <code>Fraction</code> representation of 1. 051 */ 052 public static final Fraction ONE = new Fraction(1, 1); 053 /** 054 * <code>Fraction</code> representation of 1/2. 055 */ 056 public static final Fraction ONE_HALF = new Fraction(1, 2); 057 /** 058 * <code>Fraction</code> representation of 1/3. 059 */ 060 public static final Fraction ONE_THIRD = new Fraction(1, 3); 061 /** 062 * <code>Fraction</code> representation of 2/3. 063 */ 064 public static final Fraction TWO_THIRDS = new Fraction(2, 3); 065 /** 066 * <code>Fraction</code> representation of 1/4. 067 */ 068 public static final Fraction ONE_QUARTER = new Fraction(1, 4); 069 /** 070 * <code>Fraction</code> representation of 2/4. 071 */ 072 public static final Fraction TWO_QUARTERS = new Fraction(2, 4); 073 /** 074 * <code>Fraction</code> representation of 3/4. 075 */ 076 public static final Fraction THREE_QUARTERS = new Fraction(3, 4); 077 /** 078 * <code>Fraction</code> representation of 1/5. 079 */ 080 public static final Fraction ONE_FIFTH = new Fraction(1, 5); 081 /** 082 * <code>Fraction</code> representation of 2/5. 083 */ 084 public static final Fraction TWO_FIFTHS = new Fraction(2, 5); 085 /** 086 * <code>Fraction</code> representation of 3/5. 087 */ 088 public static final Fraction THREE_FIFTHS = new Fraction(3, 5); 089 /** 090 * <code>Fraction</code> representation of 4/5. 091 */ 092 public static final Fraction FOUR_FIFTHS = new Fraction(4, 5); 093 094 095 /** 096 * The numerator number part of the fraction (the three in three sevenths). 097 */ 098 private final int numerator; 099 /** 100 * The denominator number part of the fraction (the seven in three sevenths). 101 */ 102 private final int denominator; 103 104 /** 105 * Cached output hashCode (class is immutable). 106 */ 107 private transient int hashCode = 0; 108 /** 109 * Cached output toString (class is immutable). 110 */ 111 private transient String toString = null; 112 /** 113 * Cached output toProperString (class is immutable). 114 */ 115 private transient String toProperString = null; 116 117 /** 118 * <p>Constructs a <code>Fraction</code> instance with the 2 parts 119 * of a fraction Y/Z.</p> 120 * 121 * @param numerator the numerator, for example the three in 'three sevenths' 122 * @param denominator the denominator, for example the seven in 'three sevenths' 123 */ 124 private Fraction(int numerator, int denominator) { 125 super(); 126 this.numerator = numerator; 127 this.denominator = denominator; 128 } 129 130 /** 131 * <p>Creates a <code>Fraction</code> instance with the 2 parts 132 * of a fraction Y/Z.</p> 133 * 134 * <p>Any negative signs are resolved to be on the numerator.</p> 135 * 136 * @param numerator the numerator, for example the three in 'three sevenths' 137 * @param denominator the denominator, for example the seven in 'three sevenths' 138 * @return a new fraction instance 139 * @throws ArithmeticException if the denomiator is <code>zero</code> 140 */ 141 public static Fraction getFraction(int numerator, int denominator) { 142 if (denominator == 0) { 143 throw new ArithmeticException("The denominator must not be zero"); 144 } 145 if (denominator < 0) { 146 if (numerator==Integer.MIN_VALUE || 147 denominator==Integer.MIN_VALUE) { 148 throw new ArithmeticException("overflow: can't negate"); 149 } 150 numerator = -numerator; 151 denominator = -denominator; 152 } 153 return new Fraction(numerator, denominator); 154 } 155 156 /** 157 * <p>Creates a <code>Fraction</code> instance with the 3 parts 158 * of a fraction X Y/Z.</p> 159 * 160 * <p>The negative sign must be passed in on the whole number part.</p> 161 * 162 * @param whole the whole number, for example the one in 'one and three sevenths' 163 * @param numerator the numerator, for example the three in 'one and three sevenths' 164 * @param denominator the denominator, for example the seven in 'one and three sevenths' 165 * @return a new fraction instance 166 * @throws ArithmeticException if the denomiator is <code>zero</code> 167 * @throws ArithmeticException if the denominator is negative 168 * @throws ArithmeticException if the numerator is negative 169 * @throws ArithmeticException if the resulting numerator exceeds 170 * <code>Integer.MAX_VALUE</code> 171 */ 172 public static Fraction getFraction(int whole, int numerator, int denominator) { 173 if (denominator == 0) { 174 throw new ArithmeticException("The denominator must not be zero"); 175 } 176 if (denominator < 0) { 177 throw new ArithmeticException("The denominator must not be negative"); 178 } 179 if (numerator < 0) { 180 throw new ArithmeticException("The numerator must not be negative"); 181 } 182 long numeratorValue; 183 if (whole < 0) { 184 numeratorValue = whole * (long)denominator - numerator; 185 } else { 186 numeratorValue = whole * (long)denominator + numerator; 187 } 188 if (numeratorValue < Integer.MIN_VALUE || 189 numeratorValue > Integer.MAX_VALUE) { 190 throw new ArithmeticException("Numerator too large to represent as an Integer."); 191 } 192 return new Fraction((int) numeratorValue, denominator); 193 } 194 195 /** 196 * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts 197 * of a fraction Y/Z.</p> 198 * 199 * <p>For example, if the input parameters represent 2/4, then the created 200 * fraction will be 1/2.</p> 201 * 202 * <p>Any negative signs are resolved to be on the numerator.</p> 203 * 204 * @param numerator the numerator, for example the three in 'three sevenths' 205 * @param denominator the denominator, for example the seven in 'three sevenths' 206 * @return a new fraction instance, with the numerator and denominator reduced 207 * @throws ArithmeticException if the denominator is <code>zero</code> 208 */ 209 public static Fraction getReducedFraction(int numerator, int denominator) { 210 if (denominator == 0) { 211 throw new ArithmeticException("The denominator must not be zero"); 212 } 213 if (numerator==0) { 214 return ZERO; // normalize zero. 215 } 216 // allow 2^k/-2^31 as a valid fraction (where k>0) 217 if (denominator==Integer.MIN_VALUE && (numerator&1)==0) { 218 numerator/=2; denominator/=2; 219 } 220 if (denominator < 0) { 221 if (numerator==Integer.MIN_VALUE || 222 denominator==Integer.MIN_VALUE) { 223 throw new ArithmeticException("overflow: can't negate"); 224 } 225 numerator = -numerator; 226 denominator = -denominator; 227 } 228 // simplify fraction. 229 int gcd = greatestCommonDivisor(numerator, denominator); 230 numerator /= gcd; 231 denominator /= gcd; 232 return new Fraction(numerator, denominator); 233 } 234 235 /** 236 * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p> 237 * 238 * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/"> 239 * continued fraction algorithm</a>, computing a maximum of 240 * 25 convergents and bounding the denominator by 10,000.</p> 241 * 242 * @param value the double value to convert 243 * @return a new fraction instance that is close to the value 244 * @throws ArithmeticException if <code>|value| > Integer.MAX_VALUE</code> 245 * or <code>value = NaN</code> 246 * @throws ArithmeticException if the calculated denominator is <code>zero</code> 247 * @throws ArithmeticException if the the algorithm does not converge 248 */ 249 public static Fraction getFraction(double value) { 250 int sign = (value < 0 ? -1 : 1); 251 value = Math.abs(value); 252 if (value > Integer.MAX_VALUE || Double.isNaN(value)) { 253 throw new ArithmeticException 254 ("The value must not be greater than Integer.MAX_VALUE or NaN"); 255 } 256 int wholeNumber = (int) value; 257 value -= wholeNumber; 258 259 int numer0 = 0; // the pre-previous 260 int denom0 = 1; // the pre-previous 261 int numer1 = 1; // the previous 262 int denom1 = 0; // the previous 263 int numer2 = 0; // the current, setup in calculation 264 int denom2 = 0; // the current, setup in calculation 265 int a1 = (int) value; 266 int a2 = 0; 267 double x1 = 1; 268 double x2 = 0; 269 double y1 = value - a1; 270 double y2 = 0; 271 double delta1, delta2 = Double.MAX_VALUE; 272 double fraction; 273 int i = 1; 274 // System.out.println("---"); 275 do { 276 delta1 = delta2; 277 a2 = (int) (x1 / y1); 278 x2 = y1; 279 y2 = x1 - a2 * y1; 280 numer2 = a1 * numer1 + numer0; 281 denom2 = a1 * denom1 + denom0; 282 fraction = (double) numer2 / (double) denom2; 283 delta2 = Math.abs(value - fraction); 284 // System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1); 285 a1 = a2; 286 x1 = x2; 287 y1 = y2; 288 numer0 = numer1; 289 denom0 = denom1; 290 numer1 = numer2; 291 denom1 = denom2; 292 i++; 293 // System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2); 294 } while ((delta1 > delta2) && (denom2 <= 10000) && (denom2 > 0) && (i < 25)); 295 if (i == 25) { 296 throw new ArithmeticException("Unable to convert double to fraction"); 297 } 298 return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0); 299 } 300 301 /** 302 * <p>Creates a Fraction from a <code>String</code>.</p> 303 * 304 * <p>The formats accepted are:</p> 305 * 306 * <ol> 307 * <li><code>double</code> String containing a dot</li> 308 * <li>'X Y/Z'</li> 309 * <li>'Y/Z'</li> 310 * <li>'X' (a simple whole number)</li> 311 * </ol> 312 * and a .</p> 313 * 314 * @param str the string to parse, must not be <code>null</code> 315 * @return the new <code>Fraction</code> instance 316 * @throws IllegalArgumentException if the string is <code>null</code> 317 * @throws NumberFormatException if the number format is invalid 318 */ 319 public static Fraction getFraction(String str) { 320 if (str == null) { 321 throw new IllegalArgumentException("The string must not be null"); 322 } 323 // parse double format 324 int pos = str.indexOf('.'); 325 if (pos >= 0) { 326 return getFraction(Double.parseDouble(str)); 327 } 328 329 // parse X Y/Z format 330 pos = str.indexOf(' '); 331 if (pos > 0) { 332 int whole = Integer.parseInt(str.substring(0, pos)); 333 str = str.substring(pos + 1); 334 pos = str.indexOf('/'); 335 if (pos < 0) { 336 throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z"); 337 } else { 338 int numer = Integer.parseInt(str.substring(0, pos)); 339 int denom = Integer.parseInt(str.substring(pos + 1)); 340 return getFraction(whole, numer, denom); 341 } 342 } 343 344 // parse Y/Z format 345 pos = str.indexOf('/'); 346 if (pos < 0) { 347 // simple whole number 348 return getFraction(Integer.parseInt(str), 1); 349 } else { 350 int numer = Integer.parseInt(str.substring(0, pos)); 351 int denom = Integer.parseInt(str.substring(pos + 1)); 352 return getFraction(numer, denom); 353 } 354 } 355 356 // Accessors 357 //------------------------------------------------------------------- 358 359 /** 360 * <p>Gets the numerator part of the fraction.</p> 361 * 362 * <p>This method may return a value greater than the denominator, an 363 * improper fraction, such as the seven in 7/4.</p> 364 * 365 * @return the numerator fraction part 366 */ 367 public int getNumerator() { 368 return numerator; 369 } 370 371 /** 372 * <p>Gets the denominator part of the fraction.</p> 373 * 374 * @return the denominator fraction part 375 */ 376 public int getDenominator() { 377 return denominator; 378 } 379 380 /** 381 * <p>Gets the proper numerator, always positive.</p> 382 * 383 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 384 * This method returns the 3 from the proper fraction.</p> 385 * 386 * <p>If the fraction is negative such as -7/4, it can be resolved into 387 * -1 3/4, so this method returns the positive proper numerator, 3.</p> 388 * 389 * @return the numerator fraction part of a proper fraction, always positive 390 */ 391 public int getProperNumerator() { 392 return Math.abs(numerator % denominator); 393 } 394 395 /** 396 * <p>Gets the proper whole part of the fraction.</p> 397 * 398 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 399 * This method returns the 1 from the proper fraction.</p> 400 * 401 * <p>If the fraction is negative such as -7/4, it can be resolved into 402 * -1 3/4, so this method returns the positive whole part -1.</p> 403 * 404 * @return the whole fraction part of a proper fraction, that includes the sign 405 */ 406 public int getProperWhole() { 407 return numerator / denominator; 408 } 409 410 // Number methods 411 //------------------------------------------------------------------- 412 413 /** 414 * <p>Gets the fraction as an <code>int</code>. This returns the whole number 415 * part of the fraction.</p> 416 * 417 * @return the whole number fraction part 418 */ 419 public int intValue() { 420 return numerator / denominator; 421 } 422 423 /** 424 * <p>Gets the fraction as a <code>long</code>. This returns the whole number 425 * part of the fraction.</p> 426 * 427 * @return the whole number fraction part 428 */ 429 public long longValue() { 430 return (long) numerator / denominator; 431 } 432 433 /** 434 * <p>Gets the fraction as a <code>float</code>. This calculates the fraction 435 * as the numerator divided by denominator.</p> 436 * 437 * @return the fraction as a <code>float</code> 438 */ 439 public float floatValue() { 440 return ((float) numerator) / ((float) denominator); 441 } 442 443 /** 444 * <p>Gets the fraction as a <code>double</code>. This calculates the fraction 445 * as the numerator divided by denominator.</p> 446 * 447 * @return the fraction as a <code>double</code> 448 */ 449 public double doubleValue() { 450 return ((double) numerator) / ((double) denominator); 451 } 452 453 // Calculations 454 //------------------------------------------------------------------- 455 456 /** 457 * <p>Reduce the fraction to the smallest values for the numerator and 458 * denominator, returning the result.</p> 459 * 460 * <p>For example, if this fraction represents 2/4, then the result 461 * will be 1/2.</p> 462 * 463 * @return a new reduced fraction instance, or this if no simplification possible 464 */ 465 public Fraction reduce() { 466 if (numerator == 0) { 467 return equals(ZERO) ? this : ZERO; 468 } 469 int gcd = greatestCommonDivisor(Math.abs(numerator), denominator); 470 if (gcd == 1) { 471 return this; 472 } 473 return Fraction.getFraction(numerator / gcd, denominator / gcd); 474 } 475 476 /** 477 * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p> 478 * 479 * <p>The returned fraction is not reduced.</p> 480 * 481 * @return a new fraction instance with the numerator and denominator 482 * inverted. 483 * @throws ArithmeticException if the fraction represents zero. 484 */ 485 public Fraction invert() { 486 if (numerator == 0) { 487 throw new ArithmeticException("Unable to invert zero."); 488 } 489 if (numerator==Integer.MIN_VALUE) { 490 throw new ArithmeticException("overflow: can't negate numerator"); 491 } 492 if (numerator<0) { 493 return new Fraction(-denominator, -numerator); 494 } else { 495 return new Fraction(denominator, numerator); 496 } 497 } 498 499 /** 500 * <p>Gets a fraction that is the negative (-fraction) of this one.</p> 501 * 502 * <p>The returned fraction is not reduced.</p> 503 * 504 * @return a new fraction instance with the opposite signed numerator 505 */ 506 public Fraction negate() { 507 // the positive range is one smaller than the negative range of an int. 508 if (numerator==Integer.MIN_VALUE) { 509 throw new ArithmeticException("overflow: too large to negate"); 510 } 511 return new Fraction(-numerator, denominator); 512 } 513 514 /** 515 * <p>Gets a fraction that is the positive equivalent of this one.</p> 516 * <p>More precisely: <code>(fraction >= 0 ? this : -fraction)</code></p> 517 * 518 * <p>The returned fraction is not reduced.</p> 519 * 520 * @return <code>this</code> if it is positive, or a new positive fraction 521 * instance with the opposite signed numerator 522 */ 523 public Fraction abs() { 524 if (numerator >= 0) { 525 return this; 526 } 527 return negate(); 528 } 529 530 /** 531 * <p>Gets a fraction that is raised to the passed in power.</p> 532 * 533 * <p>The returned fraction is in reduced form.</p> 534 * 535 * @param power the power to raise the fraction to 536 * @return <code>this</code> if the power is one, <code>ONE</code> if the power 537 * is zero (even if the fraction equals ZERO) or a new fraction instance 538 * raised to the appropriate power 539 * @throws ArithmeticException if the resulting numerator or denominator exceeds 540 * <code>Integer.MAX_VALUE</code> 541 */ 542 public Fraction pow(int power) { 543 if (power == 1) { 544 return this; 545 } else if (power == 0) { 546 return ONE; 547 } else if (power < 0) { 548 if (power==Integer.MIN_VALUE) { // MIN_VALUE can't be negated. 549 return this.invert().pow(2).pow(-(power/2)); 550 } 551 return this.invert().pow(-power); 552 } else { 553 Fraction f = this.multiplyBy(this); 554 if ((power % 2) == 0) { // if even... 555 return f.pow(power/2); 556 } else { // if odd... 557 return f.pow(power/2).multiplyBy(this); 558 } 559 } 560 } 561 562 /** 563 * <p>Gets the greatest common divisor of the absolute value of 564 * two numbers, using the "binary gcd" method which avoids 565 * division and modulo operations. See Knuth 4.5.2 algorithm B. 566 * This algorithm is due to Josef Stein (1961).</p> 567 * 568 * @param u a non-zero number 569 * @param v a non-zero number 570 * @return the greatest common divisor, never zero 571 */ 572 private static int greatestCommonDivisor(int u, int v) { 573 //if either op. is abs 0 or 1, return 1: 574 if (Math.abs(u) <= 1 || Math.abs(v) <= 1) { 575 return 1; 576 } 577 // keep u and v negative, as negative integers range down to 578 // -2^31, while positive numbers can only be as large as 2^31-1 579 // (i.e. we can't necessarily negate a negative number without 580 // overflow) 581 if (u>0) { u=-u; } // make u negative 582 if (v>0) { v=-v; } // make v negative 583 // B1. [Find power of 2] 584 int k=0; 585 while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even... 586 u/=2; v/=2; k++; // cast out twos. 587 } 588 if (k==31) { 589 throw new ArithmeticException("overflow: gcd is 2^31"); 590 } 591 // B2. Initialize: u and v have been divided by 2^k and at least 592 // one is odd. 593 int t = ((u&1)==1) ? v : -(u/2)/*B3*/; 594 // t negative: u was odd, v may be even (t replaces v) 595 // t positive: u was even, v is odd (t replaces u) 596 do { 597 /* assert u<0 && v<0; */ 598 // B4/B3: cast out twos from t. 599 while ((t&1)==0) { // while t is even.. 600 t/=2; // cast out twos 601 } 602 // B5 [reset max(u,v)] 603 if (t>0) { 604 u = -t; 605 } else { 606 v = t; 607 } 608 // B6/B3. at this point both u and v should be odd. 609 t = (v - u)/2; 610 // |u| larger: t positive (replace u) 611 // |v| larger: t negative (replace v) 612 } while (t!=0); 613 return -u*(1<<k); // gcd is u*2^k 614 } 615 616 // Arithmetic 617 //------------------------------------------------------------------- 618 619 /** 620 * Multiply two integers, checking for overflow. 621 * 622 * @param x a factor 623 * @param y a factor 624 * @return the product <code>x*y</code> 625 * @throws ArithmeticException if the result can not be represented as 626 * an int 627 */ 628 private static int mulAndCheck(int x, int y) { 629 long m = ((long)x)*((long)y); 630 if (m < Integer.MIN_VALUE || 631 m > Integer.MAX_VALUE) { 632 throw new ArithmeticException("overflow: mul"); 633 } 634 return (int)m; 635 } 636 637 /** 638 * Multiply two non-negative integers, checking for overflow. 639 * 640 * @param x a non-negative factor 641 * @param y a non-negative factor 642 * @return the product <code>x*y</code> 643 * @throws ArithmeticException if the result can not be represented as 644 * an int 645 */ 646 private static int mulPosAndCheck(int x, int y) { 647 /* assert x>=0 && y>=0; */ 648 long m = ((long)x)*((long)y); 649 if (m > Integer.MAX_VALUE) { 650 throw new ArithmeticException("overflow: mulPos"); 651 } 652 return (int)m; 653 } 654 655 /** 656 * Add two integers, checking for overflow. 657 * 658 * @param x an addend 659 * @param y an addend 660 * @return the sum <code>x+y</code> 661 * @throws ArithmeticException if the result can not be represented as 662 * an int 663 */ 664 private static int addAndCheck(int x, int y) { 665 long s = (long)x+(long)y; 666 if (s < Integer.MIN_VALUE || 667 s > Integer.MAX_VALUE) { 668 throw new ArithmeticException("overflow: add"); 669 } 670 return (int)s; 671 } 672 673 /** 674 * Subtract two integers, checking for overflow. 675 * 676 * @param x the minuend 677 * @param y the subtrahend 678 * @return the difference <code>x-y</code> 679 * @throws ArithmeticException if the result can not be represented as 680 * an int 681 */ 682 private static int subAndCheck(int x, int y) { 683 long s = (long)x-(long)y; 684 if (s < Integer.MIN_VALUE || 685 s > Integer.MAX_VALUE) { 686 throw new ArithmeticException("overflow: add"); 687 } 688 return (int)s; 689 } 690 691 /** 692 * <p>Adds the value of this fraction to another, returning the result in reduced form. 693 * The algorithm follows Knuth, 4.5.1.</p> 694 * 695 * @param fraction the fraction to add, must not be <code>null</code> 696 * @return a <code>Fraction</code> instance with the resulting values 697 * @throws IllegalArgumentException if the fraction is <code>null</code> 698 * @throws ArithmeticException if the resulting numerator or denominator exceeds 699 * <code>Integer.MAX_VALUE</code> 700 */ 701 public Fraction add(Fraction fraction) { 702 return addSub(fraction, true /* add */); 703 } 704 705 /** 706 * <p>Subtracts the value of another fraction from the value of this one, 707 * returning the result in reduced form.</p> 708 * 709 * @param fraction the fraction to subtract, must not be <code>null</code> 710 * @return a <code>Fraction</code> instance with the resulting values 711 * @throws IllegalArgumentException if the fraction is <code>null</code> 712 * @throws ArithmeticException if the resulting numerator or denominator 713 * cannot be represented in an <code>int</code>. 714 */ 715 public Fraction subtract(Fraction fraction) { 716 return addSub(fraction, false /* subtract */); 717 } 718 719 /** 720 * Implement add and subtract using algorithm described in Knuth 4.5.1. 721 * 722 * @param fraction the fraction to subtract, must not be <code>null</code> 723 * @param isAdd true to add, false to subtract 724 * @return a <code>Fraction</code> instance with the resulting values 725 * @throws IllegalArgumentException if the fraction is <code>null</code> 726 * @throws ArithmeticException if the resulting numerator or denominator 727 * cannot be represented in an <code>int</code>. 728 */ 729 private Fraction addSub(Fraction fraction, boolean isAdd) { 730 if (fraction == null) { 731 throw new IllegalArgumentException("The fraction must not be null"); 732 } 733 // zero is identity for addition. 734 if (numerator == 0) { 735 return isAdd ? fraction : fraction.negate(); 736 } 737 if (fraction.numerator == 0) { 738 return this; 739 } 740 // if denominators are randomly distributed, d1 will be 1 about 61% 741 // of the time. 742 int d1 = greatestCommonDivisor(denominator, fraction.denominator); 743 if (d1==1) { 744 // result is ( (u*v' +/- u'v) / u'v') 745 int uvp = mulAndCheck(numerator, fraction.denominator); 746 int upv = mulAndCheck(fraction.numerator, denominator); 747 return new Fraction 748 (isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), 749 mulPosAndCheck(denominator, fraction.denominator)); 750 } 751 // the quantity 't' requires 65 bits of precision; see knuth 4.5.1 752 // exercise 7. we're going to use a BigInteger. 753 // t = u(v'/d1) +/- v(u'/d1) 754 BigInteger uvp = BigInteger.valueOf(numerator) 755 .multiply(BigInteger.valueOf(fraction.denominator/d1)); 756 BigInteger upv = BigInteger.valueOf(fraction.numerator) 757 .multiply(BigInteger.valueOf(denominator/d1)); 758 BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv); 759 // but d2 doesn't need extra precision because 760 // d2 = gcd(t,d1) = gcd(t mod d1, d1) 761 int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue(); 762 int d2 = (tmodd1==0)?d1:greatestCommonDivisor(tmodd1, d1); 763 764 // result is (t/d2) / (u'/d1)(v'/d2) 765 BigInteger w = t.divide(BigInteger.valueOf(d2)); 766 if (w.bitLength() > 31) { 767 throw new ArithmeticException 768 ("overflow: numerator too large after multiply"); 769 } 770 return new Fraction 771 (w.intValue(), 772 mulPosAndCheck(denominator/d1, fraction.denominator/d2)); 773 } 774 775 /** 776 * <p>Multiplies the value of this fraction by another, returning the 777 * result in reduced form.</p> 778 * 779 * @param fraction the fraction to multiply by, must not be <code>null</code> 780 * @return a <code>Fraction</code> instance with the resulting values 781 * @throws IllegalArgumentException if the fraction is <code>null</code> 782 * @throws ArithmeticException if the resulting numerator or denominator exceeds 783 * <code>Integer.MAX_VALUE</code> 784 */ 785 public Fraction multiplyBy(Fraction fraction) { 786 if (fraction == null) { 787 throw new IllegalArgumentException("The fraction must not be null"); 788 } 789 if (numerator == 0 || fraction.numerator == 0) { 790 return ZERO; 791 } 792 // knuth 4.5.1 793 // make sure we don't overflow unless the result *must* overflow. 794 int d1 = greatestCommonDivisor(numerator, fraction.denominator); 795 int d2 = greatestCommonDivisor(fraction.numerator, denominator); 796 return getReducedFraction 797 (mulAndCheck(numerator/d1, fraction.numerator/d2), 798 mulPosAndCheck(denominator/d2, fraction.denominator/d1)); 799 } 800 801 /** 802 * <p>Divide the value of this fraction by another.</p> 803 * 804 * @param fraction the fraction to divide by, must not be <code>null</code> 805 * @return a <code>Fraction</code> instance with the resulting values 806 * @throws IllegalArgumentException if the fraction is <code>null</code> 807 * @throws ArithmeticException if the fraction to divide by is zero 808 * @throws ArithmeticException if the resulting numerator or denominator exceeds 809 * <code>Integer.MAX_VALUE</code> 810 */ 811 public Fraction divideBy(Fraction fraction) { 812 if (fraction == null) { 813 throw new IllegalArgumentException("The fraction must not be null"); 814 } 815 if (fraction.numerator == 0) { 816 throw new ArithmeticException("The fraction to divide by must not be zero"); 817 } 818 return multiplyBy(fraction.invert()); 819 } 820 821 // Basics 822 //------------------------------------------------------------------- 823 824 /** 825 * <p>Compares this fraction to another object to test if they are equal.</p>. 826 * 827 * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p> 828 * 829 * @param obj the reference object with which to compare 830 * @return <code>true</code> if this object is equal 831 */ 832 public boolean equals(Object obj) { 833 if (obj == this) { 834 return true; 835 } 836 if (obj instanceof Fraction == false) { 837 return false; 838 } 839 Fraction other = (Fraction) obj; 840 return (getNumerator() == other.getNumerator() && 841 getDenominator() == other.getDenominator()); 842 } 843 844 /** 845 * <p>Gets a hashCode for the fraction.</p> 846 * 847 * @return a hash code value for this object 848 */ 849 public int hashCode() { 850 if (hashCode == 0) { 851 // hashcode update should be atomic. 852 hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator(); 853 } 854 return hashCode; 855 } 856 857 /** 858 * <p>Compares this object to another based on size.</p> 859 * 860 * <p>Note: this class has a natural ordering that is inconsistent 861 * with equals, because, for example, equals treats 1/2 and 2/4 as 862 * different, whereas compareTo treats them as equal. 863 * 864 * @param object the object to compare to 865 * @return -1 if this is less, 0 if equal, +1 if greater 866 * @throws ClassCastException if the object is not a <code>Fraction</code> 867 * @throws NullPointerException if the object is <code>null</code> 868 */ 869 public int compareTo(Object object) { 870 Fraction other = (Fraction) object; 871 if (this==other) { 872 return 0; 873 } 874 if (numerator == other.numerator && denominator == other.denominator) { 875 return 0; 876 } 877 878 // otherwise see which is less 879 long first = (long) numerator * (long) other.denominator; 880 long second = (long) other.numerator * (long) denominator; 881 if (first == second) { 882 return 0; 883 } else if (first < second) { 884 return -1; 885 } else { 886 return 1; 887 } 888 } 889 890 /** 891 * <p>Gets the fraction as a <code>String</code>.</p> 892 * 893 * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always. 894 * 895 * @return a <code>String</code> form of the fraction 896 */ 897 public String toString() { 898 if (toString == null) { 899 toString = new StringBuffer(32) 900 .append(getNumerator()) 901 .append('/') 902 .append(getDenominator()).toString(); 903 } 904 return toString; 905 } 906 907 /** 908 * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p> 909 * 910 * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'. 911 * If the whole number is zero it will be ommitted. If the numerator is zero, 912 * only the whole number is returned.</p> 913 * 914 * @return a <code>String</code> form of the fraction 915 */ 916 public String toProperString() { 917 if (toProperString == null) { 918 if (numerator == 0) { 919 toProperString = "0"; 920 } else if (numerator == denominator) { 921 toProperString = "1"; 922 } else if (numerator == -1 * denominator) { 923 toProperString = "-1"; 924 } else if ((numerator>0?-numerator:numerator) < -denominator) { 925 // note that we do the magnitude comparison test above with 926 // NEGATIVE (not positive) numbers, since negative numbers 927 // have a larger range. otherwise numerator==Integer.MIN_VALUE 928 // is handled incorrectly. 929 int properNumerator = getProperNumerator(); 930 if (properNumerator == 0) { 931 toProperString = Integer.toString(getProperWhole()); 932 } else { 933 toProperString = new StringBuffer(32) 934 .append(getProperWhole()).append(' ') 935 .append(properNumerator).append('/') 936 .append(getDenominator()).toString(); 937 } 938 } else { 939 toProperString = new StringBuffer(32) 940 .append(getNumerator()).append('/') 941 .append(getDenominator()).toString(); 942 } 943 } 944 return toProperString; 945 } 946 }