001    /*
002     * Licensed to the Apache Software Foundation (ASF) under one or more
003     * contributor license agreements.  See the NOTICE file distributed with
004     * this work for additional information regarding copyright ownership.
005     * The ASF licenses this file to You under the Apache License, Version 2.0
006     * (the "License"); you may not use this file except in compliance with
007     * the License.  You may obtain a copy of the License at
008     * 
009     *      http://www.apache.org/licenses/LICENSE-2.0
010     * 
011     * Unless required by applicable law or agreed to in writing, software
012     * distributed under the License is distributed on an "AS IS" BASIS,
013     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014     * See the License for the specific language governing permissions and
015     * limitations under the License.
016     */
017    package org.apache.commons.lang3.math;
018    
019    import java.math.BigInteger;
020    
021    /**
022     * <p><code>Fraction</code> is a <code>Number</code> implementation that
023     * stores fractions accurately.</p>
024     *
025     * <p>This class is immutable, and interoperable with most methods that accept
026     * a <code>Number</code>.</p>
027     *
028     * <p>Note that this class is intended for common use cases, it is <i>int</i>
029     * based and thus suffers from various overflow issues. For a BigInteger based 
030     * equivalent, please see the Commons Math BigFraction class. </p>
031     *
032     * @since 2.0
033     * @version $Id: Fraction.java 1088899 2011-04-05 05:31:27Z bayard $
034     */
035    public final class Fraction extends Number implements Comparable<Fraction> {
036    
037        /**
038         * Required for serialization support. Lang version 2.0.
039         * 
040         * @see java.io.Serializable
041         */
042        private static final long serialVersionUID = 65382027393090L;
043    
044        /**
045         * <code>Fraction</code> representation of 0.
046         */
047        public static final Fraction ZERO = new Fraction(0, 1);
048        /**
049         * <code>Fraction</code> representation of 1.
050         */
051        public static final Fraction ONE = new Fraction(1, 1);
052        /**
053         * <code>Fraction</code> representation of 1/2.
054         */
055        public static final Fraction ONE_HALF = new Fraction(1, 2);
056        /**
057         * <code>Fraction</code> representation of 1/3.
058         */
059        public static final Fraction ONE_THIRD = new Fraction(1, 3);
060        /**
061         * <code>Fraction</code> representation of 2/3.
062         */
063        public static final Fraction TWO_THIRDS = new Fraction(2, 3);
064        /**
065         * <code>Fraction</code> representation of 1/4.
066         */
067        public static final Fraction ONE_QUARTER = new Fraction(1, 4);
068        /**
069         * <code>Fraction</code> representation of 2/4.
070         */
071        public static final Fraction TWO_QUARTERS = new Fraction(2, 4);
072        /**
073         * <code>Fraction</code> representation of 3/4.
074         */
075        public static final Fraction THREE_QUARTERS = new Fraction(3, 4);
076        /**
077         * <code>Fraction</code> representation of 1/5.
078         */
079        public static final Fraction ONE_FIFTH = new Fraction(1, 5);
080        /**
081         * <code>Fraction</code> representation of 2/5.
082         */
083        public static final Fraction TWO_FIFTHS = new Fraction(2, 5);
084        /**
085         * <code>Fraction</code> representation of 3/5.
086         */
087        public static final Fraction THREE_FIFTHS = new Fraction(3, 5);
088        /**
089         * <code>Fraction</code> representation of 4/5.
090         */
091        public static final Fraction FOUR_FIFTHS = new Fraction(4, 5);
092    
093    
094        /**
095         * The numerator number part of the fraction (the three in three sevenths).
096         */
097        private final int numerator;
098        /**
099         * The denominator number part of the fraction (the seven in three sevenths).
100         */
101        private final int denominator;
102    
103        /**
104         * Cached output hashCode (class is immutable).
105         */
106        private transient int hashCode = 0;
107        /**
108         * Cached output toString (class is immutable).
109         */
110        private transient String toString = null;
111        /**
112         * Cached output toProperString (class is immutable).
113         */
114        private transient String toProperString = null;
115    
116        /**
117         * <p>Constructs a <code>Fraction</code> instance with the 2 parts
118         * of a fraction Y/Z.</p>
119         *
120         * @param numerator  the numerator, for example the three in 'three sevenths'
121         * @param denominator  the denominator, for example the seven in 'three sevenths'
122         */
123        private Fraction(int numerator, int denominator) {
124            super();
125            this.numerator = numerator;
126            this.denominator = denominator;
127        }
128    
129        /**
130         * <p>Creates a <code>Fraction</code> instance with the 2 parts
131         * of a fraction Y/Z.</p>
132         *
133         * <p>Any negative signs are resolved to be on the numerator.</p>
134         *
135         * @param numerator  the numerator, for example the three in 'three sevenths'
136         * @param denominator  the denominator, for example the seven in 'three sevenths'
137         * @return a new fraction instance
138         * @throws ArithmeticException if the denominator is <code>zero</code>
139         * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE}
140         */
141        public static Fraction getFraction(int numerator, int denominator) {
142            if (denominator == 0) {
143                throw new ArithmeticException("The denominator must not be zero");
144            }
145            if (denominator < 0) {
146                if (numerator==Integer.MIN_VALUE ||
147                        denominator==Integer.MIN_VALUE) {
148                    throw new ArithmeticException("overflow: can't negate");
149                }
150                numerator = -numerator;
151                denominator = -denominator;
152            }
153            return new Fraction(numerator, denominator);
154        }
155    
156        /**
157         * <p>Creates a <code>Fraction</code> instance with the 3 parts
158         * of a fraction X Y/Z.</p>
159         *
160         * <p>The negative sign must be passed in on the whole number part.</p>
161         *
162         * @param whole  the whole number, for example the one in 'one and three sevenths'
163         * @param numerator  the numerator, for example the three in 'one and three sevenths'
164         * @param denominator  the denominator, for example the seven in 'one and three sevenths'
165         * @return a new fraction instance
166         * @throws ArithmeticException if the denominator is <code>zero</code>
167         * @throws ArithmeticException if the denominator is negative
168         * @throws ArithmeticException if the numerator is negative
169         * @throws ArithmeticException if the resulting numerator exceeds 
170         *  <code>Integer.MAX_VALUE</code>
171         */
172        public static Fraction getFraction(int whole, int numerator, int denominator) {
173            if (denominator == 0) {
174                throw new ArithmeticException("The denominator must not be zero");
175            }
176            if (denominator < 0) {
177                throw new ArithmeticException("The denominator must not be negative");
178            }
179            if (numerator < 0) {
180                throw new ArithmeticException("The numerator must not be negative");
181            }
182            long numeratorValue;
183            if (whole < 0) {
184                numeratorValue = whole * (long)denominator - numerator;
185            } else {
186                numeratorValue = whole * (long)denominator + numerator;
187            }
188            if (numeratorValue < Integer.MIN_VALUE ||
189                    numeratorValue > Integer.MAX_VALUE)  {
190                throw new ArithmeticException("Numerator too large to represent as an Integer.");
191            }
192            return new Fraction((int) numeratorValue, denominator);
193        }
194    
195        /**
196         * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts
197         * of a fraction Y/Z.</p>
198         *
199         * <p>For example, if the input parameters represent 2/4, then the created
200         * fraction will be 1/2.</p>
201         *
202         * <p>Any negative signs are resolved to be on the numerator.</p>
203         *
204         * @param numerator  the numerator, for example the three in 'three sevenths'
205         * @param denominator  the denominator, for example the seven in 'three sevenths'
206         * @return a new fraction instance, with the numerator and denominator reduced
207         * @throws ArithmeticException if the denominator is <code>zero</code>
208         */
209        public static Fraction getReducedFraction(int numerator, int denominator) {
210            if (denominator == 0) {
211                throw new ArithmeticException("The denominator must not be zero");
212            }
213            if (numerator==0) {
214                return ZERO; // normalize zero.
215            }
216            // allow 2^k/-2^31 as a valid fraction (where k>0)
217            if (denominator==Integer.MIN_VALUE && (numerator&1)==0) {
218                numerator/=2; denominator/=2;
219            }
220            if (denominator < 0) {
221                if (numerator==Integer.MIN_VALUE ||
222                        denominator==Integer.MIN_VALUE) {
223                    throw new ArithmeticException("overflow: can't negate");
224                }
225                numerator = -numerator;
226                denominator = -denominator;
227            }
228            // simplify fraction.
229            int gcd = greatestCommonDivisor(numerator, denominator);
230            numerator /= gcd;
231            denominator /= gcd;
232            return new Fraction(numerator, denominator);
233        }
234    
235        /**
236         * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p>
237         *
238         * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/">
239         *  continued fraction algorithm</a>, computing a maximum of
240         *  25 convergents and bounding the denominator by 10,000.</p>
241         *
242         * @param value  the double value to convert
243         * @return a new fraction instance that is close to the value
244         * @throws ArithmeticException if <code>|value| > Integer.MAX_VALUE</code> 
245         *  or <code>value = NaN</code>
246         * @throws ArithmeticException if the calculated denominator is <code>zero</code>
247         * @throws ArithmeticException if the the algorithm does not converge
248         */
249        public static Fraction getFraction(double value) {
250            int sign = (value < 0 ? -1 : 1);
251            value = Math.abs(value);
252            if (value  > Integer.MAX_VALUE || Double.isNaN(value)) {
253                throw new ArithmeticException
254                    ("The value must not be greater than Integer.MAX_VALUE or NaN");
255            }
256            int wholeNumber = (int) value;
257            value -= wholeNumber;
258            
259            int numer0 = 0;  // the pre-previous
260            int denom0 = 1;  // the pre-previous
261            int numer1 = 1;  // the previous
262            int denom1 = 0;  // the previous
263            int numer2 = 0;  // the current, setup in calculation
264            int denom2 = 0;  // the current, setup in calculation
265            int a1 = (int) value;
266            int a2 = 0;
267            double x1 = 1;
268            double x2 = 0;
269            double y1 = value - a1;
270            double y2 = 0;
271            double delta1, delta2 = Double.MAX_VALUE;
272            double fraction;
273            int i = 1;
274    //        System.out.println("---");
275            do {
276                delta1 = delta2;
277                a2 = (int) (x1 / y1);
278                x2 = y1;
279                y2 = x1 - a2 * y1;
280                numer2 = a1 * numer1 + numer0;
281                denom2 = a1 * denom1 + denom0;
282                fraction = (double) numer2 / (double) denom2;
283                delta2 = Math.abs(value - fraction);
284    //            System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1);
285                a1 = a2;
286                x1 = x2;
287                y1 = y2;
288                numer0 = numer1;
289                denom0 = denom1;
290                numer1 = numer2;
291                denom1 = denom2;
292                i++;
293    //            System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2);
294            } while ((delta1 > delta2) && (denom2 <= 10000) && (denom2 > 0) && (i < 25));
295            if (i == 25) {
296                throw new ArithmeticException("Unable to convert double to fraction");
297            }
298            return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0);
299        }
300    
301        /**
302         * <p>Creates a Fraction from a <code>String</code>.</p>
303         *
304         * <p>The formats accepted are:</p>
305         *
306         * <ol>
307         *  <li><code>double</code> String containing a dot</li>
308         *  <li>'X Y/Z'</li>
309         *  <li>'Y/Z'</li>
310         *  <li>'X' (a simple whole number)</li>
311         * </ol>
312         * and a .</p>
313         *
314         * @param str  the string to parse, must not be <code>null</code>
315         * @return the new <code>Fraction</code> instance
316         * @throws IllegalArgumentException if the string is <code>null</code>
317         * @throws NumberFormatException if the number format is invalid
318         */
319        public static Fraction getFraction(String str) {
320            if (str == null) {
321                throw new IllegalArgumentException("The string must not be null");
322            }
323            // parse double format
324            int pos = str.indexOf('.');
325            if (pos >= 0) {
326                return getFraction(Double.parseDouble(str));
327            }
328    
329            // parse X Y/Z format
330            pos = str.indexOf(' ');
331            if (pos > 0) {
332                int whole = Integer.parseInt(str.substring(0, pos));
333                str = str.substring(pos + 1);
334                pos = str.indexOf('/');
335                if (pos < 0) {
336                    throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z");
337                } else {
338                    int numer = Integer.parseInt(str.substring(0, pos));
339                    int denom = Integer.parseInt(str.substring(pos + 1));
340                    return getFraction(whole, numer, denom);
341                }
342            }
343    
344            // parse Y/Z format
345            pos = str.indexOf('/');
346            if (pos < 0) {
347                // simple whole number
348                return getFraction(Integer.parseInt(str), 1);
349            } else {
350                int numer = Integer.parseInt(str.substring(0, pos));
351                int denom = Integer.parseInt(str.substring(pos + 1));
352                return getFraction(numer, denom);
353            }
354        }
355    
356        // Accessors
357        //-------------------------------------------------------------------
358    
359        /**
360         * <p>Gets the numerator part of the fraction.</p>
361         *
362         * <p>This method may return a value greater than the denominator, an
363         * improper fraction, such as the seven in 7/4.</p>
364         *
365         * @return the numerator fraction part
366         */
367        public int getNumerator() {
368            return numerator;
369        }
370    
371        /**
372         * <p>Gets the denominator part of the fraction.</p>
373         *
374         * @return the denominator fraction part
375         */
376        public int getDenominator() {
377            return denominator;
378        }
379    
380        /**
381         * <p>Gets the proper numerator, always positive.</p>
382         *
383         * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
384         * This method returns the 3 from the proper fraction.</p>
385         *
386         * <p>If the fraction is negative such as -7/4, it can be resolved into
387         * -1 3/4, so this method returns the positive proper numerator, 3.</p>
388         *
389         * @return the numerator fraction part of a proper fraction, always positive
390         */
391        public int getProperNumerator() {
392            return Math.abs(numerator % denominator);
393        }
394    
395        /**
396         * <p>Gets the proper whole part of the fraction.</p>
397         *
398         * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
399         * This method returns the 1 from the proper fraction.</p>
400         *
401         * <p>If the fraction is negative such as -7/4, it can be resolved into
402         * -1 3/4, so this method returns the positive whole part -1.</p>
403         *
404         * @return the whole fraction part of a proper fraction, that includes the sign
405         */
406        public int getProperWhole() {
407            return numerator / denominator;
408        }
409    
410        // Number methods
411        //-------------------------------------------------------------------
412    
413        /**
414         * <p>Gets the fraction as an <code>int</code>. This returns the whole number
415         * part of the fraction.</p>
416         *
417         * @return the whole number fraction part
418         */
419        @Override
420        public int intValue() {
421            return numerator / denominator;
422        }
423    
424        /**
425         * <p>Gets the fraction as a <code>long</code>. This returns the whole number
426         * part of the fraction.</p>
427         *
428         * @return the whole number fraction part
429         */
430        @Override
431        public long longValue() {
432            return (long) numerator / denominator;
433        }
434    
435        /**
436         * <p>Gets the fraction as a <code>float</code>. This calculates the fraction
437         * as the numerator divided by denominator.</p>
438         *
439         * @return the fraction as a <code>float</code>
440         */
441        @Override
442        public float floatValue() {
443            return ((float) numerator) / ((float) denominator);
444        }
445    
446        /**
447         * <p>Gets the fraction as a <code>double</code>. This calculates the fraction
448         * as the numerator divided by denominator.</p>
449         *
450         * @return the fraction as a <code>double</code>
451         */
452        @Override
453        public double doubleValue() {
454            return ((double) numerator) / ((double) denominator);
455        }
456    
457        // Calculations
458        //-------------------------------------------------------------------
459    
460        /**
461         * <p>Reduce the fraction to the smallest values for the numerator and
462         * denominator, returning the result.</p>
463         * 
464         * <p>For example, if this fraction represents 2/4, then the result
465         * will be 1/2.</p>
466         *
467         * @return a new reduced fraction instance, or this if no simplification possible
468         */
469        public Fraction reduce() {
470            if (numerator == 0) {
471                return equals(ZERO) ? this : ZERO;
472            }
473            int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
474            if (gcd == 1) {
475                return this;
476            }
477            return Fraction.getFraction(numerator / gcd, denominator / gcd);
478        }
479    
480        /**
481         * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p>
482         * 
483         * <p>The returned fraction is not reduced.</p>
484         *
485         * @return a new fraction instance with the numerator and denominator
486         *         inverted.
487         * @throws ArithmeticException if the fraction represents zero.
488         */
489        public Fraction invert() {
490            if (numerator == 0) {
491                throw new ArithmeticException("Unable to invert zero.");
492            }
493            if (numerator==Integer.MIN_VALUE) {
494                throw new ArithmeticException("overflow: can't negate numerator");
495            }
496            if (numerator<0) {
497                return new Fraction(-denominator, -numerator);
498            } else {
499                return new Fraction(denominator, numerator);
500            }
501        }
502    
503        /**
504         * <p>Gets a fraction that is the negative (-fraction) of this one.</p>
505         *
506         * <p>The returned fraction is not reduced.</p>
507         *
508         * @return a new fraction instance with the opposite signed numerator
509         */
510        public Fraction negate() {
511            // the positive range is one smaller than the negative range of an int.
512            if (numerator==Integer.MIN_VALUE) {
513                throw new ArithmeticException("overflow: too large to negate");
514            }
515            return new Fraction(-numerator, denominator);
516        }
517    
518        /**
519         * <p>Gets a fraction that is the positive equivalent of this one.</p>
520         * <p>More precisely: <code>(fraction >= 0 ? this : -fraction)</code></p>
521         *
522         * <p>The returned fraction is not reduced.</p>
523         *
524         * @return <code>this</code> if it is positive, or a new positive fraction
525         *  instance with the opposite signed numerator
526         */
527        public Fraction abs() {
528            if (numerator >= 0) {
529                return this;
530            }
531            return negate();
532        }
533    
534        /**
535         * <p>Gets a fraction that is raised to the passed in power.</p>
536         *
537         * <p>The returned fraction is in reduced form.</p>
538         *
539         * @param power  the power to raise the fraction to
540         * @return <code>this</code> if the power is one, <code>ONE</code> if the power
541         * is zero (even if the fraction equals ZERO) or a new fraction instance 
542         * raised to the appropriate power
543         * @throws ArithmeticException if the resulting numerator or denominator exceeds
544         *  <code>Integer.MAX_VALUE</code>
545         */
546        public Fraction pow(int power) {
547            if (power == 1) {
548                return this;
549            } else if (power == 0) {
550                return ONE;
551            } else if (power < 0) {
552                if (power==Integer.MIN_VALUE) { // MIN_VALUE can't be negated.
553                    return this.invert().pow(2).pow(-(power/2));
554                }
555                return this.invert().pow(-power);
556            } else {
557                Fraction f = this.multiplyBy(this);
558                if ((power % 2) == 0) { // if even...
559                    return f.pow(power/2);
560                } else { // if odd...
561                    return f.pow(power/2).multiplyBy(this);
562                }
563            }
564        }
565    
566        /**
567         * <p>Gets the greatest common divisor of the absolute value of
568         * two numbers, using the "binary gcd" method which avoids
569         * division and modulo operations.  See Knuth 4.5.2 algorithm B.
570         * This algorithm is due to Josef Stein (1961).</p>
571         *
572         * @param u  a non-zero number
573         * @param v  a non-zero number
574         * @return the greatest common divisor, never zero
575         */
576        private static int greatestCommonDivisor(int u, int v) {
577            // From Commons Math:
578            if ((u == 0) || (v == 0)) {
579                if ((u == Integer.MIN_VALUE) || (v == Integer.MIN_VALUE)) {
580                    throw new ArithmeticException("overflow: gcd is 2^31");
581                }
582                return Math.abs(u) + Math.abs(v);
583            }
584            //if either operand is abs 1, return 1:
585            if (Math.abs(u) == 1 || Math.abs(v) == 1) {
586                return 1;
587            }
588            // keep u and v negative, as negative integers range down to
589            // -2^31, while positive numbers can only be as large as 2^31-1
590            // (i.e. we can't necessarily negate a negative number without
591            // overflow)
592            if (u>0) { u=-u; } // make u negative
593            if (v>0) { v=-v; } // make v negative
594            // B1. [Find power of 2]
595            int k=0;
596            while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even...
597                u/=2; v/=2; k++; // cast out twos.
598            }
599            if (k==31) {
600                throw new ArithmeticException("overflow: gcd is 2^31");
601            }
602            // B2. Initialize: u and v have been divided by 2^k and at least
603            //     one is odd.
604            int t = ((u&1)==1) ? v : -(u/2)/*B3*/;
605            // t negative: u was odd, v may be even (t replaces v)
606            // t positive: u was even, v is odd (t replaces u)
607            do {
608                /* assert u<0 && v<0; */
609                // B4/B3: cast out twos from t.
610                while ((t&1)==0) { // while t is even..
611                    t/=2; // cast out twos
612                }
613                // B5 [reset max(u,v)]
614                if (t>0) {
615                    u = -t;
616                } else {
617                    v = t;
618                }
619                // B6/B3. at this point both u and v should be odd.
620                t = (v - u)/2;
621                // |u| larger: t positive (replace u)
622                // |v| larger: t negative (replace v)
623            } while (t!=0);
624            return -u*(1<<k); // gcd is u*2^k
625        }
626    
627        // Arithmetic
628        //-------------------------------------------------------------------
629    
630        /** 
631         * Multiply two integers, checking for overflow.
632         * 
633         * @param x a factor
634         * @param y a factor
635         * @return the product <code>x*y</code>
636         * @throws ArithmeticException if the result can not be represented as
637         *                             an int
638         */
639        private static int mulAndCheck(int x, int y) {
640            long m = ((long)x)*((long)y);
641            if (m < Integer.MIN_VALUE ||
642                m > Integer.MAX_VALUE) {
643                throw new ArithmeticException("overflow: mul");
644            }
645            return (int)m;
646        }
647        
648        /**
649         *  Multiply two non-negative integers, checking for overflow.
650         * 
651         * @param x a non-negative factor
652         * @param y a non-negative factor
653         * @return the product <code>x*y</code>
654         * @throws ArithmeticException if the result can not be represented as
655         * an int
656         */
657        private static int mulPosAndCheck(int x, int y) {
658            /* assert x>=0 && y>=0; */
659            long m = ((long)x)*((long)y);
660            if (m > Integer.MAX_VALUE) {
661                throw new ArithmeticException("overflow: mulPos");
662            }
663            return (int)m;
664        }
665        
666        /** 
667         * Add two integers, checking for overflow.
668         * 
669         * @param x an addend
670         * @param y an addend
671         * @return the sum <code>x+y</code>
672         * @throws ArithmeticException if the result can not be represented as
673         * an int
674         */
675        private static int addAndCheck(int x, int y) {
676            long s = (long)x+(long)y;
677            if (s < Integer.MIN_VALUE ||
678                s > Integer.MAX_VALUE) {
679                throw new ArithmeticException("overflow: add");
680            }
681            return (int)s;
682        }
683        
684        /** 
685         * Subtract two integers, checking for overflow.
686         * 
687         * @param x the minuend
688         * @param y the subtrahend
689         * @return the difference <code>x-y</code>
690         * @throws ArithmeticException if the result can not be represented as
691         * an int
692         */
693        private static int subAndCheck(int x, int y) {
694            long s = (long)x-(long)y;
695            if (s < Integer.MIN_VALUE ||
696                s > Integer.MAX_VALUE) {
697                throw new ArithmeticException("overflow: add");
698            }
699            return (int)s;
700        }
701        
702        /**
703         * <p>Adds the value of this fraction to another, returning the result in reduced form.
704         * The algorithm follows Knuth, 4.5.1.</p>
705         *
706         * @param fraction  the fraction to add, must not be <code>null</code>
707         * @return a <code>Fraction</code> instance with the resulting values
708         * @throws IllegalArgumentException if the fraction is <code>null</code>
709         * @throws ArithmeticException if the resulting numerator or denominator exceeds
710         *  <code>Integer.MAX_VALUE</code>
711         */
712        public Fraction add(Fraction fraction) {
713            return addSub(fraction, true /* add */);
714        }
715    
716        /**
717         * <p>Subtracts the value of another fraction from the value of this one, 
718         * returning the result in reduced form.</p>
719         *
720         * @param fraction  the fraction to subtract, must not be <code>null</code>
721         * @return a <code>Fraction</code> instance with the resulting values
722         * @throws IllegalArgumentException if the fraction is <code>null</code>
723         * @throws ArithmeticException if the resulting numerator or denominator
724         *   cannot be represented in an <code>int</code>.
725         */
726        public Fraction subtract(Fraction fraction) {
727            return addSub(fraction, false /* subtract */);
728        }
729    
730        /** 
731         * Implement add and subtract using algorithm described in Knuth 4.5.1.
732         * 
733         * @param fraction the fraction to subtract, must not be <code>null</code>
734         * @param isAdd true to add, false to subtract
735         * @return a <code>Fraction</code> instance with the resulting values
736         * @throws IllegalArgumentException if the fraction is <code>null</code>
737         * @throws ArithmeticException if the resulting numerator or denominator
738         *   cannot be represented in an <code>int</code>.
739         */
740        private Fraction addSub(Fraction fraction, boolean isAdd) {
741            if (fraction == null) {
742                throw new IllegalArgumentException("The fraction must not be null");
743            }
744            // zero is identity for addition.
745            if (numerator == 0) {
746                return isAdd ? fraction : fraction.negate();
747            }
748            if (fraction.numerator == 0) {
749                return this;
750            }     
751            // if denominators are randomly distributed, d1 will be 1 about 61%
752            // of the time.
753            int d1 = greatestCommonDivisor(denominator, fraction.denominator);
754            if (d1==1) {
755                // result is ( (u*v' +/- u'v) / u'v')
756                int uvp = mulAndCheck(numerator, fraction.denominator);
757                int upv = mulAndCheck(fraction.numerator, denominator);
758                return new Fraction
759                    (isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv),
760                     mulPosAndCheck(denominator, fraction.denominator));
761            }
762            // the quantity 't' requires 65 bits of precision; see knuth 4.5.1
763            // exercise 7.  we're going to use a BigInteger.
764            // t = u(v'/d1) +/- v(u'/d1)
765            BigInteger uvp = BigInteger.valueOf(numerator)
766                .multiply(BigInteger.valueOf(fraction.denominator/d1));
767            BigInteger upv = BigInteger.valueOf(fraction.numerator)
768                .multiply(BigInteger.valueOf(denominator/d1));
769            BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
770            // but d2 doesn't need extra precision because
771            // d2 = gcd(t,d1) = gcd(t mod d1, d1)
772            int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
773            int d2 = (tmodd1==0)?d1:greatestCommonDivisor(tmodd1, d1);
774    
775            // result is (t/d2) / (u'/d1)(v'/d2)
776            BigInteger w = t.divide(BigInteger.valueOf(d2));
777            if (w.bitLength() > 31) {
778                throw new ArithmeticException
779                    ("overflow: numerator too large after multiply");
780            }
781            return new Fraction
782                (w.intValue(),
783                 mulPosAndCheck(denominator/d1, fraction.denominator/d2));
784        }
785    
786        /**
787         * <p>Multiplies the value of this fraction by another, returning the 
788         * result in reduced form.</p>
789         *
790         * @param fraction  the fraction to multiply by, must not be <code>null</code>
791         * @return a <code>Fraction</code> instance with the resulting values
792         * @throws IllegalArgumentException if the fraction is <code>null</code>
793         * @throws ArithmeticException if the resulting numerator or denominator exceeds
794         *  <code>Integer.MAX_VALUE</code>
795         */
796        public Fraction multiplyBy(Fraction fraction) {
797            if (fraction == null) {
798                throw new IllegalArgumentException("The fraction must not be null");
799            }
800            if (numerator == 0 || fraction.numerator == 0) {
801                return ZERO;
802            }
803            // knuth 4.5.1
804            // make sure we don't overflow unless the result *must* overflow.
805            int d1 = greatestCommonDivisor(numerator, fraction.denominator);
806            int d2 = greatestCommonDivisor(fraction.numerator, denominator);
807            return getReducedFraction
808                (mulAndCheck(numerator/d1, fraction.numerator/d2),
809                 mulPosAndCheck(denominator/d2, fraction.denominator/d1));
810        }
811    
812        /**
813         * <p>Divide the value of this fraction by another.</p>
814         *
815         * @param fraction  the fraction to divide by, must not be <code>null</code>
816         * @return a <code>Fraction</code> instance with the resulting values
817         * @throws IllegalArgumentException if the fraction is <code>null</code>
818         * @throws ArithmeticException if the fraction to divide by is zero
819         * @throws ArithmeticException if the resulting numerator or denominator exceeds
820         *  <code>Integer.MAX_VALUE</code>
821         */
822        public Fraction divideBy(Fraction fraction) {
823            if (fraction == null) {
824                throw new IllegalArgumentException("The fraction must not be null");
825            }
826            if (fraction.numerator == 0) {
827                throw new ArithmeticException("The fraction to divide by must not be zero");
828            }
829            return multiplyBy(fraction.invert());
830        }
831    
832        // Basics
833        //-------------------------------------------------------------------
834    
835        /**
836         * <p>Compares this fraction to another object to test if they are equal.</p>.
837         *
838         * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p>
839         *
840         * @param obj the reference object with which to compare
841         * @return <code>true</code> if this object is equal
842         */
843        @Override
844        public boolean equals(Object obj) {
845            if (obj == this) {
846                return true;
847            }
848            if (obj instanceof Fraction == false) {
849                return false;
850            }
851            Fraction other = (Fraction) obj;
852            return (getNumerator() == other.getNumerator() &&
853                    getDenominator() == other.getDenominator());
854        }
855    
856        /**
857         * <p>Gets a hashCode for the fraction.</p>
858         *
859         * @return a hash code value for this object
860         */
861        @Override
862        public int hashCode() {
863            if (hashCode == 0) {
864                // hashcode update should be atomic.
865                hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator();
866            }
867            return hashCode;
868        }
869    
870        /**
871         * <p>Compares this object to another based on size.</p>
872         *
873         * <p>Note: this class has a natural ordering that is inconsistent
874         * with equals, because, for example, equals treats 1/2 and 2/4 as
875         * different, whereas compareTo treats them as equal.
876         *
877         * @param other  the object to compare to
878         * @return -1 if this is less, 0 if equal, +1 if greater
879         * @throws ClassCastException if the object is not a <code>Fraction</code>
880         * @throws NullPointerException if the object is <code>null</code>
881         */
882        public int compareTo(Fraction other) {
883            if (this==other) {
884                return 0;
885            }
886            if (numerator == other.numerator && denominator == other.denominator) {
887                return 0;
888            }
889    
890            // otherwise see which is less
891            long first = (long) numerator * (long) other.denominator;
892            long second = (long) other.numerator * (long) denominator;
893            if (first == second) {
894                return 0;
895            } else if (first < second) {
896                return -1;
897            } else {
898                return 1;
899            }
900        }
901    
902        /**
903         * <p>Gets the fraction as a <code>String</code>.</p>
904         *
905         * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always.
906         *
907         * @return a <code>String</code> form of the fraction
908         */
909        @Override
910        public String toString() {
911            if (toString == null) {
912                toString = new StringBuilder(32)
913                    .append(getNumerator())
914                    .append('/')
915                    .append(getDenominator()).toString();
916            }
917            return toString;
918        }
919    
920        /**
921         * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p>
922         *
923         * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'.
924         * If the whole number is zero it will be ommitted. If the numerator is zero,
925         * only the whole number is returned.</p>
926         *
927         * @return a <code>String</code> form of the fraction
928         */
929        public String toProperString() {
930            if (toProperString == null) {
931                if (numerator == 0) {
932                    toProperString = "0";
933                } else if (numerator == denominator) {
934                    toProperString = "1";
935                } else if (numerator == -1 * denominator) {
936                    toProperString = "-1";
937                } else if ((numerator>0?-numerator:numerator) < -denominator) {
938                    // note that we do the magnitude comparison test above with
939                    // NEGATIVE (not positive) numbers, since negative numbers
940                    // have a larger range.  otherwise numerator==Integer.MIN_VALUE
941                    // is handled incorrectly.
942                    int properNumerator = getProperNumerator();
943                    if (properNumerator == 0) {
944                        toProperString = Integer.toString(getProperWhole());
945                    } else {
946                        toProperString = new StringBuilder(32)
947                            .append(getProperWhole()).append(' ')
948                            .append(properNumerator).append('/')
949                            .append(getDenominator()).toString();
950                    }
951                } else {
952                    toProperString = new StringBuilder(32)
953                        .append(getNumerator()).append('/')
954                        .append(getDenominator()).toString();
955                }
956            }
957            return toProperString;
958        }
959    }