001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.lang.math; 018 019 import java.math.BigInteger; 020 021 import org.apache.commons.lang.text.StrBuilder; 022 023 /** 024 * <p><code>Fraction</code> is a <code>Number</code> implementation that 025 * stores fractions accurately.</p> 026 * 027 * <p>This class is immutable, and interoperable with most methods that accept 028 * a <code>Number</code>.</p> 029 * 030 * @author Apache Software Foundation 031 * @author Travis Reeder 032 * @author Tim O'Brien 033 * @author Pete Gieser 034 * @author C. Scott Ananian 035 * @since 2.0 036 * @version $Id: Fraction.java 1057072 2011-01-10 01:55:57Z niallp $ 037 */ 038 public final class Fraction extends Number implements Comparable { 039 040 /** 041 * Required for serialization support. Lang version 2.0. 042 * 043 * @see java.io.Serializable 044 */ 045 private static final long serialVersionUID = 65382027393090L; 046 047 /** 048 * <code>Fraction</code> representation of 0. 049 */ 050 public static final Fraction ZERO = new Fraction(0, 1); 051 /** 052 * <code>Fraction</code> representation of 1. 053 */ 054 public static final Fraction ONE = new Fraction(1, 1); 055 /** 056 * <code>Fraction</code> representation of 1/2. 057 */ 058 public static final Fraction ONE_HALF = new Fraction(1, 2); 059 /** 060 * <code>Fraction</code> representation of 1/3. 061 */ 062 public static final Fraction ONE_THIRD = new Fraction(1, 3); 063 /** 064 * <code>Fraction</code> representation of 2/3. 065 */ 066 public static final Fraction TWO_THIRDS = new Fraction(2, 3); 067 /** 068 * <code>Fraction</code> representation of 1/4. 069 */ 070 public static final Fraction ONE_QUARTER = new Fraction(1, 4); 071 /** 072 * <code>Fraction</code> representation of 2/4. 073 */ 074 public static final Fraction TWO_QUARTERS = new Fraction(2, 4); 075 /** 076 * <code>Fraction</code> representation of 3/4. 077 */ 078 public static final Fraction THREE_QUARTERS = new Fraction(3, 4); 079 /** 080 * <code>Fraction</code> representation of 1/5. 081 */ 082 public static final Fraction ONE_FIFTH = new Fraction(1, 5); 083 /** 084 * <code>Fraction</code> representation of 2/5. 085 */ 086 public static final Fraction TWO_FIFTHS = new Fraction(2, 5); 087 /** 088 * <code>Fraction</code> representation of 3/5. 089 */ 090 public static final Fraction THREE_FIFTHS = new Fraction(3, 5); 091 /** 092 * <code>Fraction</code> representation of 4/5. 093 */ 094 public static final Fraction FOUR_FIFTHS = new Fraction(4, 5); 095 096 097 /** 098 * The numerator number part of the fraction (the three in three sevenths). 099 */ 100 private final int numerator; 101 /** 102 * The denominator number part of the fraction (the seven in three sevenths). 103 */ 104 private final int denominator; 105 106 /** 107 * Cached output hashCode (class is immutable). 108 */ 109 private transient int hashCode = 0; 110 /** 111 * Cached output toString (class is immutable). 112 */ 113 private transient String toString = null; 114 /** 115 * Cached output toProperString (class is immutable). 116 */ 117 private transient String toProperString = null; 118 119 /** 120 * <p>Constructs a <code>Fraction</code> instance with the 2 parts 121 * of a fraction Y/Z.</p> 122 * 123 * @param numerator the numerator, for example the three in 'three sevenths' 124 * @param denominator the denominator, for example the seven in 'three sevenths' 125 */ 126 private Fraction(int numerator, int denominator) { 127 super(); 128 this.numerator = numerator; 129 this.denominator = denominator; 130 } 131 132 /** 133 * <p>Creates a <code>Fraction</code> instance with the 2 parts 134 * of a fraction Y/Z.</p> 135 * 136 * <p>Any negative signs are resolved to be on the numerator.</p> 137 * 138 * @param numerator the numerator, for example the three in 'three sevenths' 139 * @param denominator the denominator, for example the seven in 'three sevenths' 140 * @return a new fraction instance 141 * @throws ArithmeticException if the denomiator is <code>zero</code> 142 */ 143 public static Fraction getFraction(int numerator, int denominator) { 144 if (denominator == 0) { 145 throw new ArithmeticException("The denominator must not be zero"); 146 } 147 if (denominator < 0) { 148 if (numerator==Integer.MIN_VALUE || 149 denominator==Integer.MIN_VALUE) { 150 throw new ArithmeticException("overflow: can't negate"); 151 } 152 numerator = -numerator; 153 denominator = -denominator; 154 } 155 return new Fraction(numerator, denominator); 156 } 157 158 /** 159 * <p>Creates a <code>Fraction</code> instance with the 3 parts 160 * of a fraction X Y/Z.</p> 161 * 162 * <p>The negative sign must be passed in on the whole number part.</p> 163 * 164 * @param whole the whole number, for example the one in 'one and three sevenths' 165 * @param numerator the numerator, for example the three in 'one and three sevenths' 166 * @param denominator the denominator, for example the seven in 'one and three sevenths' 167 * @return a new fraction instance 168 * @throws ArithmeticException if the denomiator is <code>zero</code> 169 * @throws ArithmeticException if the denominator is negative 170 * @throws ArithmeticException if the numerator is negative 171 * @throws ArithmeticException if the resulting numerator exceeds 172 * <code>Integer.MAX_VALUE</code> 173 */ 174 public static Fraction getFraction(int whole, int numerator, int denominator) { 175 if (denominator == 0) { 176 throw new ArithmeticException("The denominator must not be zero"); 177 } 178 if (denominator < 0) { 179 throw new ArithmeticException("The denominator must not be negative"); 180 } 181 if (numerator < 0) { 182 throw new ArithmeticException("The numerator must not be negative"); 183 } 184 long numeratorValue; 185 if (whole < 0) { 186 numeratorValue = whole * (long)denominator - numerator; 187 } else { 188 numeratorValue = whole * (long)denominator + numerator; 189 } 190 if (numeratorValue < Integer.MIN_VALUE || 191 numeratorValue > Integer.MAX_VALUE) { 192 throw new ArithmeticException("Numerator too large to represent as an Integer."); 193 } 194 return new Fraction((int) numeratorValue, denominator); 195 } 196 197 /** 198 * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts 199 * of a fraction Y/Z.</p> 200 * 201 * <p>For example, if the input parameters represent 2/4, then the created 202 * fraction will be 1/2.</p> 203 * 204 * <p>Any negative signs are resolved to be on the numerator.</p> 205 * 206 * @param numerator the numerator, for example the three in 'three sevenths' 207 * @param denominator the denominator, for example the seven in 'three sevenths' 208 * @return a new fraction instance, with the numerator and denominator reduced 209 * @throws ArithmeticException if the denominator is <code>zero</code> 210 */ 211 public static Fraction getReducedFraction(int numerator, int denominator) { 212 if (denominator == 0) { 213 throw new ArithmeticException("The denominator must not be zero"); 214 } 215 if (numerator==0) { 216 return ZERO; // normalize zero. 217 } 218 // allow 2^k/-2^31 as a valid fraction (where k>0) 219 if (denominator==Integer.MIN_VALUE && (numerator&1)==0) { 220 numerator/=2; denominator/=2; 221 } 222 if (denominator < 0) { 223 if (numerator==Integer.MIN_VALUE || 224 denominator==Integer.MIN_VALUE) { 225 throw new ArithmeticException("overflow: can't negate"); 226 } 227 numerator = -numerator; 228 denominator = -denominator; 229 } 230 // simplify fraction. 231 int gcd = greatestCommonDivisor(numerator, denominator); 232 numerator /= gcd; 233 denominator /= gcd; 234 return new Fraction(numerator, denominator); 235 } 236 237 /** 238 * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p> 239 * 240 * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/"> 241 * continued fraction algorithm</a>, computing a maximum of 242 * 25 convergents and bounding the denominator by 10,000.</p> 243 * 244 * @param value the double value to convert 245 * @return a new fraction instance that is close to the value 246 * @throws ArithmeticException if <code>|value| > Integer.MAX_VALUE</code> 247 * or <code>value = NaN</code> 248 * @throws ArithmeticException if the calculated denominator is <code>zero</code> 249 * @throws ArithmeticException if the the algorithm does not converge 250 */ 251 public static Fraction getFraction(double value) { 252 int sign = (value < 0 ? -1 : 1); 253 value = Math.abs(value); 254 if (value > Integer.MAX_VALUE || Double.isNaN(value)) { 255 throw new ArithmeticException 256 ("The value must not be greater than Integer.MAX_VALUE or NaN"); 257 } 258 int wholeNumber = (int) value; 259 value -= wholeNumber; 260 261 int numer0 = 0; // the pre-previous 262 int denom0 = 1; // the pre-previous 263 int numer1 = 1; // the previous 264 int denom1 = 0; // the previous 265 int numer2 = 0; // the current, setup in calculation 266 int denom2 = 0; // the current, setup in calculation 267 int a1 = (int) value; 268 int a2 = 0; 269 double x1 = 1; 270 double x2 = 0; 271 double y1 = value - a1; 272 double y2 = 0; 273 double delta1, delta2 = Double.MAX_VALUE; 274 double fraction; 275 int i = 1; 276 // System.out.println("---"); 277 do { 278 delta1 = delta2; 279 a2 = (int) (x1 / y1); 280 x2 = y1; 281 y2 = x1 - a2 * y1; 282 numer2 = a1 * numer1 + numer0; 283 denom2 = a1 * denom1 + denom0; 284 fraction = (double) numer2 / (double) denom2; 285 delta2 = Math.abs(value - fraction); 286 // System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1); 287 a1 = a2; 288 x1 = x2; 289 y1 = y2; 290 numer0 = numer1; 291 denom0 = denom1; 292 numer1 = numer2; 293 denom1 = denom2; 294 i++; 295 // System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2); 296 } while ((delta1 > delta2) && (denom2 <= 10000) && (denom2 > 0) && (i < 25)); 297 if (i == 25) { 298 throw new ArithmeticException("Unable to convert double to fraction"); 299 } 300 return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0); 301 } 302 303 /** 304 * <p>Creates a Fraction from a <code>String</code>.</p> 305 * 306 * <p>The formats accepted are:</p> 307 * 308 * <ol> 309 * <li><code>double</code> String containing a dot</li> 310 * <li>'X Y/Z'</li> 311 * <li>'Y/Z'</li> 312 * <li>'X' (a simple whole number)</li> 313 * </ol> 314 * and a .</p> 315 * 316 * @param str the string to parse, must not be <code>null</code> 317 * @return the new <code>Fraction</code> instance 318 * @throws IllegalArgumentException if the string is <code>null</code> 319 * @throws NumberFormatException if the number format is invalid 320 */ 321 public static Fraction getFraction(String str) { 322 if (str == null) { 323 throw new IllegalArgumentException("The string must not be null"); 324 } 325 // parse double format 326 int pos = str.indexOf('.'); 327 if (pos >= 0) { 328 return getFraction(Double.parseDouble(str)); 329 } 330 331 // parse X Y/Z format 332 pos = str.indexOf(' '); 333 if (pos > 0) { 334 int whole = Integer.parseInt(str.substring(0, pos)); 335 str = str.substring(pos + 1); 336 pos = str.indexOf('/'); 337 if (pos < 0) { 338 throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z"); 339 } else { 340 int numer = Integer.parseInt(str.substring(0, pos)); 341 int denom = Integer.parseInt(str.substring(pos + 1)); 342 return getFraction(whole, numer, denom); 343 } 344 } 345 346 // parse Y/Z format 347 pos = str.indexOf('/'); 348 if (pos < 0) { 349 // simple whole number 350 return getFraction(Integer.parseInt(str), 1); 351 } else { 352 int numer = Integer.parseInt(str.substring(0, pos)); 353 int denom = Integer.parseInt(str.substring(pos + 1)); 354 return getFraction(numer, denom); 355 } 356 } 357 358 // Accessors 359 //------------------------------------------------------------------- 360 361 /** 362 * <p>Gets the numerator part of the fraction.</p> 363 * 364 * <p>This method may return a value greater than the denominator, an 365 * improper fraction, such as the seven in 7/4.</p> 366 * 367 * @return the numerator fraction part 368 */ 369 public int getNumerator() { 370 return numerator; 371 } 372 373 /** 374 * <p>Gets the denominator part of the fraction.</p> 375 * 376 * @return the denominator fraction part 377 */ 378 public int getDenominator() { 379 return denominator; 380 } 381 382 /** 383 * <p>Gets the proper numerator, always positive.</p> 384 * 385 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 386 * This method returns the 3 from the proper fraction.</p> 387 * 388 * <p>If the fraction is negative such as -7/4, it can be resolved into 389 * -1 3/4, so this method returns the positive proper numerator, 3.</p> 390 * 391 * @return the numerator fraction part of a proper fraction, always positive 392 */ 393 public int getProperNumerator() { 394 return Math.abs(numerator % denominator); 395 } 396 397 /** 398 * <p>Gets the proper whole part of the fraction.</p> 399 * 400 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 401 * This method returns the 1 from the proper fraction.</p> 402 * 403 * <p>If the fraction is negative such as -7/4, it can be resolved into 404 * -1 3/4, so this method returns the positive whole part -1.</p> 405 * 406 * @return the whole fraction part of a proper fraction, that includes the sign 407 */ 408 public int getProperWhole() { 409 return numerator / denominator; 410 } 411 412 // Number methods 413 //------------------------------------------------------------------- 414 415 /** 416 * <p>Gets the fraction as an <code>int</code>. This returns the whole number 417 * part of the fraction.</p> 418 * 419 * @return the whole number fraction part 420 */ 421 public int intValue() { 422 return numerator / denominator; 423 } 424 425 /** 426 * <p>Gets the fraction as a <code>long</code>. This returns the whole number 427 * part of the fraction.</p> 428 * 429 * @return the whole number fraction part 430 */ 431 public long longValue() { 432 return (long) numerator / denominator; 433 } 434 435 /** 436 * <p>Gets the fraction as a <code>float</code>. This calculates the fraction 437 * as the numerator divided by denominator.</p> 438 * 439 * @return the fraction as a <code>float</code> 440 */ 441 public float floatValue() { 442 return ((float) numerator) / ((float) denominator); 443 } 444 445 /** 446 * <p>Gets the fraction as a <code>double</code>. This calculates the fraction 447 * as the numerator divided by denominator.</p> 448 * 449 * @return the fraction as a <code>double</code> 450 */ 451 public double doubleValue() { 452 return ((double) numerator) / ((double) denominator); 453 } 454 455 // Calculations 456 //------------------------------------------------------------------- 457 458 /** 459 * <p>Reduce the fraction to the smallest values for the numerator and 460 * denominator, returning the result.</p> 461 * 462 * <p>For example, if this fraction represents 2/4, then the result 463 * will be 1/2.</p> 464 * 465 * @return a new reduced fraction instance, or this if no simplification possible 466 */ 467 public Fraction reduce() { 468 if (numerator == 0) { 469 return equals(ZERO) ? this : ZERO; 470 } 471 int gcd = greatestCommonDivisor(Math.abs(numerator), denominator); 472 if (gcd == 1) { 473 return this; 474 } 475 return Fraction.getFraction(numerator / gcd, denominator / gcd); 476 } 477 478 /** 479 * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p> 480 * 481 * <p>The returned fraction is not reduced.</p> 482 * 483 * @return a new fraction instance with the numerator and denominator 484 * inverted. 485 * @throws ArithmeticException if the fraction represents zero. 486 */ 487 public Fraction invert() { 488 if (numerator == 0) { 489 throw new ArithmeticException("Unable to invert zero."); 490 } 491 if (numerator==Integer.MIN_VALUE) { 492 throw new ArithmeticException("overflow: can't negate numerator"); 493 } 494 if (numerator<0) { 495 return new Fraction(-denominator, -numerator); 496 } else { 497 return new Fraction(denominator, numerator); 498 } 499 } 500 501 /** 502 * <p>Gets a fraction that is the negative (-fraction) of this one.</p> 503 * 504 * <p>The returned fraction is not reduced.</p> 505 * 506 * @return a new fraction instance with the opposite signed numerator 507 */ 508 public Fraction negate() { 509 // the positive range is one smaller than the negative range of an int. 510 if (numerator==Integer.MIN_VALUE) { 511 throw new ArithmeticException("overflow: too large to negate"); 512 } 513 return new Fraction(-numerator, denominator); 514 } 515 516 /** 517 * <p>Gets a fraction that is the positive equivalent of this one.</p> 518 * <p>More precisely: <code>(fraction >= 0 ? this : -fraction)</code></p> 519 * 520 * <p>The returned fraction is not reduced.</p> 521 * 522 * @return <code>this</code> if it is positive, or a new positive fraction 523 * instance with the opposite signed numerator 524 */ 525 public Fraction abs() { 526 if (numerator >= 0) { 527 return this; 528 } 529 return negate(); 530 } 531 532 /** 533 * <p>Gets a fraction that is raised to the passed in power.</p> 534 * 535 * <p>The returned fraction is in reduced form.</p> 536 * 537 * @param power the power to raise the fraction to 538 * @return <code>this</code> if the power is one, <code>ONE</code> if the power 539 * is zero (even if the fraction equals ZERO) or a new fraction instance 540 * raised to the appropriate power 541 * @throws ArithmeticException if the resulting numerator or denominator exceeds 542 * <code>Integer.MAX_VALUE</code> 543 */ 544 public Fraction pow(int power) { 545 if (power == 1) { 546 return this; 547 } else if (power == 0) { 548 return ONE; 549 } else if (power < 0) { 550 if (power==Integer.MIN_VALUE) { // MIN_VALUE can't be negated. 551 return this.invert().pow(2).pow(-(power/2)); 552 } 553 return this.invert().pow(-power); 554 } else { 555 Fraction f = this.multiplyBy(this); 556 if ((power % 2) == 0) { // if even... 557 return f.pow(power/2); 558 } else { // if odd... 559 return f.pow(power/2).multiplyBy(this); 560 } 561 } 562 } 563 564 /** 565 * <p>Gets the greatest common divisor of the absolute value of 566 * two numbers, using the "binary gcd" method which avoids 567 * division and modulo operations. See Knuth 4.5.2 algorithm B. 568 * This algorithm is due to Josef Stein (1961).</p> 569 * 570 * @param u a non-zero number 571 * @param v a non-zero number 572 * @return the greatest common divisor, never zero 573 */ 574 private static int greatestCommonDivisor(int u, int v) { 575 //if either op. is abs 0 or 1, return 1: 576 if (Math.abs(u) <= 1 || Math.abs(v) <= 1) { 577 return 1; 578 } 579 // keep u and v negative, as negative integers range down to 580 // -2^31, while positive numbers can only be as large as 2^31-1 581 // (i.e. we can't necessarily negate a negative number without 582 // overflow) 583 if (u>0) { u=-u; } // make u negative 584 if (v>0) { v=-v; } // make v negative 585 // B1. [Find power of 2] 586 int k=0; 587 while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even... 588 u/=2; v/=2; k++; // cast out twos. 589 } 590 if (k==31) { 591 throw new ArithmeticException("overflow: gcd is 2^31"); 592 } 593 // B2. Initialize: u and v have been divided by 2^k and at least 594 // one is odd. 595 int t = ((u&1)==1) ? v : -(u/2)/*B3*/; 596 // t negative: u was odd, v may be even (t replaces v) 597 // t positive: u was even, v is odd (t replaces u) 598 do { 599 /* assert u<0 && v<0; */ 600 // B4/B3: cast out twos from t. 601 while ((t&1)==0) { // while t is even.. 602 t/=2; // cast out twos 603 } 604 // B5 [reset max(u,v)] 605 if (t>0) { 606 u = -t; 607 } else { 608 v = t; 609 } 610 // B6/B3. at this point both u and v should be odd. 611 t = (v - u)/2; 612 // |u| larger: t positive (replace u) 613 // |v| larger: t negative (replace v) 614 } while (t!=0); 615 return -u*(1<<k); // gcd is u*2^k 616 } 617 618 // Arithmetic 619 //------------------------------------------------------------------- 620 621 /** 622 * Multiply two integers, checking for overflow. 623 * 624 * @param x a factor 625 * @param y a factor 626 * @return the product <code>x*y</code> 627 * @throws ArithmeticException if the result can not be represented as 628 * an int 629 */ 630 private static int mulAndCheck(int x, int y) { 631 long m = ((long)x)*((long)y); 632 if (m < Integer.MIN_VALUE || 633 m > Integer.MAX_VALUE) { 634 throw new ArithmeticException("overflow: mul"); 635 } 636 return (int)m; 637 } 638 639 /** 640 * Multiply two non-negative integers, checking for overflow. 641 * 642 * @param x a non-negative factor 643 * @param y a non-negative factor 644 * @return the product <code>x*y</code> 645 * @throws ArithmeticException if the result can not be represented as 646 * an int 647 */ 648 private static int mulPosAndCheck(int x, int y) { 649 /* assert x>=0 && y>=0; */ 650 long m = ((long)x)*((long)y); 651 if (m > Integer.MAX_VALUE) { 652 throw new ArithmeticException("overflow: mulPos"); 653 } 654 return (int)m; 655 } 656 657 /** 658 * Add two integers, checking for overflow. 659 * 660 * @param x an addend 661 * @param y an addend 662 * @return the sum <code>x+y</code> 663 * @throws ArithmeticException if the result can not be represented as 664 * an int 665 */ 666 private static int addAndCheck(int x, int y) { 667 long s = (long)x+(long)y; 668 if (s < Integer.MIN_VALUE || 669 s > Integer.MAX_VALUE) { 670 throw new ArithmeticException("overflow: add"); 671 } 672 return (int)s; 673 } 674 675 /** 676 * Subtract two integers, checking for overflow. 677 * 678 * @param x the minuend 679 * @param y the subtrahend 680 * @return the difference <code>x-y</code> 681 * @throws ArithmeticException if the result can not be represented as 682 * an int 683 */ 684 private static int subAndCheck(int x, int y) { 685 long s = (long)x-(long)y; 686 if (s < Integer.MIN_VALUE || 687 s > Integer.MAX_VALUE) { 688 throw new ArithmeticException("overflow: add"); 689 } 690 return (int)s; 691 } 692 693 /** 694 * <p>Adds the value of this fraction to another, returning the result in reduced form. 695 * The algorithm follows Knuth, 4.5.1.</p> 696 * 697 * @param fraction the fraction to add, must not be <code>null</code> 698 * @return a <code>Fraction</code> instance with the resulting values 699 * @throws IllegalArgumentException if the fraction is <code>null</code> 700 * @throws ArithmeticException if the resulting numerator or denominator exceeds 701 * <code>Integer.MAX_VALUE</code> 702 */ 703 public Fraction add(Fraction fraction) { 704 return addSub(fraction, true /* add */); 705 } 706 707 /** 708 * <p>Subtracts the value of another fraction from the value of this one, 709 * returning the result in reduced form.</p> 710 * 711 * @param fraction the fraction to subtract, must not be <code>null</code> 712 * @return a <code>Fraction</code> instance with the resulting values 713 * @throws IllegalArgumentException if the fraction is <code>null</code> 714 * @throws ArithmeticException if the resulting numerator or denominator 715 * cannot be represented in an <code>int</code>. 716 */ 717 public Fraction subtract(Fraction fraction) { 718 return addSub(fraction, false /* subtract */); 719 } 720 721 /** 722 * Implement add and subtract using algorithm described in Knuth 4.5.1. 723 * 724 * @param fraction the fraction to subtract, must not be <code>null</code> 725 * @param isAdd true to add, false to subtract 726 * @return a <code>Fraction</code> instance with the resulting values 727 * @throws IllegalArgumentException if the fraction is <code>null</code> 728 * @throws ArithmeticException if the resulting numerator or denominator 729 * cannot be represented in an <code>int</code>. 730 */ 731 private Fraction addSub(Fraction fraction, boolean isAdd) { 732 if (fraction == null) { 733 throw new IllegalArgumentException("The fraction must not be null"); 734 } 735 // zero is identity for addition. 736 if (numerator == 0) { 737 return isAdd ? fraction : fraction.negate(); 738 } 739 if (fraction.numerator == 0) { 740 return this; 741 } 742 // if denominators are randomly distributed, d1 will be 1 about 61% 743 // of the time. 744 int d1 = greatestCommonDivisor(denominator, fraction.denominator); 745 if (d1==1) { 746 // result is ( (u*v' +/- u'v) / u'v') 747 int uvp = mulAndCheck(numerator, fraction.denominator); 748 int upv = mulAndCheck(fraction.numerator, denominator); 749 return new Fraction 750 (isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), 751 mulPosAndCheck(denominator, fraction.denominator)); 752 } 753 // the quantity 't' requires 65 bits of precision; see knuth 4.5.1 754 // exercise 7. we're going to use a BigInteger. 755 // t = u(v'/d1) +/- v(u'/d1) 756 BigInteger uvp = BigInteger.valueOf(numerator) 757 .multiply(BigInteger.valueOf(fraction.denominator/d1)); 758 BigInteger upv = BigInteger.valueOf(fraction.numerator) 759 .multiply(BigInteger.valueOf(denominator/d1)); 760 BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv); 761 // but d2 doesn't need extra precision because 762 // d2 = gcd(t,d1) = gcd(t mod d1, d1) 763 int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue(); 764 int d2 = (tmodd1==0)?d1:greatestCommonDivisor(tmodd1, d1); 765 766 // result is (t/d2) / (u'/d1)(v'/d2) 767 BigInteger w = t.divide(BigInteger.valueOf(d2)); 768 if (w.bitLength() > 31) { 769 throw new ArithmeticException 770 ("overflow: numerator too large after multiply"); 771 } 772 return new Fraction 773 (w.intValue(), 774 mulPosAndCheck(denominator/d1, fraction.denominator/d2)); 775 } 776 777 /** 778 * <p>Multiplies the value of this fraction by another, returning the 779 * result in reduced form.</p> 780 * 781 * @param fraction the fraction to multiply by, must not be <code>null</code> 782 * @return a <code>Fraction</code> instance with the resulting values 783 * @throws IllegalArgumentException if the fraction is <code>null</code> 784 * @throws ArithmeticException if the resulting numerator or denominator exceeds 785 * <code>Integer.MAX_VALUE</code> 786 */ 787 public Fraction multiplyBy(Fraction fraction) { 788 if (fraction == null) { 789 throw new IllegalArgumentException("The fraction must not be null"); 790 } 791 if (numerator == 0 || fraction.numerator == 0) { 792 return ZERO; 793 } 794 // knuth 4.5.1 795 // make sure we don't overflow unless the result *must* overflow. 796 int d1 = greatestCommonDivisor(numerator, fraction.denominator); 797 int d2 = greatestCommonDivisor(fraction.numerator, denominator); 798 return getReducedFraction 799 (mulAndCheck(numerator/d1, fraction.numerator/d2), 800 mulPosAndCheck(denominator/d2, fraction.denominator/d1)); 801 } 802 803 /** 804 * <p>Divide the value of this fraction by another.</p> 805 * 806 * @param fraction the fraction to divide by, must not be <code>null</code> 807 * @return a <code>Fraction</code> instance with the resulting values 808 * @throws IllegalArgumentException if the fraction is <code>null</code> 809 * @throws ArithmeticException if the fraction to divide by is zero 810 * @throws ArithmeticException if the resulting numerator or denominator exceeds 811 * <code>Integer.MAX_VALUE</code> 812 */ 813 public Fraction divideBy(Fraction fraction) { 814 if (fraction == null) { 815 throw new IllegalArgumentException("The fraction must not be null"); 816 } 817 if (fraction.numerator == 0) { 818 throw new ArithmeticException("The fraction to divide by must not be zero"); 819 } 820 return multiplyBy(fraction.invert()); 821 } 822 823 // Basics 824 //------------------------------------------------------------------- 825 826 /** 827 * <p>Compares this fraction to another object to test if they are equal.</p>. 828 * 829 * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p> 830 * 831 * @param obj the reference object with which to compare 832 * @return <code>true</code> if this object is equal 833 */ 834 public boolean equals(Object obj) { 835 if (obj == this) { 836 return true; 837 } 838 if (obj instanceof Fraction == false) { 839 return false; 840 } 841 Fraction other = (Fraction) obj; 842 return (getNumerator() == other.getNumerator() && 843 getDenominator() == other.getDenominator()); 844 } 845 846 /** 847 * <p>Gets a hashCode for the fraction.</p> 848 * 849 * @return a hash code value for this object 850 */ 851 public int hashCode() { 852 if (hashCode == 0) { 853 // hashcode update should be atomic. 854 hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator(); 855 } 856 return hashCode; 857 } 858 859 /** 860 * <p>Compares this object to another based on size.</p> 861 * 862 * <p>Note: this class has a natural ordering that is inconsistent 863 * with equals, because, for example, equals treats 1/2 and 2/4 as 864 * different, whereas compareTo treats them as equal. 865 * 866 * @param object the object to compare to 867 * @return -1 if this is less, 0 if equal, +1 if greater 868 * @throws ClassCastException if the object is not a <code>Fraction</code> 869 * @throws NullPointerException if the object is <code>null</code> 870 */ 871 public int compareTo(Object object) { 872 Fraction other = (Fraction) object; 873 if (this==other) { 874 return 0; 875 } 876 if (numerator == other.numerator && denominator == other.denominator) { 877 return 0; 878 } 879 880 // otherwise see which is less 881 long first = (long) numerator * (long) other.denominator; 882 long second = (long) other.numerator * (long) denominator; 883 if (first == second) { 884 return 0; 885 } else if (first < second) { 886 return -1; 887 } else { 888 return 1; 889 } 890 } 891 892 /** 893 * <p>Gets the fraction as a <code>String</code>.</p> 894 * 895 * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always. 896 * 897 * @return a <code>String</code> form of the fraction 898 */ 899 public String toString() { 900 if (toString == null) { 901 toString = new StrBuilder(32) 902 .append(getNumerator()) 903 .append('/') 904 .append(getDenominator()).toString(); 905 } 906 return toString; 907 } 908 909 /** 910 * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p> 911 * 912 * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'. 913 * If the whole number is zero it will be ommitted. If the numerator is zero, 914 * only the whole number is returned.</p> 915 * 916 * @return a <code>String</code> form of the fraction 917 */ 918 public String toProperString() { 919 if (toProperString == null) { 920 if (numerator == 0) { 921 toProperString = "0"; 922 } else if (numerator == denominator) { 923 toProperString = "1"; 924 } else if (numerator == -1 * denominator) { 925 toProperString = "-1"; 926 } else if ((numerator>0?-numerator:numerator) < -denominator) { 927 // note that we do the magnitude comparison test above with 928 // NEGATIVE (not positive) numbers, since negative numbers 929 // have a larger range. otherwise numerator==Integer.MIN_VALUE 930 // is handled incorrectly. 931 int properNumerator = getProperNumerator(); 932 if (properNumerator == 0) { 933 toProperString = Integer.toString(getProperWhole()); 934 } else { 935 toProperString = new StrBuilder(32) 936 .append(getProperWhole()).append(' ') 937 .append(properNumerator).append('/') 938 .append(getDenominator()).toString(); 939 } 940 } else { 941 toProperString = new StrBuilder(32) 942 .append(getNumerator()).append('/') 943 .append(getDenominator()).toString(); 944 } 945 } 946 return toProperString; 947 } 948 }