001 /* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 package org.apache.commons.lang3.math; 018 019 import java.math.BigInteger; 020 021 /** 022 * <p><code>Fraction</code> is a <code>Number</code> implementation that 023 * stores fractions accurately.</p> 024 * 025 * <p>This class is immutable, and interoperable with most methods that accept 026 * a <code>Number</code>.</p> 027 * 028 * @author Apache Software Foundation 029 * @author Travis Reeder 030 * @author Tim O'Brien 031 * @author Pete Gieser 032 * @author C. Scott Ananian 033 * @since 2.0 034 * @version $Id: Fraction.java 889215 2009-12-10 11:56:38Z bayard $ 035 */ 036 public final class Fraction extends Number implements Comparable<Fraction> { 037 038 /** 039 * Required for serialization support. Lang version 2.0. 040 * 041 * @see java.io.Serializable 042 */ 043 private static final long serialVersionUID = 65382027393090L; 044 045 /** 046 * <code>Fraction</code> representation of 0. 047 */ 048 public static final Fraction ZERO = new Fraction(0, 1); 049 /** 050 * <code>Fraction</code> representation of 1. 051 */ 052 public static final Fraction ONE = new Fraction(1, 1); 053 /** 054 * <code>Fraction</code> representation of 1/2. 055 */ 056 public static final Fraction ONE_HALF = new Fraction(1, 2); 057 /** 058 * <code>Fraction</code> representation of 1/3. 059 */ 060 public static final Fraction ONE_THIRD = new Fraction(1, 3); 061 /** 062 * <code>Fraction</code> representation of 2/3. 063 */ 064 public static final Fraction TWO_THIRDS = new Fraction(2, 3); 065 /** 066 * <code>Fraction</code> representation of 1/4. 067 */ 068 public static final Fraction ONE_QUARTER = new Fraction(1, 4); 069 /** 070 * <code>Fraction</code> representation of 2/4. 071 */ 072 public static final Fraction TWO_QUARTERS = new Fraction(2, 4); 073 /** 074 * <code>Fraction</code> representation of 3/4. 075 */ 076 public static final Fraction THREE_QUARTERS = new Fraction(3, 4); 077 /** 078 * <code>Fraction</code> representation of 1/5. 079 */ 080 public static final Fraction ONE_FIFTH = new Fraction(1, 5); 081 /** 082 * <code>Fraction</code> representation of 2/5. 083 */ 084 public static final Fraction TWO_FIFTHS = new Fraction(2, 5); 085 /** 086 * <code>Fraction</code> representation of 3/5. 087 */ 088 public static final Fraction THREE_FIFTHS = new Fraction(3, 5); 089 /** 090 * <code>Fraction</code> representation of 4/5. 091 */ 092 public static final Fraction FOUR_FIFTHS = new Fraction(4, 5); 093 094 095 /** 096 * The numerator number part of the fraction (the three in three sevenths). 097 */ 098 private final int numerator; 099 /** 100 * The denominator number part of the fraction (the seven in three sevenths). 101 */ 102 private final int denominator; 103 104 /** 105 * Cached output hashCode (class is immutable). 106 */ 107 private transient int hashCode = 0; 108 /** 109 * Cached output toString (class is immutable). 110 */ 111 private transient String toString = null; 112 /** 113 * Cached output toProperString (class is immutable). 114 */ 115 private transient String toProperString = null; 116 117 /** 118 * <p>Constructs a <code>Fraction</code> instance with the 2 parts 119 * of a fraction Y/Z.</p> 120 * 121 * @param numerator the numerator, for example the three in 'three sevenths' 122 * @param denominator the denominator, for example the seven in 'three sevenths' 123 */ 124 private Fraction(int numerator, int denominator) { 125 super(); 126 this.numerator = numerator; 127 this.denominator = denominator; 128 } 129 130 /** 131 * <p>Creates a <code>Fraction</code> instance with the 2 parts 132 * of a fraction Y/Z.</p> 133 * 134 * <p>Any negative signs are resolved to be on the numerator.</p> 135 * 136 * @param numerator the numerator, for example the three in 'three sevenths' 137 * @param denominator the denominator, for example the seven in 'three sevenths' 138 * @return a new fraction instance 139 * @throws ArithmeticException if the denomiator is <code>zero</code> 140 */ 141 public static Fraction getFraction(int numerator, int denominator) { 142 if (denominator == 0) { 143 throw new ArithmeticException("The denominator must not be zero"); 144 } 145 if (denominator < 0) { 146 if (numerator==Integer.MIN_VALUE || 147 denominator==Integer.MIN_VALUE) { 148 throw new ArithmeticException("overflow: can't negate"); 149 } 150 numerator = -numerator; 151 denominator = -denominator; 152 } 153 return new Fraction(numerator, denominator); 154 } 155 156 /** 157 * <p>Creates a <code>Fraction</code> instance with the 3 parts 158 * of a fraction X Y/Z.</p> 159 * 160 * <p>The negative sign must be passed in on the whole number part.</p> 161 * 162 * @param whole the whole number, for example the one in 'one and three sevenths' 163 * @param numerator the numerator, for example the three in 'one and three sevenths' 164 * @param denominator the denominator, for example the seven in 'one and three sevenths' 165 * @return a new fraction instance 166 * @throws ArithmeticException if the denomiator is <code>zero</code> 167 * @throws ArithmeticException if the denominator is negative 168 * @throws ArithmeticException if the numerator is negative 169 * @throws ArithmeticException if the resulting numerator exceeds 170 * <code>Integer.MAX_VALUE</code> 171 */ 172 public static Fraction getFraction(int whole, int numerator, int denominator) { 173 if (denominator == 0) { 174 throw new ArithmeticException("The denominator must not be zero"); 175 } 176 if (denominator < 0) { 177 throw new ArithmeticException("The denominator must not be negative"); 178 } 179 if (numerator < 0) { 180 throw new ArithmeticException("The numerator must not be negative"); 181 } 182 long numeratorValue; 183 if (whole < 0) { 184 numeratorValue = whole * (long)denominator - numerator; 185 } else { 186 numeratorValue = whole * (long)denominator + numerator; 187 } 188 if (numeratorValue < Integer.MIN_VALUE || 189 numeratorValue > Integer.MAX_VALUE) { 190 throw new ArithmeticException("Numerator too large to represent as an Integer."); 191 } 192 return new Fraction((int) numeratorValue, denominator); 193 } 194 195 /** 196 * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts 197 * of a fraction Y/Z.</p> 198 * 199 * <p>For example, if the input parameters represent 2/4, then the created 200 * fraction will be 1/2.</p> 201 * 202 * <p>Any negative signs are resolved to be on the numerator.</p> 203 * 204 * @param numerator the numerator, for example the three in 'three sevenths' 205 * @param denominator the denominator, for example the seven in 'three sevenths' 206 * @return a new fraction instance, with the numerator and denominator reduced 207 * @throws ArithmeticException if the denominator is <code>zero</code> 208 */ 209 public static Fraction getReducedFraction(int numerator, int denominator) { 210 if (denominator == 0) { 211 throw new ArithmeticException("The denominator must not be zero"); 212 } 213 if (numerator==0) { 214 return ZERO; // normalize zero. 215 } 216 // allow 2^k/-2^31 as a valid fraction (where k>0) 217 if (denominator==Integer.MIN_VALUE && (numerator&1)==0) { 218 numerator/=2; denominator/=2; 219 } 220 if (denominator < 0) { 221 if (numerator==Integer.MIN_VALUE || 222 denominator==Integer.MIN_VALUE) { 223 throw new ArithmeticException("overflow: can't negate"); 224 } 225 numerator = -numerator; 226 denominator = -denominator; 227 } 228 // simplify fraction. 229 int gcd = greatestCommonDivisor(numerator, denominator); 230 numerator /= gcd; 231 denominator /= gcd; 232 return new Fraction(numerator, denominator); 233 } 234 235 /** 236 * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p> 237 * 238 * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/"> 239 * continued fraction algorithm</a>, computing a maximum of 240 * 25 convergents and bounding the denominator by 10,000.</p> 241 * 242 * @param value the double value to convert 243 * @return a new fraction instance that is close to the value 244 * @throws ArithmeticException if <code>|value| > Integer.MAX_VALUE</code> 245 * or <code>value = NaN</code> 246 * @throws ArithmeticException if the calculated denominator is <code>zero</code> 247 * @throws ArithmeticException if the the algorithm does not converge 248 */ 249 public static Fraction getFraction(double value) { 250 int sign = (value < 0 ? -1 : 1); 251 value = Math.abs(value); 252 if (value > Integer.MAX_VALUE || Double.isNaN(value)) { 253 throw new ArithmeticException 254 ("The value must not be greater than Integer.MAX_VALUE or NaN"); 255 } 256 int wholeNumber = (int) value; 257 value -= wholeNumber; 258 259 int numer0 = 0; // the pre-previous 260 int denom0 = 1; // the pre-previous 261 int numer1 = 1; // the previous 262 int denom1 = 0; // the previous 263 int numer2 = 0; // the current, setup in calculation 264 int denom2 = 0; // the current, setup in calculation 265 int a1 = (int) value; 266 int a2 = 0; 267 double x1 = 1; 268 double x2 = 0; 269 double y1 = value - a1; 270 double y2 = 0; 271 double delta1, delta2 = Double.MAX_VALUE; 272 double fraction; 273 int i = 1; 274 // System.out.println("---"); 275 do { 276 delta1 = delta2; 277 a2 = (int) (x1 / y1); 278 x2 = y1; 279 y2 = x1 - a2 * y1; 280 numer2 = a1 * numer1 + numer0; 281 denom2 = a1 * denom1 + denom0; 282 fraction = (double) numer2 / (double) denom2; 283 delta2 = Math.abs(value - fraction); 284 // System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1); 285 a1 = a2; 286 x1 = x2; 287 y1 = y2; 288 numer0 = numer1; 289 denom0 = denom1; 290 numer1 = numer2; 291 denom1 = denom2; 292 i++; 293 // System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2); 294 } while ((delta1 > delta2) && (denom2 <= 10000) && (denom2 > 0) && (i < 25)); 295 if (i == 25) { 296 throw new ArithmeticException("Unable to convert double to fraction"); 297 } 298 return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0); 299 } 300 301 /** 302 * <p>Creates a Fraction from a <code>String</code>.</p> 303 * 304 * <p>The formats accepted are:</p> 305 * 306 * <ol> 307 * <li><code>double</code> String containing a dot</li> 308 * <li>'X Y/Z'</li> 309 * <li>'Y/Z'</li> 310 * <li>'X' (a simple whole number)</li> 311 * </ol> 312 * and a .</p> 313 * 314 * @param str the string to parse, must not be <code>null</code> 315 * @return the new <code>Fraction</code> instance 316 * @throws IllegalArgumentException if the string is <code>null</code> 317 * @throws NumberFormatException if the number format is invalid 318 */ 319 public static Fraction getFraction(String str) { 320 if (str == null) { 321 throw new IllegalArgumentException("The string must not be null"); 322 } 323 // parse double format 324 int pos = str.indexOf('.'); 325 if (pos >= 0) { 326 return getFraction(Double.parseDouble(str)); 327 } 328 329 // parse X Y/Z format 330 pos = str.indexOf(' '); 331 if (pos > 0) { 332 int whole = Integer.parseInt(str.substring(0, pos)); 333 str = str.substring(pos + 1); 334 pos = str.indexOf('/'); 335 if (pos < 0) { 336 throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z"); 337 } else { 338 int numer = Integer.parseInt(str.substring(0, pos)); 339 int denom = Integer.parseInt(str.substring(pos + 1)); 340 return getFraction(whole, numer, denom); 341 } 342 } 343 344 // parse Y/Z format 345 pos = str.indexOf('/'); 346 if (pos < 0) { 347 // simple whole number 348 return getFraction(Integer.parseInt(str), 1); 349 } else { 350 int numer = Integer.parseInt(str.substring(0, pos)); 351 int denom = Integer.parseInt(str.substring(pos + 1)); 352 return getFraction(numer, denom); 353 } 354 } 355 356 // Accessors 357 //------------------------------------------------------------------- 358 359 /** 360 * <p>Gets the numerator part of the fraction.</p> 361 * 362 * <p>This method may return a value greater than the denominator, an 363 * improper fraction, such as the seven in 7/4.</p> 364 * 365 * @return the numerator fraction part 366 */ 367 public int getNumerator() { 368 return numerator; 369 } 370 371 /** 372 * <p>Gets the denominator part of the fraction.</p> 373 * 374 * @return the denominator fraction part 375 */ 376 public int getDenominator() { 377 return denominator; 378 } 379 380 /** 381 * <p>Gets the proper numerator, always positive.</p> 382 * 383 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 384 * This method returns the 3 from the proper fraction.</p> 385 * 386 * <p>If the fraction is negative such as -7/4, it can be resolved into 387 * -1 3/4, so this method returns the positive proper numerator, 3.</p> 388 * 389 * @return the numerator fraction part of a proper fraction, always positive 390 */ 391 public int getProperNumerator() { 392 return Math.abs(numerator % denominator); 393 } 394 395 /** 396 * <p>Gets the proper whole part of the fraction.</p> 397 * 398 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 399 * This method returns the 1 from the proper fraction.</p> 400 * 401 * <p>If the fraction is negative such as -7/4, it can be resolved into 402 * -1 3/4, so this method returns the positive whole part -1.</p> 403 * 404 * @return the whole fraction part of a proper fraction, that includes the sign 405 */ 406 public int getProperWhole() { 407 return numerator / denominator; 408 } 409 410 // Number methods 411 //------------------------------------------------------------------- 412 413 /** 414 * <p>Gets the fraction as an <code>int</code>. This returns the whole number 415 * part of the fraction.</p> 416 * 417 * @return the whole number fraction part 418 */ 419 @Override 420 public int intValue() { 421 return numerator / denominator; 422 } 423 424 /** 425 * <p>Gets the fraction as a <code>long</code>. This returns the whole number 426 * part of the fraction.</p> 427 * 428 * @return the whole number fraction part 429 */ 430 @Override 431 public long longValue() { 432 return (long) numerator / denominator; 433 } 434 435 /** 436 * <p>Gets the fraction as a <code>float</code>. This calculates the fraction 437 * as the numerator divided by denominator.</p> 438 * 439 * @return the fraction as a <code>float</code> 440 */ 441 @Override 442 public float floatValue() { 443 return ((float) numerator) / ((float) denominator); 444 } 445 446 /** 447 * <p>Gets the fraction as a <code>double</code>. This calculates the fraction 448 * as the numerator divided by denominator.</p> 449 * 450 * @return the fraction as a <code>double</code> 451 */ 452 @Override 453 public double doubleValue() { 454 return ((double) numerator) / ((double) denominator); 455 } 456 457 // Calculations 458 //------------------------------------------------------------------- 459 460 /** 461 * <p>Reduce the fraction to the smallest values for the numerator and 462 * denominator, returning the result.</p> 463 * 464 * <p>For example, if this fraction represents 2/4, then the result 465 * will be 1/2.</p> 466 * 467 * @return a new reduced fraction instance, or this if no simplification possible 468 */ 469 public Fraction reduce() { 470 if (numerator == 0) { 471 return equals(ZERO) ? this : ZERO; 472 } 473 int gcd = greatestCommonDivisor(Math.abs(numerator), denominator); 474 if (gcd == 1) { 475 return this; 476 } 477 return Fraction.getFraction(numerator / gcd, denominator / gcd); 478 } 479 480 /** 481 * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p> 482 * 483 * <p>The returned fraction is not reduced.</p> 484 * 485 * @return a new fraction instance with the numerator and denominator 486 * inverted. 487 * @throws ArithmeticException if the fraction represents zero. 488 */ 489 public Fraction invert() { 490 if (numerator == 0) { 491 throw new ArithmeticException("Unable to invert zero."); 492 } 493 if (numerator==Integer.MIN_VALUE) { 494 throw new ArithmeticException("overflow: can't negate numerator"); 495 } 496 if (numerator<0) { 497 return new Fraction(-denominator, -numerator); 498 } else { 499 return new Fraction(denominator, numerator); 500 } 501 } 502 503 /** 504 * <p>Gets a fraction that is the negative (-fraction) of this one.</p> 505 * 506 * <p>The returned fraction is not reduced.</p> 507 * 508 * @return a new fraction instance with the opposite signed numerator 509 */ 510 public Fraction negate() { 511 // the positive range is one smaller than the negative range of an int. 512 if (numerator==Integer.MIN_VALUE) { 513 throw new ArithmeticException("overflow: too large to negate"); 514 } 515 return new Fraction(-numerator, denominator); 516 } 517 518 /** 519 * <p>Gets a fraction that is the positive equivalent of this one.</p> 520 * <p>More precisely: <code>(fraction >= 0 ? this : -fraction)</code></p> 521 * 522 * <p>The returned fraction is not reduced.</p> 523 * 524 * @return <code>this</code> if it is positive, or a new positive fraction 525 * instance with the opposite signed numerator 526 */ 527 public Fraction abs() { 528 if (numerator >= 0) { 529 return this; 530 } 531 return negate(); 532 } 533 534 /** 535 * <p>Gets a fraction that is raised to the passed in power.</p> 536 * 537 * <p>The returned fraction is in reduced form.</p> 538 * 539 * @param power the power to raise the fraction to 540 * @return <code>this</code> if the power is one, <code>ONE</code> if the power 541 * is zero (even if the fraction equals ZERO) or a new fraction instance 542 * raised to the appropriate power 543 * @throws ArithmeticException if the resulting numerator or denominator exceeds 544 * <code>Integer.MAX_VALUE</code> 545 */ 546 public Fraction pow(int power) { 547 if (power == 1) { 548 return this; 549 } else if (power == 0) { 550 return ONE; 551 } else if (power < 0) { 552 if (power==Integer.MIN_VALUE) { // MIN_VALUE can't be negated. 553 return this.invert().pow(2).pow(-(power/2)); 554 } 555 return this.invert().pow(-power); 556 } else { 557 Fraction f = this.multiplyBy(this); 558 if ((power % 2) == 0) { // if even... 559 return f.pow(power/2); 560 } else { // if odd... 561 return f.pow(power/2).multiplyBy(this); 562 } 563 } 564 } 565 566 /** 567 * <p>Gets the greatest common divisor of the absolute value of 568 * two numbers, using the "binary gcd" method which avoids 569 * division and modulo operations. See Knuth 4.5.2 algorithm B. 570 * This algorithm is due to Josef Stein (1961).</p> 571 * 572 * @param u a non-zero number 573 * @param v a non-zero number 574 * @return the greatest common divisor, never zero 575 */ 576 private static int greatestCommonDivisor(int u, int v) { 577 //if either op. is abs 0 or 1, return 1: 578 if (Math.abs(u) <= 1 || Math.abs(v) <= 1) { 579 return 1; 580 } 581 // keep u and v negative, as negative integers range down to 582 // -2^31, while positive numbers can only be as large as 2^31-1 583 // (i.e. we can't necessarily negate a negative number without 584 // overflow) 585 if (u>0) { u=-u; } // make u negative 586 if (v>0) { v=-v; } // make v negative 587 // B1. [Find power of 2] 588 int k=0; 589 while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even... 590 u/=2; v/=2; k++; // cast out twos. 591 } 592 if (k==31) { 593 throw new ArithmeticException("overflow: gcd is 2^31"); 594 } 595 // B2. Initialize: u and v have been divided by 2^k and at least 596 // one is odd. 597 int t = ((u&1)==1) ? v : -(u/2)/*B3*/; 598 // t negative: u was odd, v may be even (t replaces v) 599 // t positive: u was even, v is odd (t replaces u) 600 do { 601 /* assert u<0 && v<0; */ 602 // B4/B3: cast out twos from t. 603 while ((t&1)==0) { // while t is even.. 604 t/=2; // cast out twos 605 } 606 // B5 [reset max(u,v)] 607 if (t>0) { 608 u = -t; 609 } else { 610 v = t; 611 } 612 // B6/B3. at this point both u and v should be odd. 613 t = (v - u)/2; 614 // |u| larger: t positive (replace u) 615 // |v| larger: t negative (replace v) 616 } while (t!=0); 617 return -u*(1<<k); // gcd is u*2^k 618 } 619 620 // Arithmetic 621 //------------------------------------------------------------------- 622 623 /** 624 * Multiply two integers, checking for overflow. 625 * 626 * @param x a factor 627 * @param y a factor 628 * @return the product <code>x*y</code> 629 * @throws ArithmeticException if the result can not be represented as 630 * an int 631 */ 632 private static int mulAndCheck(int x, int y) { 633 long m = ((long)x)*((long)y); 634 if (m < Integer.MIN_VALUE || 635 m > Integer.MAX_VALUE) { 636 throw new ArithmeticException("overflow: mul"); 637 } 638 return (int)m; 639 } 640 641 /** 642 * Multiply two non-negative integers, checking for overflow. 643 * 644 * @param x a non-negative factor 645 * @param y a non-negative factor 646 * @return the product <code>x*y</code> 647 * @throws ArithmeticException if the result can not be represented as 648 * an int 649 */ 650 private static int mulPosAndCheck(int x, int y) { 651 /* assert x>=0 && y>=0; */ 652 long m = ((long)x)*((long)y); 653 if (m > Integer.MAX_VALUE) { 654 throw new ArithmeticException("overflow: mulPos"); 655 } 656 return (int)m; 657 } 658 659 /** 660 * Add two integers, checking for overflow. 661 * 662 * @param x an addend 663 * @param y an addend 664 * @return the sum <code>x+y</code> 665 * @throws ArithmeticException if the result can not be represented as 666 * an int 667 */ 668 private static int addAndCheck(int x, int y) { 669 long s = (long)x+(long)y; 670 if (s < Integer.MIN_VALUE || 671 s > Integer.MAX_VALUE) { 672 throw new ArithmeticException("overflow: add"); 673 } 674 return (int)s; 675 } 676 677 /** 678 * Subtract two integers, checking for overflow. 679 * 680 * @param x the minuend 681 * @param y the subtrahend 682 * @return the difference <code>x-y</code> 683 * @throws ArithmeticException if the result can not be represented as 684 * an int 685 */ 686 private static int subAndCheck(int x, int y) { 687 long s = (long)x-(long)y; 688 if (s < Integer.MIN_VALUE || 689 s > Integer.MAX_VALUE) { 690 throw new ArithmeticException("overflow: add"); 691 } 692 return (int)s; 693 } 694 695 /** 696 * <p>Adds the value of this fraction to another, returning the result in reduced form. 697 * The algorithm follows Knuth, 4.5.1.</p> 698 * 699 * @param fraction the fraction to add, must not be <code>null</code> 700 * @return a <code>Fraction</code> instance with the resulting values 701 * @throws IllegalArgumentException if the fraction is <code>null</code> 702 * @throws ArithmeticException if the resulting numerator or denominator exceeds 703 * <code>Integer.MAX_VALUE</code> 704 */ 705 public Fraction add(Fraction fraction) { 706 return addSub(fraction, true /* add */); 707 } 708 709 /** 710 * <p>Subtracts the value of another fraction from the value of this one, 711 * returning the result in reduced form.</p> 712 * 713 * @param fraction the fraction to subtract, must not be <code>null</code> 714 * @return a <code>Fraction</code> instance with the resulting values 715 * @throws IllegalArgumentException if the fraction is <code>null</code> 716 * @throws ArithmeticException if the resulting numerator or denominator 717 * cannot be represented in an <code>int</code>. 718 */ 719 public Fraction subtract(Fraction fraction) { 720 return addSub(fraction, false /* subtract */); 721 } 722 723 /** 724 * Implement add and subtract using algorithm described in Knuth 4.5.1. 725 * 726 * @param fraction the fraction to subtract, must not be <code>null</code> 727 * @param isAdd true to add, false to subtract 728 * @return a <code>Fraction</code> instance with the resulting values 729 * @throws IllegalArgumentException if the fraction is <code>null</code> 730 * @throws ArithmeticException if the resulting numerator or denominator 731 * cannot be represented in an <code>int</code>. 732 */ 733 private Fraction addSub(Fraction fraction, boolean isAdd) { 734 if (fraction == null) { 735 throw new IllegalArgumentException("The fraction must not be null"); 736 } 737 // zero is identity for addition. 738 if (numerator == 0) { 739 return isAdd ? fraction : fraction.negate(); 740 } 741 if (fraction.numerator == 0) { 742 return this; 743 } 744 // if denominators are randomly distributed, d1 will be 1 about 61% 745 // of the time. 746 int d1 = greatestCommonDivisor(denominator, fraction.denominator); 747 if (d1==1) { 748 // result is ( (u*v' +/- u'v) / u'v') 749 int uvp = mulAndCheck(numerator, fraction.denominator); 750 int upv = mulAndCheck(fraction.numerator, denominator); 751 return new Fraction 752 (isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), 753 mulPosAndCheck(denominator, fraction.denominator)); 754 } 755 // the quantity 't' requires 65 bits of precision; see knuth 4.5.1 756 // exercise 7. we're going to use a BigInteger. 757 // t = u(v'/d1) +/- v(u'/d1) 758 BigInteger uvp = BigInteger.valueOf(numerator) 759 .multiply(BigInteger.valueOf(fraction.denominator/d1)); 760 BigInteger upv = BigInteger.valueOf(fraction.numerator) 761 .multiply(BigInteger.valueOf(denominator/d1)); 762 BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv); 763 // but d2 doesn't need extra precision because 764 // d2 = gcd(t,d1) = gcd(t mod d1, d1) 765 int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue(); 766 int d2 = (tmodd1==0)?d1:greatestCommonDivisor(tmodd1, d1); 767 768 // result is (t/d2) / (u'/d1)(v'/d2) 769 BigInteger w = t.divide(BigInteger.valueOf(d2)); 770 if (w.bitLength() > 31) { 771 throw new ArithmeticException 772 ("overflow: numerator too large after multiply"); 773 } 774 return new Fraction 775 (w.intValue(), 776 mulPosAndCheck(denominator/d1, fraction.denominator/d2)); 777 } 778 779 /** 780 * <p>Multiplies the value of this fraction by another, returning the 781 * result in reduced form.</p> 782 * 783 * @param fraction the fraction to multiply by, must not be <code>null</code> 784 * @return a <code>Fraction</code> instance with the resulting values 785 * @throws IllegalArgumentException if the fraction is <code>null</code> 786 * @throws ArithmeticException if the resulting numerator or denominator exceeds 787 * <code>Integer.MAX_VALUE</code> 788 */ 789 public Fraction multiplyBy(Fraction fraction) { 790 if (fraction == null) { 791 throw new IllegalArgumentException("The fraction must not be null"); 792 } 793 if (numerator == 0 || fraction.numerator == 0) { 794 return ZERO; 795 } 796 // knuth 4.5.1 797 // make sure we don't overflow unless the result *must* overflow. 798 int d1 = greatestCommonDivisor(numerator, fraction.denominator); 799 int d2 = greatestCommonDivisor(fraction.numerator, denominator); 800 return getReducedFraction 801 (mulAndCheck(numerator/d1, fraction.numerator/d2), 802 mulPosAndCheck(denominator/d2, fraction.denominator/d1)); 803 } 804 805 /** 806 * <p>Divide the value of this fraction by another.</p> 807 * 808 * @param fraction the fraction to divide by, must not be <code>null</code> 809 * @return a <code>Fraction</code> instance with the resulting values 810 * @throws IllegalArgumentException if the fraction is <code>null</code> 811 * @throws ArithmeticException if the fraction to divide by is zero 812 * @throws ArithmeticException if the resulting numerator or denominator exceeds 813 * <code>Integer.MAX_VALUE</code> 814 */ 815 public Fraction divideBy(Fraction fraction) { 816 if (fraction == null) { 817 throw new IllegalArgumentException("The fraction must not be null"); 818 } 819 if (fraction.numerator == 0) { 820 throw new ArithmeticException("The fraction to divide by must not be zero"); 821 } 822 return multiplyBy(fraction.invert()); 823 } 824 825 // Basics 826 //------------------------------------------------------------------- 827 828 /** 829 * <p>Compares this fraction to another object to test if they are equal.</p>. 830 * 831 * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p> 832 * 833 * @param obj the reference object with which to compare 834 * @return <code>true</code> if this object is equal 835 */ 836 @Override 837 public boolean equals(Object obj) { 838 if (obj == this) { 839 return true; 840 } 841 if (obj instanceof Fraction == false) { 842 return false; 843 } 844 Fraction other = (Fraction) obj; 845 return (getNumerator() == other.getNumerator() && 846 getDenominator() == other.getDenominator()); 847 } 848 849 /** 850 * <p>Gets a hashCode for the fraction.</p> 851 * 852 * @return a hash code value for this object 853 */ 854 @Override 855 public int hashCode() { 856 if (hashCode == 0) { 857 // hashcode update should be atomic. 858 hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator(); 859 } 860 return hashCode; 861 } 862 863 /** 864 * <p>Compares this object to another based on size.</p> 865 * 866 * <p>Note: this class has a natural ordering that is inconsistent 867 * with equals, because, for example, equals treats 1/2 and 2/4 as 868 * different, whereas compareTo treats them as equal. 869 * 870 * @param other the object to compare to 871 * @return -1 if this is less, 0 if equal, +1 if greater 872 * @throws ClassCastException if the object is not a <code>Fraction</code> 873 * @throws NullPointerException if the object is <code>null</code> 874 */ 875 public int compareTo(Fraction other) { 876 if (this==other) { 877 return 0; 878 } 879 if (numerator == other.numerator && denominator == other.denominator) { 880 return 0; 881 } 882 883 // otherwise see which is less 884 long first = (long) numerator * (long) other.denominator; 885 long second = (long) other.numerator * (long) denominator; 886 if (first == second) { 887 return 0; 888 } else if (first < second) { 889 return -1; 890 } else { 891 return 1; 892 } 893 } 894 895 /** 896 * <p>Gets the fraction as a <code>String</code>.</p> 897 * 898 * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always. 899 * 900 * @return a <code>String</code> form of the fraction 901 */ 902 @Override 903 public String toString() { 904 if (toString == null) { 905 toString = new StringBuilder(32) 906 .append(getNumerator()) 907 .append('/') 908 .append(getDenominator()).toString(); 909 } 910 return toString; 911 } 912 913 /** 914 * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p> 915 * 916 * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'. 917 * If the whole number is zero it will be ommitted. If the numerator is zero, 918 * only the whole number is returned.</p> 919 * 920 * @return a <code>String</code> form of the fraction 921 */ 922 public String toProperString() { 923 if (toProperString == null) { 924 if (numerator == 0) { 925 toProperString = "0"; 926 } else if (numerator == denominator) { 927 toProperString = "1"; 928 } else if (numerator == -1 * denominator) { 929 toProperString = "-1"; 930 } else if ((numerator>0?-numerator:numerator) < -denominator) { 931 // note that we do the magnitude comparison test above with 932 // NEGATIVE (not positive) numbers, since negative numbers 933 // have a larger range. otherwise numerator==Integer.MIN_VALUE 934 // is handled incorrectly. 935 int properNumerator = getProperNumerator(); 936 if (properNumerator == 0) { 937 toProperString = Integer.toString(getProperWhole()); 938 } else { 939 toProperString = new StringBuilder(32) 940 .append(getProperWhole()).append(' ') 941 .append(properNumerator).append('/') 942 .append(getDenominator()).toString(); 943 } 944 } else { 945 toProperString = new StringBuilder(32) 946 .append(getNumerator()).append('/') 947 .append(getDenominator()).toString(); 948 } 949 } 950 return toProperString; 951 } 952 }