001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     * 
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     * 
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    package org.apache.commons.lang.math;
018    
019    import java.math.BigInteger;
020    
021    import org.apache.commons.lang.text.StrBuilder;
022    
023    /**
024     * <p><code>Fraction</code> is a <code>Number</code> implementation that
025     * stores fractions accurately.</p>
026     *
027     * <p>This class is immutable, and interoperable with most methods that accept
028     * a <code>Number</code>.</p>
029     *
030     * @author Apache Software Foundation
031     * @author Travis Reeder
032     * @author Tim O'Brien
033     * @author Pete Gieser
034     * @author C. Scott Ananian
035     * @since 2.0
036     * @version $Id: Fraction.java 1057072 2011-01-10 01:55:57Z niallp $
037     */
038    public final class Fraction extends Number implements Comparable {
039    
040        /**
041         * Required for serialization support. Lang version 2.0.
042         * 
043         * @see java.io.Serializable
044         */
045        private static final long serialVersionUID = 65382027393090L;
046    
047        /**
048         * <code>Fraction</code> representation of 0.
049         */
050        public static final Fraction ZERO = new Fraction(0, 1);
051        /**
052         * <code>Fraction</code> representation of 1.
053         */
054        public static final Fraction ONE = new Fraction(1, 1);
055        /**
056         * <code>Fraction</code> representation of 1/2.
057         */
058        public static final Fraction ONE_HALF = new Fraction(1, 2);
059        /**
060         * <code>Fraction</code> representation of 1/3.
061         */
062        public static final Fraction ONE_THIRD = new Fraction(1, 3);
063        /**
064         * <code>Fraction</code> representation of 2/3.
065         */
066        public static final Fraction TWO_THIRDS = new Fraction(2, 3);
067        /**
068         * <code>Fraction</code> representation of 1/4.
069         */
070        public static final Fraction ONE_QUARTER = new Fraction(1, 4);
071        /**
072         * <code>Fraction</code> representation of 2/4.
073         */
074        public static final Fraction TWO_QUARTERS = new Fraction(2, 4);
075        /**
076         * <code>Fraction</code> representation of 3/4.
077         */
078        public static final Fraction THREE_QUARTERS = new Fraction(3, 4);
079        /**
080         * <code>Fraction</code> representation of 1/5.
081         */
082        public static final Fraction ONE_FIFTH = new Fraction(1, 5);
083        /**
084         * <code>Fraction</code> representation of 2/5.
085         */
086        public static final Fraction TWO_FIFTHS = new Fraction(2, 5);
087        /**
088         * <code>Fraction</code> representation of 3/5.
089         */
090        public static final Fraction THREE_FIFTHS = new Fraction(3, 5);
091        /**
092         * <code>Fraction</code> representation of 4/5.
093         */
094        public static final Fraction FOUR_FIFTHS = new Fraction(4, 5);
095    
096    
097        /**
098         * The numerator number part of the fraction (the three in three sevenths).
099         */
100        private final int numerator;
101        /**
102         * The denominator number part of the fraction (the seven in three sevenths).
103         */
104        private final int denominator;
105    
106        /**
107         * Cached output hashCode (class is immutable).
108         */
109        private transient int hashCode = 0;
110        /**
111         * Cached output toString (class is immutable).
112         */
113        private transient String toString = null;
114        /**
115         * Cached output toProperString (class is immutable).
116         */
117        private transient String toProperString = null;
118    
119        /**
120         * <p>Constructs a <code>Fraction</code> instance with the 2 parts
121         * of a fraction Y/Z.</p>
122         *
123         * @param numerator  the numerator, for example the three in 'three sevenths'
124         * @param denominator  the denominator, for example the seven in 'three sevenths'
125         */
126        private Fraction(int numerator, int denominator) {
127            super();
128            this.numerator = numerator;
129            this.denominator = denominator;
130        }
131    
132        /**
133         * <p>Creates a <code>Fraction</code> instance with the 2 parts
134         * of a fraction Y/Z.</p>
135         *
136         * <p>Any negative signs are resolved to be on the numerator.</p>
137         *
138         * @param numerator  the numerator, for example the three in 'three sevenths'
139         * @param denominator  the denominator, for example the seven in 'three sevenths'
140         * @return a new fraction instance
141         * @throws ArithmeticException if the denomiator is <code>zero</code>
142         */
143        public static Fraction getFraction(int numerator, int denominator) {
144            if (denominator == 0) {
145                throw new ArithmeticException("The denominator must not be zero");
146            }
147            if (denominator < 0) {
148                if (numerator==Integer.MIN_VALUE ||
149                        denominator==Integer.MIN_VALUE) {
150                    throw new ArithmeticException("overflow: can't negate");
151                }
152                numerator = -numerator;
153                denominator = -denominator;
154            }
155            return new Fraction(numerator, denominator);
156        }
157    
158        /**
159         * <p>Creates a <code>Fraction</code> instance with the 3 parts
160         * of a fraction X Y/Z.</p>
161         *
162         * <p>The negative sign must be passed in on the whole number part.</p>
163         *
164         * @param whole  the whole number, for example the one in 'one and three sevenths'
165         * @param numerator  the numerator, for example the three in 'one and three sevenths'
166         * @param denominator  the denominator, for example the seven in 'one and three sevenths'
167         * @return a new fraction instance
168         * @throws ArithmeticException if the denomiator is <code>zero</code>
169         * @throws ArithmeticException if the denominator is negative
170         * @throws ArithmeticException if the numerator is negative
171         * @throws ArithmeticException if the resulting numerator exceeds 
172         *  <code>Integer.MAX_VALUE</code>
173         */
174        public static Fraction getFraction(int whole, int numerator, int denominator) {
175            if (denominator == 0) {
176                throw new ArithmeticException("The denominator must not be zero");
177            }
178            if (denominator < 0) {
179                throw new ArithmeticException("The denominator must not be negative");
180            }
181            if (numerator < 0) {
182                throw new ArithmeticException("The numerator must not be negative");
183            }
184            long numeratorValue;
185            if (whole < 0) {
186                numeratorValue = whole * (long)denominator - numerator;
187            } else {
188                numeratorValue = whole * (long)denominator + numerator;
189            }
190            if (numeratorValue < Integer.MIN_VALUE ||
191                    numeratorValue > Integer.MAX_VALUE)  {
192                throw new ArithmeticException("Numerator too large to represent as an Integer.");
193            }
194            return new Fraction((int) numeratorValue, denominator);
195        }
196    
197        /**
198         * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts
199         * of a fraction Y/Z.</p>
200         *
201         * <p>For example, if the input parameters represent 2/4, then the created
202         * fraction will be 1/2.</p>
203         *
204         * <p>Any negative signs are resolved to be on the numerator.</p>
205         *
206         * @param numerator  the numerator, for example the three in 'three sevenths'
207         * @param denominator  the denominator, for example the seven in 'three sevenths'
208         * @return a new fraction instance, with the numerator and denominator reduced
209         * @throws ArithmeticException if the denominator is <code>zero</code>
210         */
211        public static Fraction getReducedFraction(int numerator, int denominator) {
212            if (denominator == 0) {
213                throw new ArithmeticException("The denominator must not be zero");
214            }
215            if (numerator==0) {
216                return ZERO; // normalize zero.
217            }
218            // allow 2^k/-2^31 as a valid fraction (where k>0)
219            if (denominator==Integer.MIN_VALUE && (numerator&1)==0) {
220                numerator/=2; denominator/=2;
221            }
222            if (denominator < 0) {
223                if (numerator==Integer.MIN_VALUE ||
224                        denominator==Integer.MIN_VALUE) {
225                    throw new ArithmeticException("overflow: can't negate");
226                }
227                numerator = -numerator;
228                denominator = -denominator;
229            }
230            // simplify fraction.
231            int gcd = greatestCommonDivisor(numerator, denominator);
232            numerator /= gcd;
233            denominator /= gcd;
234            return new Fraction(numerator, denominator);
235        }
236    
237        /**
238         * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p>
239         *
240         * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/">
241         *  continued fraction algorithm</a>, computing a maximum of
242         *  25 convergents and bounding the denominator by 10,000.</p>
243         *
244         * @param value  the double value to convert
245         * @return a new fraction instance that is close to the value
246         * @throws ArithmeticException if <code>|value| > Integer.MAX_VALUE</code> 
247         *  or <code>value = NaN</code>
248         * @throws ArithmeticException if the calculated denominator is <code>zero</code>
249         * @throws ArithmeticException if the the algorithm does not converge
250         */
251        public static Fraction getFraction(double value) {
252            int sign = (value < 0 ? -1 : 1);
253            value = Math.abs(value);
254            if (value  > Integer.MAX_VALUE || Double.isNaN(value)) {
255                throw new ArithmeticException
256                    ("The value must not be greater than Integer.MAX_VALUE or NaN");
257            }
258            int wholeNumber = (int) value;
259            value -= wholeNumber;
260            
261            int numer0 = 0;  // the pre-previous
262            int denom0 = 1;  // the pre-previous
263            int numer1 = 1;  // the previous
264            int denom1 = 0;  // the previous
265            int numer2 = 0;  // the current, setup in calculation
266            int denom2 = 0;  // the current, setup in calculation
267            int a1 = (int) value;
268            int a2 = 0;
269            double x1 = 1;
270            double x2 = 0;
271            double y1 = value - a1;
272            double y2 = 0;
273            double delta1, delta2 = Double.MAX_VALUE;
274            double fraction;
275            int i = 1;
276    //        System.out.println("---");
277            do {
278                delta1 = delta2;
279                a2 = (int) (x1 / y1);
280                x2 = y1;
281                y2 = x1 - a2 * y1;
282                numer2 = a1 * numer1 + numer0;
283                denom2 = a1 * denom1 + denom0;
284                fraction = (double) numer2 / (double) denom2;
285                delta2 = Math.abs(value - fraction);
286    //            System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1);
287                a1 = a2;
288                x1 = x2;
289                y1 = y2;
290                numer0 = numer1;
291                denom0 = denom1;
292                numer1 = numer2;
293                denom1 = denom2;
294                i++;
295    //            System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2);
296            } while ((delta1 > delta2) && (denom2 <= 10000) && (denom2 > 0) && (i < 25));
297            if (i == 25) {
298                throw new ArithmeticException("Unable to convert double to fraction");
299            }
300            return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0);
301        }
302    
303        /**
304         * <p>Creates a Fraction from a <code>String</code>.</p>
305         *
306         * <p>The formats accepted are:</p>
307         *
308         * <ol>
309         *  <li><code>double</code> String containing a dot</li>
310         *  <li>'X Y/Z'</li>
311         *  <li>'Y/Z'</li>
312         *  <li>'X' (a simple whole number)</li>
313         * </ol>
314         * and a .</p>
315         *
316         * @param str  the string to parse, must not be <code>null</code>
317         * @return the new <code>Fraction</code> instance
318         * @throws IllegalArgumentException if the string is <code>null</code>
319         * @throws NumberFormatException if the number format is invalid
320         */
321        public static Fraction getFraction(String str) {
322            if (str == null) {
323                throw new IllegalArgumentException("The string must not be null");
324            }
325            // parse double format
326            int pos = str.indexOf('.');
327            if (pos >= 0) {
328                return getFraction(Double.parseDouble(str));
329            }
330    
331            // parse X Y/Z format
332            pos = str.indexOf(' ');
333            if (pos > 0) {
334                int whole = Integer.parseInt(str.substring(0, pos));
335                str = str.substring(pos + 1);
336                pos = str.indexOf('/');
337                if (pos < 0) {
338                    throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z");
339                } else {
340                    int numer = Integer.parseInt(str.substring(0, pos));
341                    int denom = Integer.parseInt(str.substring(pos + 1));
342                    return getFraction(whole, numer, denom);
343                }
344            }
345    
346            // parse Y/Z format
347            pos = str.indexOf('/');
348            if (pos < 0) {
349                // simple whole number
350                return getFraction(Integer.parseInt(str), 1);
351            } else {
352                int numer = Integer.parseInt(str.substring(0, pos));
353                int denom = Integer.parseInt(str.substring(pos + 1));
354                return getFraction(numer, denom);
355            }
356        }
357    
358        // Accessors
359        //-------------------------------------------------------------------
360    
361        /**
362         * <p>Gets the numerator part of the fraction.</p>
363         *
364         * <p>This method may return a value greater than the denominator, an
365         * improper fraction, such as the seven in 7/4.</p>
366         *
367         * @return the numerator fraction part
368         */
369        public int getNumerator() {
370            return numerator;
371        }
372    
373        /**
374         * <p>Gets the denominator part of the fraction.</p>
375         *
376         * @return the denominator fraction part
377         */
378        public int getDenominator() {
379            return denominator;
380        }
381    
382        /**
383         * <p>Gets the proper numerator, always positive.</p>
384         *
385         * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
386         * This method returns the 3 from the proper fraction.</p>
387         *
388         * <p>If the fraction is negative such as -7/4, it can be resolved into
389         * -1 3/4, so this method returns the positive proper numerator, 3.</p>
390         *
391         * @return the numerator fraction part of a proper fraction, always positive
392         */
393        public int getProperNumerator() {
394            return Math.abs(numerator % denominator);
395        }
396    
397        /**
398         * <p>Gets the proper whole part of the fraction.</p>
399         *
400         * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
401         * This method returns the 1 from the proper fraction.</p>
402         *
403         * <p>If the fraction is negative such as -7/4, it can be resolved into
404         * -1 3/4, so this method returns the positive whole part -1.</p>
405         *
406         * @return the whole fraction part of a proper fraction, that includes the sign
407         */
408        public int getProperWhole() {
409            return numerator / denominator;
410        }
411    
412        // Number methods
413        //-------------------------------------------------------------------
414    
415        /**
416         * <p>Gets the fraction as an <code>int</code>. This returns the whole number
417         * part of the fraction.</p>
418         *
419         * @return the whole number fraction part
420         */
421        public int intValue() {
422            return numerator / denominator;
423        }
424    
425        /**
426         * <p>Gets the fraction as a <code>long</code>. This returns the whole number
427         * part of the fraction.</p>
428         *
429         * @return the whole number fraction part
430         */
431        public long longValue() {
432            return (long) numerator / denominator;
433        }
434    
435        /**
436         * <p>Gets the fraction as a <code>float</code>. This calculates the fraction
437         * as the numerator divided by denominator.</p>
438         *
439         * @return the fraction as a <code>float</code>
440         */
441        public float floatValue() {
442            return ((float) numerator) / ((float) denominator);
443        }
444    
445        /**
446         * <p>Gets the fraction as a <code>double</code>. This calculates the fraction
447         * as the numerator divided by denominator.</p>
448         *
449         * @return the fraction as a <code>double</code>
450         */
451        public double doubleValue() {
452            return ((double) numerator) / ((double) denominator);
453        }
454    
455        // Calculations
456        //-------------------------------------------------------------------
457    
458        /**
459         * <p>Reduce the fraction to the smallest values for the numerator and
460         * denominator, returning the result.</p>
461         * 
462         * <p>For example, if this fraction represents 2/4, then the result
463         * will be 1/2.</p>
464         *
465         * @return a new reduced fraction instance, or this if no simplification possible
466         */
467        public Fraction reduce() {
468            if (numerator == 0) {
469                return equals(ZERO) ? this : ZERO;
470            }
471            int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
472            if (gcd == 1) {
473                return this;
474            }
475            return Fraction.getFraction(numerator / gcd, denominator / gcd);
476        }
477    
478        /**
479         * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p>
480         * 
481         * <p>The returned fraction is not reduced.</p>
482         *
483         * @return a new fraction instance with the numerator and denominator
484         *         inverted.
485         * @throws ArithmeticException if the fraction represents zero.
486         */
487        public Fraction invert() {
488            if (numerator == 0) {
489                throw new ArithmeticException("Unable to invert zero.");
490            }
491            if (numerator==Integer.MIN_VALUE) {
492                throw new ArithmeticException("overflow: can't negate numerator");
493            }
494            if (numerator<0) {
495                return new Fraction(-denominator, -numerator);
496            } else {
497                return new Fraction(denominator, numerator);
498            }
499        }
500    
501        /**
502         * <p>Gets a fraction that is the negative (-fraction) of this one.</p>
503         *
504         * <p>The returned fraction is not reduced.</p>
505         *
506         * @return a new fraction instance with the opposite signed numerator
507         */
508        public Fraction negate() {
509            // the positive range is one smaller than the negative range of an int.
510            if (numerator==Integer.MIN_VALUE) {
511                throw new ArithmeticException("overflow: too large to negate");
512            }
513            return new Fraction(-numerator, denominator);
514        }
515    
516        /**
517         * <p>Gets a fraction that is the positive equivalent of this one.</p>
518         * <p>More precisely: <code>(fraction >= 0 ? this : -fraction)</code></p>
519         *
520         * <p>The returned fraction is not reduced.</p>
521         *
522         * @return <code>this</code> if it is positive, or a new positive fraction
523         *  instance with the opposite signed numerator
524         */
525        public Fraction abs() {
526            if (numerator >= 0) {
527                return this;
528            }
529            return negate();
530        }
531    
532        /**
533         * <p>Gets a fraction that is raised to the passed in power.</p>
534         *
535         * <p>The returned fraction is in reduced form.</p>
536         *
537         * @param power  the power to raise the fraction to
538         * @return <code>this</code> if the power is one, <code>ONE</code> if the power
539         * is zero (even if the fraction equals ZERO) or a new fraction instance 
540         * raised to the appropriate power
541         * @throws ArithmeticException if the resulting numerator or denominator exceeds
542         *  <code>Integer.MAX_VALUE</code>
543         */
544        public Fraction pow(int power) {
545            if (power == 1) {
546                return this;
547            } else if (power == 0) {
548                return ONE;
549            } else if (power < 0) {
550                if (power==Integer.MIN_VALUE) { // MIN_VALUE can't be negated.
551                    return this.invert().pow(2).pow(-(power/2));
552                }
553                return this.invert().pow(-power);
554            } else {
555                Fraction f = this.multiplyBy(this);
556                if ((power % 2) == 0) { // if even...
557                    return f.pow(power/2);
558                } else { // if odd...
559                    return f.pow(power/2).multiplyBy(this);
560                }
561            }
562        }
563    
564        /**
565         * <p>Gets the greatest common divisor of the absolute value of
566         * two numbers, using the "binary gcd" method which avoids
567         * division and modulo operations.  See Knuth 4.5.2 algorithm B.
568         * This algorithm is due to Josef Stein (1961).</p>
569         *
570         * @param u  a non-zero number
571         * @param v  a non-zero number
572         * @return the greatest common divisor, never zero
573         */
574        private static int greatestCommonDivisor(int u, int v) {
575            //if either op. is abs 0 or 1, return 1:
576            if (Math.abs(u) <= 1 || Math.abs(v) <= 1) {
577                return 1;
578            }
579            // keep u and v negative, as negative integers range down to
580            // -2^31, while positive numbers can only be as large as 2^31-1
581            // (i.e. we can't necessarily negate a negative number without
582            // overflow)
583            if (u>0) { u=-u; } // make u negative
584            if (v>0) { v=-v; } // make v negative
585            // B1. [Find power of 2]
586            int k=0;
587            while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even...
588                u/=2; v/=2; k++; // cast out twos.
589            }
590            if (k==31) {
591                throw new ArithmeticException("overflow: gcd is 2^31");
592            }
593            // B2. Initialize: u and v have been divided by 2^k and at least
594            //     one is odd.
595            int t = ((u&1)==1) ? v : -(u/2)/*B3*/;
596            // t negative: u was odd, v may be even (t replaces v)
597            // t positive: u was even, v is odd (t replaces u)
598            do {
599                /* assert u<0 && v<0; */
600                // B4/B3: cast out twos from t.
601                while ((t&1)==0) { // while t is even..
602                    t/=2; // cast out twos
603                }
604                // B5 [reset max(u,v)]
605                if (t>0) {
606                    u = -t;
607                } else {
608                    v = t;
609                }
610                // B6/B3. at this point both u and v should be odd.
611                t = (v - u)/2;
612                // |u| larger: t positive (replace u)
613                // |v| larger: t negative (replace v)
614            } while (t!=0);
615            return -u*(1<<k); // gcd is u*2^k
616        }
617    
618        // Arithmetic
619        //-------------------------------------------------------------------
620    
621        /** 
622         * Multiply two integers, checking for overflow.
623         * 
624         * @param x a factor
625         * @param y a factor
626         * @return the product <code>x*y</code>
627         * @throws ArithmeticException if the result can not be represented as
628         *                             an int
629         */
630        private static int mulAndCheck(int x, int y) {
631            long m = ((long)x)*((long)y);
632            if (m < Integer.MIN_VALUE ||
633                m > Integer.MAX_VALUE) {
634                throw new ArithmeticException("overflow: mul");
635            }
636            return (int)m;
637        }
638        
639        /**
640         *  Multiply two non-negative integers, checking for overflow.
641         * 
642         * @param x a non-negative factor
643         * @param y a non-negative factor
644         * @return the product <code>x*y</code>
645         * @throws ArithmeticException if the result can not be represented as
646         * an int
647         */
648        private static int mulPosAndCheck(int x, int y) {
649            /* assert x>=0 && y>=0; */
650            long m = ((long)x)*((long)y);
651            if (m > Integer.MAX_VALUE) {
652                throw new ArithmeticException("overflow: mulPos");
653            }
654            return (int)m;
655        }
656        
657        /** 
658         * Add two integers, checking for overflow.
659         * 
660         * @param x an addend
661         * @param y an addend
662         * @return the sum <code>x+y</code>
663         * @throws ArithmeticException if the result can not be represented as
664         * an int
665         */
666        private static int addAndCheck(int x, int y) {
667            long s = (long)x+(long)y;
668            if (s < Integer.MIN_VALUE ||
669                s > Integer.MAX_VALUE) {
670                throw new ArithmeticException("overflow: add");
671            }
672            return (int)s;
673        }
674        
675        /** 
676         * Subtract two integers, checking for overflow.
677         * 
678         * @param x the minuend
679         * @param y the subtrahend
680         * @return the difference <code>x-y</code>
681         * @throws ArithmeticException if the result can not be represented as
682         * an int
683         */
684        private static int subAndCheck(int x, int y) {
685            long s = (long)x-(long)y;
686            if (s < Integer.MIN_VALUE ||
687                s > Integer.MAX_VALUE) {
688                throw new ArithmeticException("overflow: add");
689            }
690            return (int)s;
691        }
692        
693        /**
694         * <p>Adds the value of this fraction to another, returning the result in reduced form.
695         * The algorithm follows Knuth, 4.5.1.</p>
696         *
697         * @param fraction  the fraction to add, must not be <code>null</code>
698         * @return a <code>Fraction</code> instance with the resulting values
699         * @throws IllegalArgumentException if the fraction is <code>null</code>
700         * @throws ArithmeticException if the resulting numerator or denominator exceeds
701         *  <code>Integer.MAX_VALUE</code>
702         */
703        public Fraction add(Fraction fraction) {
704            return addSub(fraction, true /* add */);
705        }
706    
707        /**
708         * <p>Subtracts the value of another fraction from the value of this one, 
709         * returning the result in reduced form.</p>
710         *
711         * @param fraction  the fraction to subtract, must not be <code>null</code>
712         * @return a <code>Fraction</code> instance with the resulting values
713         * @throws IllegalArgumentException if the fraction is <code>null</code>
714         * @throws ArithmeticException if the resulting numerator or denominator
715         *   cannot be represented in an <code>int</code>.
716         */
717        public Fraction subtract(Fraction fraction) {
718            return addSub(fraction, false /* subtract */);
719        }
720    
721        /** 
722         * Implement add and subtract using algorithm described in Knuth 4.5.1.
723         * 
724         * @param fraction the fraction to subtract, must not be <code>null</code>
725         * @param isAdd true to add, false to subtract
726         * @return a <code>Fraction</code> instance with the resulting values
727         * @throws IllegalArgumentException if the fraction is <code>null</code>
728         * @throws ArithmeticException if the resulting numerator or denominator
729         *   cannot be represented in an <code>int</code>.
730         */
731        private Fraction addSub(Fraction fraction, boolean isAdd) {
732            if (fraction == null) {
733                throw new IllegalArgumentException("The fraction must not be null");
734            }
735            // zero is identity for addition.
736            if (numerator == 0) {
737                return isAdd ? fraction : fraction.negate();
738            }
739            if (fraction.numerator == 0) {
740                return this;
741            }     
742            // if denominators are randomly distributed, d1 will be 1 about 61%
743            // of the time.
744            int d1 = greatestCommonDivisor(denominator, fraction.denominator);
745            if (d1==1) {
746                // result is ( (u*v' +/- u'v) / u'v')
747                int uvp = mulAndCheck(numerator, fraction.denominator);
748                int upv = mulAndCheck(fraction.numerator, denominator);
749                return new Fraction
750                    (isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv),
751                     mulPosAndCheck(denominator, fraction.denominator));
752            }
753            // the quantity 't' requires 65 bits of precision; see knuth 4.5.1
754            // exercise 7.  we're going to use a BigInteger.
755            // t = u(v'/d1) +/- v(u'/d1)
756            BigInteger uvp = BigInteger.valueOf(numerator)
757                .multiply(BigInteger.valueOf(fraction.denominator/d1));
758            BigInteger upv = BigInteger.valueOf(fraction.numerator)
759                .multiply(BigInteger.valueOf(denominator/d1));
760            BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
761            // but d2 doesn't need extra precision because
762            // d2 = gcd(t,d1) = gcd(t mod d1, d1)
763            int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
764            int d2 = (tmodd1==0)?d1:greatestCommonDivisor(tmodd1, d1);
765    
766            // result is (t/d2) / (u'/d1)(v'/d2)
767            BigInteger w = t.divide(BigInteger.valueOf(d2));
768            if (w.bitLength() > 31) {
769                throw new ArithmeticException
770                    ("overflow: numerator too large after multiply");
771            }
772            return new Fraction
773                (w.intValue(),
774                 mulPosAndCheck(denominator/d1, fraction.denominator/d2));
775        }
776    
777        /**
778         * <p>Multiplies the value of this fraction by another, returning the 
779         * result in reduced form.</p>
780         *
781         * @param fraction  the fraction to multiply by, must not be <code>null</code>
782         * @return a <code>Fraction</code> instance with the resulting values
783         * @throws IllegalArgumentException if the fraction is <code>null</code>
784         * @throws ArithmeticException if the resulting numerator or denominator exceeds
785         *  <code>Integer.MAX_VALUE</code>
786         */
787        public Fraction multiplyBy(Fraction fraction) {
788            if (fraction == null) {
789                throw new IllegalArgumentException("The fraction must not be null");
790            }
791            if (numerator == 0 || fraction.numerator == 0) {
792                return ZERO;
793            }
794            // knuth 4.5.1
795            // make sure we don't overflow unless the result *must* overflow.
796            int d1 = greatestCommonDivisor(numerator, fraction.denominator);
797            int d2 = greatestCommonDivisor(fraction.numerator, denominator);
798            return getReducedFraction
799                (mulAndCheck(numerator/d1, fraction.numerator/d2),
800                 mulPosAndCheck(denominator/d2, fraction.denominator/d1));
801        }
802    
803        /**
804         * <p>Divide the value of this fraction by another.</p>
805         *
806         * @param fraction  the fraction to divide by, must not be <code>null</code>
807         * @return a <code>Fraction</code> instance with the resulting values
808         * @throws IllegalArgumentException if the fraction is <code>null</code>
809         * @throws ArithmeticException if the fraction to divide by is zero
810         * @throws ArithmeticException if the resulting numerator or denominator exceeds
811         *  <code>Integer.MAX_VALUE</code>
812         */
813        public Fraction divideBy(Fraction fraction) {
814            if (fraction == null) {
815                throw new IllegalArgumentException("The fraction must not be null");
816            }
817            if (fraction.numerator == 0) {
818                throw new ArithmeticException("The fraction to divide by must not be zero");
819            }
820            return multiplyBy(fraction.invert());
821        }
822    
823        // Basics
824        //-------------------------------------------------------------------
825    
826        /**
827         * <p>Compares this fraction to another object to test if they are equal.</p>.
828         *
829         * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p>
830         *
831         * @param obj the reference object with which to compare
832         * @return <code>true</code> if this object is equal
833         */
834        public boolean equals(Object obj) {
835            if (obj == this) {
836                return true;
837            }
838            if (obj instanceof Fraction == false) {
839                return false;
840            }
841            Fraction other = (Fraction) obj;
842            return (getNumerator() == other.getNumerator() &&
843                    getDenominator() == other.getDenominator());
844        }
845    
846        /**
847         * <p>Gets a hashCode for the fraction.</p>
848         *
849         * @return a hash code value for this object
850         */
851        public int hashCode() {
852            if (hashCode == 0) {
853                // hashcode update should be atomic.
854                hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator();
855            }
856            return hashCode;
857        }
858    
859        /**
860         * <p>Compares this object to another based on size.</p>
861         *
862         * <p>Note: this class has a natural ordering that is inconsistent
863         * with equals, because, for example, equals treats 1/2 and 2/4 as
864         * different, whereas compareTo treats them as equal.
865         *
866         * @param object  the object to compare to
867         * @return -1 if this is less, 0 if equal, +1 if greater
868         * @throws ClassCastException if the object is not a <code>Fraction</code>
869         * @throws NullPointerException if the object is <code>null</code>
870         */
871        public int compareTo(Object object) {
872            Fraction other = (Fraction) object;
873            if (this==other) {
874                return 0;
875            }
876            if (numerator == other.numerator && denominator == other.denominator) {
877                return 0;
878            }
879    
880            // otherwise see which is less
881            long first = (long) numerator * (long) other.denominator;
882            long second = (long) other.numerator * (long) denominator;
883            if (first == second) {
884                return 0;
885            } else if (first < second) {
886                return -1;
887            } else {
888                return 1;
889            }
890        }
891    
892        /**
893         * <p>Gets the fraction as a <code>String</code>.</p>
894         *
895         * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always.
896         *
897         * @return a <code>String</code> form of the fraction
898         */
899        public String toString() {
900            if (toString == null) {
901                toString = new StrBuilder(32)
902                    .append(getNumerator())
903                    .append('/')
904                    .append(getDenominator()).toString();
905            }
906            return toString;
907        }
908    
909        /**
910         * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p>
911         *
912         * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'.
913         * If the whole number is zero it will be ommitted. If the numerator is zero,
914         * only the whole number is returned.</p>
915         *
916         * @return a <code>String</code> form of the fraction
917         */
918        public String toProperString() {
919            if (toProperString == null) {
920                if (numerator == 0) {
921                    toProperString = "0";
922                } else if (numerator == denominator) {
923                    toProperString = "1";
924                } else if (numerator == -1 * denominator) {
925                    toProperString = "-1";
926                } else if ((numerator>0?-numerator:numerator) < -denominator) {
927                    // note that we do the magnitude comparison test above with
928                    // NEGATIVE (not positive) numbers, since negative numbers
929                    // have a larger range.  otherwise numerator==Integer.MIN_VALUE
930                    // is handled incorrectly.
931                    int properNumerator = getProperNumerator();
932                    if (properNumerator == 0) {
933                        toProperString = Integer.toString(getProperWhole());
934                    } else {
935                        toProperString = new StrBuilder(32)
936                            .append(getProperWhole()).append(' ')
937                            .append(properNumerator).append('/')
938                            .append(getDenominator()).toString();
939                    }
940                } else {
941                    toProperString = new StrBuilder(32)
942                        .append(getNumerator()).append('/')
943                        .append(getDenominator()).toString();
944                }
945            }
946            return toProperString;
947        }
948    }