001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.lang3.math; 018 019import java.math.BigInteger; 020 021/** 022 * <p><code>Fraction</code> is a <code>Number</code> implementation that 023 * stores fractions accurately.</p> 024 * 025 * <p>This class is immutable, and interoperable with most methods that accept 026 * a <code>Number</code>.</p> 027 * 028 * <p>Note that this class is intended for common use cases, it is <i>int</i> 029 * based and thus suffers from various overflow issues. For a BigInteger based 030 * equivalent, please see the Commons Math BigFraction class. </p> 031 * 032 * @since 2.0 033 * @version $Id: Fraction.java 1583482 2014-03-31 22:54:57Z niallp $ 034 */ 035public final class Fraction extends Number implements Comparable<Fraction> { 036 037 /** 038 * Required for serialization support. Lang version 2.0. 039 * 040 * @see java.io.Serializable 041 */ 042 private static final long serialVersionUID = 65382027393090L; 043 044 /** 045 * <code>Fraction</code> representation of 0. 046 */ 047 public static final Fraction ZERO = new Fraction(0, 1); 048 /** 049 * <code>Fraction</code> representation of 1. 050 */ 051 public static final Fraction ONE = new Fraction(1, 1); 052 /** 053 * <code>Fraction</code> representation of 1/2. 054 */ 055 public static final Fraction ONE_HALF = new Fraction(1, 2); 056 /** 057 * <code>Fraction</code> representation of 1/3. 058 */ 059 public static final Fraction ONE_THIRD = new Fraction(1, 3); 060 /** 061 * <code>Fraction</code> representation of 2/3. 062 */ 063 public static final Fraction TWO_THIRDS = new Fraction(2, 3); 064 /** 065 * <code>Fraction</code> representation of 1/4. 066 */ 067 public static final Fraction ONE_QUARTER = new Fraction(1, 4); 068 /** 069 * <code>Fraction</code> representation of 2/4. 070 */ 071 public static final Fraction TWO_QUARTERS = new Fraction(2, 4); 072 /** 073 * <code>Fraction</code> representation of 3/4. 074 */ 075 public static final Fraction THREE_QUARTERS = new Fraction(3, 4); 076 /** 077 * <code>Fraction</code> representation of 1/5. 078 */ 079 public static final Fraction ONE_FIFTH = new Fraction(1, 5); 080 /** 081 * <code>Fraction</code> representation of 2/5. 082 */ 083 public static final Fraction TWO_FIFTHS = new Fraction(2, 5); 084 /** 085 * <code>Fraction</code> representation of 3/5. 086 */ 087 public static final Fraction THREE_FIFTHS = new Fraction(3, 5); 088 /** 089 * <code>Fraction</code> representation of 4/5. 090 */ 091 public static final Fraction FOUR_FIFTHS = new Fraction(4, 5); 092 093 094 /** 095 * The numerator number part of the fraction (the three in three sevenths). 096 */ 097 private final int numerator; 098 /** 099 * The denominator number part of the fraction (the seven in three sevenths). 100 */ 101 private final int denominator; 102 103 /** 104 * Cached output hashCode (class is immutable). 105 */ 106 private transient int hashCode = 0; 107 /** 108 * Cached output toString (class is immutable). 109 */ 110 private transient String toString = null; 111 /** 112 * Cached output toProperString (class is immutable). 113 */ 114 private transient String toProperString = null; 115 116 /** 117 * <p>Constructs a <code>Fraction</code> instance with the 2 parts 118 * of a fraction Y/Z.</p> 119 * 120 * @param numerator the numerator, for example the three in 'three sevenths' 121 * @param denominator the denominator, for example the seven in 'three sevenths' 122 */ 123 private Fraction(final int numerator, final int denominator) { 124 super(); 125 this.numerator = numerator; 126 this.denominator = denominator; 127 } 128 129 /** 130 * <p>Creates a <code>Fraction</code> instance with the 2 parts 131 * of a fraction Y/Z.</p> 132 * 133 * <p>Any negative signs are resolved to be on the numerator.</p> 134 * 135 * @param numerator the numerator, for example the three in 'three sevenths' 136 * @param denominator the denominator, for example the seven in 'three sevenths' 137 * @return a new fraction instance 138 * @throws ArithmeticException if the denominator is <code>zero</code> 139 * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE} 140 */ 141 public static Fraction getFraction(int numerator, int denominator) { 142 if (denominator == 0) { 143 throw new ArithmeticException("The denominator must not be zero"); 144 } 145 if (denominator < 0) { 146 if (numerator==Integer.MIN_VALUE || 147 denominator==Integer.MIN_VALUE) { 148 throw new ArithmeticException("overflow: can't negate"); 149 } 150 numerator = -numerator; 151 denominator = -denominator; 152 } 153 return new Fraction(numerator, denominator); 154 } 155 156 /** 157 * <p>Creates a <code>Fraction</code> instance with the 3 parts 158 * of a fraction X Y/Z.</p> 159 * 160 * <p>The negative sign must be passed in on the whole number part.</p> 161 * 162 * @param whole the whole number, for example the one in 'one and three sevenths' 163 * @param numerator the numerator, for example the three in 'one and three sevenths' 164 * @param denominator the denominator, for example the seven in 'one and three sevenths' 165 * @return a new fraction instance 166 * @throws ArithmeticException if the denominator is <code>zero</code> 167 * @throws ArithmeticException if the denominator is negative 168 * @throws ArithmeticException if the numerator is negative 169 * @throws ArithmeticException if the resulting numerator exceeds 170 * <code>Integer.MAX_VALUE</code> 171 */ 172 public static Fraction getFraction(final int whole, final int numerator, final int denominator) { 173 if (denominator == 0) { 174 throw new ArithmeticException("The denominator must not be zero"); 175 } 176 if (denominator < 0) { 177 throw new ArithmeticException("The denominator must not be negative"); 178 } 179 if (numerator < 0) { 180 throw new ArithmeticException("The numerator must not be negative"); 181 } 182 long numeratorValue; 183 if (whole < 0) { 184 numeratorValue = whole * (long)denominator - numerator; 185 } else { 186 numeratorValue = whole * (long)denominator + numerator; 187 } 188 if (numeratorValue < Integer.MIN_VALUE || 189 numeratorValue > Integer.MAX_VALUE) { 190 throw new ArithmeticException("Numerator too large to represent as an Integer."); 191 } 192 return new Fraction((int) numeratorValue, denominator); 193 } 194 195 /** 196 * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts 197 * of a fraction Y/Z.</p> 198 * 199 * <p>For example, if the input parameters represent 2/4, then the created 200 * fraction will be 1/2.</p> 201 * 202 * <p>Any negative signs are resolved to be on the numerator.</p> 203 * 204 * @param numerator the numerator, for example the three in 'three sevenths' 205 * @param denominator the denominator, for example the seven in 'three sevenths' 206 * @return a new fraction instance, with the numerator and denominator reduced 207 * @throws ArithmeticException if the denominator is <code>zero</code> 208 */ 209 public static Fraction getReducedFraction(int numerator, int denominator) { 210 if (denominator == 0) { 211 throw new ArithmeticException("The denominator must not be zero"); 212 } 213 if (numerator==0) { 214 return ZERO; // normalize zero. 215 } 216 // allow 2^k/-2^31 as a valid fraction (where k>0) 217 if (denominator==Integer.MIN_VALUE && (numerator&1)==0) { 218 numerator/=2; denominator/=2; 219 } 220 if (denominator < 0) { 221 if (numerator==Integer.MIN_VALUE || 222 denominator==Integer.MIN_VALUE) { 223 throw new ArithmeticException("overflow: can't negate"); 224 } 225 numerator = -numerator; 226 denominator = -denominator; 227 } 228 // simplify fraction. 229 final int gcd = greatestCommonDivisor(numerator, denominator); 230 numerator /= gcd; 231 denominator /= gcd; 232 return new Fraction(numerator, denominator); 233 } 234 235 /** 236 * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p> 237 * 238 * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/"> 239 * continued fraction algorithm</a>, computing a maximum of 240 * 25 convergents and bounding the denominator by 10,000.</p> 241 * 242 * @param value the double value to convert 243 * @return a new fraction instance that is close to the value 244 * @throws ArithmeticException if <code>|value| > Integer.MAX_VALUE</code> 245 * or <code>value = NaN</code> 246 * @throws ArithmeticException if the calculated denominator is <code>zero</code> 247 * @throws ArithmeticException if the the algorithm does not converge 248 */ 249 public static Fraction getFraction(double value) { 250 final int sign = value < 0 ? -1 : 1; 251 value = Math.abs(value); 252 if (value > Integer.MAX_VALUE || Double.isNaN(value)) { 253 throw new ArithmeticException 254 ("The value must not be greater than Integer.MAX_VALUE or NaN"); 255 } 256 final int wholeNumber = (int) value; 257 value -= wholeNumber; 258 259 int numer0 = 0; // the pre-previous 260 int denom0 = 1; // the pre-previous 261 int numer1 = 1; // the previous 262 int denom1 = 0; // the previous 263 int numer2 = 0; // the current, setup in calculation 264 int denom2 = 0; // the current, setup in calculation 265 int a1 = (int) value; 266 int a2 = 0; 267 double x1 = 1; 268 double x2 = 0; 269 double y1 = value - a1; 270 double y2 = 0; 271 double delta1, delta2 = Double.MAX_VALUE; 272 double fraction; 273 int i = 1; 274// System.out.println("---"); 275 do { 276 delta1 = delta2; 277 a2 = (int) (x1 / y1); 278 x2 = y1; 279 y2 = x1 - a2 * y1; 280 numer2 = a1 * numer1 + numer0; 281 denom2 = a1 * denom1 + denom0; 282 fraction = (double) numer2 / (double) denom2; 283 delta2 = Math.abs(value - fraction); 284// System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1); 285 a1 = a2; 286 x1 = x2; 287 y1 = y2; 288 numer0 = numer1; 289 denom0 = denom1; 290 numer1 = numer2; 291 denom1 = denom2; 292 i++; 293// System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2); 294 } while (delta1 > delta2 && denom2 <= 10000 && denom2 > 0 && i < 25); 295 if (i == 25) { 296 throw new ArithmeticException("Unable to convert double to fraction"); 297 } 298 return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0); 299 } 300 301 /** 302 * <p>Creates a Fraction from a <code>String</code>.</p> 303 * 304 * <p>The formats accepted are:</p> 305 * 306 * <ol> 307 * <li><code>double</code> String containing a dot</li> 308 * <li>'X Y/Z'</li> 309 * <li>'Y/Z'</li> 310 * <li>'X' (a simple whole number)</li> 311 * </ol> 312 * <p>and a .</p> 313 * 314 * @param str the string to parse, must not be <code>null</code> 315 * @return the new <code>Fraction</code> instance 316 * @throws IllegalArgumentException if the string is <code>null</code> 317 * @throws NumberFormatException if the number format is invalid 318 */ 319 public static Fraction getFraction(String str) { 320 if (str == null) { 321 throw new IllegalArgumentException("The string must not be null"); 322 } 323 // parse double format 324 int pos = str.indexOf('.'); 325 if (pos >= 0) { 326 return getFraction(Double.parseDouble(str)); 327 } 328 329 // parse X Y/Z format 330 pos = str.indexOf(' '); 331 if (pos > 0) { 332 final int whole = Integer.parseInt(str.substring(0, pos)); 333 str = str.substring(pos + 1); 334 pos = str.indexOf('/'); 335 if (pos < 0) { 336 throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z"); 337 } else { 338 final int numer = Integer.parseInt(str.substring(0, pos)); 339 final int denom = Integer.parseInt(str.substring(pos + 1)); 340 return getFraction(whole, numer, denom); 341 } 342 } 343 344 // parse Y/Z format 345 pos = str.indexOf('/'); 346 if (pos < 0) { 347 // simple whole number 348 return getFraction(Integer.parseInt(str), 1); 349 } else { 350 final int numer = Integer.parseInt(str.substring(0, pos)); 351 final int denom = Integer.parseInt(str.substring(pos + 1)); 352 return getFraction(numer, denom); 353 } 354 } 355 356 // Accessors 357 //------------------------------------------------------------------- 358 359 /** 360 * <p>Gets the numerator part of the fraction.</p> 361 * 362 * <p>This method may return a value greater than the denominator, an 363 * improper fraction, such as the seven in 7/4.</p> 364 * 365 * @return the numerator fraction part 366 */ 367 public int getNumerator() { 368 return numerator; 369 } 370 371 /** 372 * <p>Gets the denominator part of the fraction.</p> 373 * 374 * @return the denominator fraction part 375 */ 376 public int getDenominator() { 377 return denominator; 378 } 379 380 /** 381 * <p>Gets the proper numerator, always positive.</p> 382 * 383 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 384 * This method returns the 3 from the proper fraction.</p> 385 * 386 * <p>If the fraction is negative such as -7/4, it can be resolved into 387 * -1 3/4, so this method returns the positive proper numerator, 3.</p> 388 * 389 * @return the numerator fraction part of a proper fraction, always positive 390 */ 391 public int getProperNumerator() { 392 return Math.abs(numerator % denominator); 393 } 394 395 /** 396 * <p>Gets the proper whole part of the fraction.</p> 397 * 398 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 399 * This method returns the 1 from the proper fraction.</p> 400 * 401 * <p>If the fraction is negative such as -7/4, it can be resolved into 402 * -1 3/4, so this method returns the positive whole part -1.</p> 403 * 404 * @return the whole fraction part of a proper fraction, that includes the sign 405 */ 406 public int getProperWhole() { 407 return numerator / denominator; 408 } 409 410 // Number methods 411 //------------------------------------------------------------------- 412 413 /** 414 * <p>Gets the fraction as an <code>int</code>. This returns the whole number 415 * part of the fraction.</p> 416 * 417 * @return the whole number fraction part 418 */ 419 @Override 420 public int intValue() { 421 return numerator / denominator; 422 } 423 424 /** 425 * <p>Gets the fraction as a <code>long</code>. This returns the whole number 426 * part of the fraction.</p> 427 * 428 * @return the whole number fraction part 429 */ 430 @Override 431 public long longValue() { 432 return (long) numerator / denominator; 433 } 434 435 /** 436 * <p>Gets the fraction as a <code>float</code>. This calculates the fraction 437 * as the numerator divided by denominator.</p> 438 * 439 * @return the fraction as a <code>float</code> 440 */ 441 @Override 442 public float floatValue() { 443 return (float) numerator / (float) denominator; 444 } 445 446 /** 447 * <p>Gets the fraction as a <code>double</code>. This calculates the fraction 448 * as the numerator divided by denominator.</p> 449 * 450 * @return the fraction as a <code>double</code> 451 */ 452 @Override 453 public double doubleValue() { 454 return (double) numerator / (double) denominator; 455 } 456 457 // Calculations 458 //------------------------------------------------------------------- 459 460 /** 461 * <p>Reduce the fraction to the smallest values for the numerator and 462 * denominator, returning the result.</p> 463 * 464 * <p>For example, if this fraction represents 2/4, then the result 465 * will be 1/2.</p> 466 * 467 * @return a new reduced fraction instance, or this if no simplification possible 468 */ 469 public Fraction reduce() { 470 if (numerator == 0) { 471 return equals(ZERO) ? this : ZERO; 472 } 473 final int gcd = greatestCommonDivisor(Math.abs(numerator), denominator); 474 if (gcd == 1) { 475 return this; 476 } 477 return Fraction.getFraction(numerator / gcd, denominator / gcd); 478 } 479 480 /** 481 * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p> 482 * 483 * <p>The returned fraction is not reduced.</p> 484 * 485 * @return a new fraction instance with the numerator and denominator 486 * inverted. 487 * @throws ArithmeticException if the fraction represents zero. 488 */ 489 public Fraction invert() { 490 if (numerator == 0) { 491 throw new ArithmeticException("Unable to invert zero."); 492 } 493 if (numerator==Integer.MIN_VALUE) { 494 throw new ArithmeticException("overflow: can't negate numerator"); 495 } 496 if (numerator<0) { 497 return new Fraction(-denominator, -numerator); 498 } else { 499 return new Fraction(denominator, numerator); 500 } 501 } 502 503 /** 504 * <p>Gets a fraction that is the negative (-fraction) of this one.</p> 505 * 506 * <p>The returned fraction is not reduced.</p> 507 * 508 * @return a new fraction instance with the opposite signed numerator 509 */ 510 public Fraction negate() { 511 // the positive range is one smaller than the negative range of an int. 512 if (numerator==Integer.MIN_VALUE) { 513 throw new ArithmeticException("overflow: too large to negate"); 514 } 515 return new Fraction(-numerator, denominator); 516 } 517 518 /** 519 * <p>Gets a fraction that is the positive equivalent of this one.</p> 520 * <p>More precisely: <code>(fraction >= 0 ? this : -fraction)</code></p> 521 * 522 * <p>The returned fraction is not reduced.</p> 523 * 524 * @return <code>this</code> if it is positive, or a new positive fraction 525 * instance with the opposite signed numerator 526 */ 527 public Fraction abs() { 528 if (numerator >= 0) { 529 return this; 530 } 531 return negate(); 532 } 533 534 /** 535 * <p>Gets a fraction that is raised to the passed in power.</p> 536 * 537 * <p>The returned fraction is in reduced form.</p> 538 * 539 * @param power the power to raise the fraction to 540 * @return <code>this</code> if the power is one, <code>ONE</code> if the power 541 * is zero (even if the fraction equals ZERO) or a new fraction instance 542 * raised to the appropriate power 543 * @throws ArithmeticException if the resulting numerator or denominator exceeds 544 * <code>Integer.MAX_VALUE</code> 545 */ 546 public Fraction pow(final int power) { 547 if (power == 1) { 548 return this; 549 } else if (power == 0) { 550 return ONE; 551 } else if (power < 0) { 552 if (power==Integer.MIN_VALUE) { // MIN_VALUE can't be negated. 553 return this.invert().pow(2).pow(-(power/2)); 554 } 555 return this.invert().pow(-power); 556 } else { 557 final Fraction f = this.multiplyBy(this); 558 if (power % 2 == 0) { // if even... 559 return f.pow(power/2); 560 } else { // if odd... 561 return f.pow(power/2).multiplyBy(this); 562 } 563 } 564 } 565 566 /** 567 * <p>Gets the greatest common divisor of the absolute value of 568 * two numbers, using the "binary gcd" method which avoids 569 * division and modulo operations. See Knuth 4.5.2 algorithm B. 570 * This algorithm is due to Josef Stein (1961).</p> 571 * 572 * @param u a non-zero number 573 * @param v a non-zero number 574 * @return the greatest common divisor, never zero 575 */ 576 private static int greatestCommonDivisor(int u, int v) { 577 // From Commons Math: 578 if (u == 0 || v == 0) { 579 if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) { 580 throw new ArithmeticException("overflow: gcd is 2^31"); 581 } 582 return Math.abs(u) + Math.abs(v); 583 } 584 //if either operand is abs 1, return 1: 585 if (Math.abs(u) == 1 || Math.abs(v) == 1) { 586 return 1; 587 } 588 // keep u and v negative, as negative integers range down to 589 // -2^31, while positive numbers can only be as large as 2^31-1 590 // (i.e. we can't necessarily negate a negative number without 591 // overflow) 592 if (u>0) { u=-u; } // make u negative 593 if (v>0) { v=-v; } // make v negative 594 // B1. [Find power of 2] 595 int k=0; 596 while ((u&1)==0 && (v&1)==0 && k<31) { // while u and v are both even... 597 u/=2; v/=2; k++; // cast out twos. 598 } 599 if (k==31) { 600 throw new ArithmeticException("overflow: gcd is 2^31"); 601 } 602 // B2. Initialize: u and v have been divided by 2^k and at least 603 // one is odd. 604 int t = (u&1)==1 ? v : -(u/2)/*B3*/; 605 // t negative: u was odd, v may be even (t replaces v) 606 // t positive: u was even, v is odd (t replaces u) 607 do { 608 /* assert u<0 && v<0; */ 609 // B4/B3: cast out twos from t. 610 while ((t&1)==0) { // while t is even.. 611 t/=2; // cast out twos 612 } 613 // B5 [reset max(u,v)] 614 if (t>0) { 615 u = -t; 616 } else { 617 v = t; 618 } 619 // B6/B3. at this point both u and v should be odd. 620 t = (v - u)/2; 621 // |u| larger: t positive (replace u) 622 // |v| larger: t negative (replace v) 623 } while (t!=0); 624 return -u*(1<<k); // gcd is u*2^k 625 } 626 627 // Arithmetic 628 //------------------------------------------------------------------- 629 630 /** 631 * Multiply two integers, checking for overflow. 632 * 633 * @param x a factor 634 * @param y a factor 635 * @return the product <code>x*y</code> 636 * @throws ArithmeticException if the result can not be represented as 637 * an int 638 */ 639 private static int mulAndCheck(final int x, final int y) { 640 final long m = (long)x*(long)y; 641 if (m < Integer.MIN_VALUE || 642 m > Integer.MAX_VALUE) { 643 throw new ArithmeticException("overflow: mul"); 644 } 645 return (int)m; 646 } 647 648 /** 649 * Multiply two non-negative integers, checking for overflow. 650 * 651 * @param x a non-negative factor 652 * @param y a non-negative factor 653 * @return the product <code>x*y</code> 654 * @throws ArithmeticException if the result can not be represented as 655 * an int 656 */ 657 private static int mulPosAndCheck(final int x, final int y) { 658 /* assert x>=0 && y>=0; */ 659 final long m = (long)x*(long)y; 660 if (m > Integer.MAX_VALUE) { 661 throw new ArithmeticException("overflow: mulPos"); 662 } 663 return (int)m; 664 } 665 666 /** 667 * Add two integers, checking for overflow. 668 * 669 * @param x an addend 670 * @param y an addend 671 * @return the sum <code>x+y</code> 672 * @throws ArithmeticException if the result can not be represented as 673 * an int 674 */ 675 private static int addAndCheck(final int x, final int y) { 676 final long s = (long)x+(long)y; 677 if (s < Integer.MIN_VALUE || 678 s > Integer.MAX_VALUE) { 679 throw new ArithmeticException("overflow: add"); 680 } 681 return (int)s; 682 } 683 684 /** 685 * Subtract two integers, checking for overflow. 686 * 687 * @param x the minuend 688 * @param y the subtrahend 689 * @return the difference <code>x-y</code> 690 * @throws ArithmeticException if the result can not be represented as 691 * an int 692 */ 693 private static int subAndCheck(final int x, final int y) { 694 final long s = (long)x-(long)y; 695 if (s < Integer.MIN_VALUE || 696 s > Integer.MAX_VALUE) { 697 throw new ArithmeticException("overflow: add"); 698 } 699 return (int)s; 700 } 701 702 /** 703 * <p>Adds the value of this fraction to another, returning the result in reduced form. 704 * The algorithm follows Knuth, 4.5.1.</p> 705 * 706 * @param fraction the fraction to add, must not be <code>null</code> 707 * @return a <code>Fraction</code> instance with the resulting values 708 * @throws IllegalArgumentException if the fraction is <code>null</code> 709 * @throws ArithmeticException if the resulting numerator or denominator exceeds 710 * <code>Integer.MAX_VALUE</code> 711 */ 712 public Fraction add(final Fraction fraction) { 713 return addSub(fraction, true /* add */); 714 } 715 716 /** 717 * <p>Subtracts the value of another fraction from the value of this one, 718 * returning the result in reduced form.</p> 719 * 720 * @param fraction the fraction to subtract, must not be <code>null</code> 721 * @return a <code>Fraction</code> instance with the resulting values 722 * @throws IllegalArgumentException if the fraction is <code>null</code> 723 * @throws ArithmeticException if the resulting numerator or denominator 724 * cannot be represented in an <code>int</code>. 725 */ 726 public Fraction subtract(final Fraction fraction) { 727 return addSub(fraction, false /* subtract */); 728 } 729 730 /** 731 * Implement add and subtract using algorithm described in Knuth 4.5.1. 732 * 733 * @param fraction the fraction to subtract, must not be <code>null</code> 734 * @param isAdd true to add, false to subtract 735 * @return a <code>Fraction</code> instance with the resulting values 736 * @throws IllegalArgumentException if the fraction is <code>null</code> 737 * @throws ArithmeticException if the resulting numerator or denominator 738 * cannot be represented in an <code>int</code>. 739 */ 740 private Fraction addSub(final Fraction fraction, final boolean isAdd) { 741 if (fraction == null) { 742 throw new IllegalArgumentException("The fraction must not be null"); 743 } 744 // zero is identity for addition. 745 if (numerator == 0) { 746 return isAdd ? fraction : fraction.negate(); 747 } 748 if (fraction.numerator == 0) { 749 return this; 750 } 751 // if denominators are randomly distributed, d1 will be 1 about 61% 752 // of the time. 753 final int d1 = greatestCommonDivisor(denominator, fraction.denominator); 754 if (d1==1) { 755 // result is ( (u*v' +/- u'v) / u'v') 756 final int uvp = mulAndCheck(numerator, fraction.denominator); 757 final int upv = mulAndCheck(fraction.numerator, denominator); 758 return new Fraction 759 (isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), 760 mulPosAndCheck(denominator, fraction.denominator)); 761 } 762 // the quantity 't' requires 65 bits of precision; see knuth 4.5.1 763 // exercise 7. we're going to use a BigInteger. 764 // t = u(v'/d1) +/- v(u'/d1) 765 final BigInteger uvp = BigInteger.valueOf(numerator) 766 .multiply(BigInteger.valueOf(fraction.denominator/d1)); 767 final BigInteger upv = BigInteger.valueOf(fraction.numerator) 768 .multiply(BigInteger.valueOf(denominator/d1)); 769 final BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv); 770 // but d2 doesn't need extra precision because 771 // d2 = gcd(t,d1) = gcd(t mod d1, d1) 772 final int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue(); 773 final int d2 = tmodd1==0?d1:greatestCommonDivisor(tmodd1, d1); 774 775 // result is (t/d2) / (u'/d1)(v'/d2) 776 final BigInteger w = t.divide(BigInteger.valueOf(d2)); 777 if (w.bitLength() > 31) { 778 throw new ArithmeticException 779 ("overflow: numerator too large after multiply"); 780 } 781 return new Fraction 782 (w.intValue(), 783 mulPosAndCheck(denominator/d1, fraction.denominator/d2)); 784 } 785 786 /** 787 * <p>Multiplies the value of this fraction by another, returning the 788 * result in reduced form.</p> 789 * 790 * @param fraction the fraction to multiply by, must not be <code>null</code> 791 * @return a <code>Fraction</code> instance with the resulting values 792 * @throws IllegalArgumentException if the fraction is <code>null</code> 793 * @throws ArithmeticException if the resulting numerator or denominator exceeds 794 * <code>Integer.MAX_VALUE</code> 795 */ 796 public Fraction multiplyBy(final Fraction fraction) { 797 if (fraction == null) { 798 throw new IllegalArgumentException("The fraction must not be null"); 799 } 800 if (numerator == 0 || fraction.numerator == 0) { 801 return ZERO; 802 } 803 // knuth 4.5.1 804 // make sure we don't overflow unless the result *must* overflow. 805 final int d1 = greatestCommonDivisor(numerator, fraction.denominator); 806 final int d2 = greatestCommonDivisor(fraction.numerator, denominator); 807 return getReducedFraction 808 (mulAndCheck(numerator/d1, fraction.numerator/d2), 809 mulPosAndCheck(denominator/d2, fraction.denominator/d1)); 810 } 811 812 /** 813 * <p>Divide the value of this fraction by another.</p> 814 * 815 * @param fraction the fraction to divide by, must not be <code>null</code> 816 * @return a <code>Fraction</code> instance with the resulting values 817 * @throws IllegalArgumentException if the fraction is <code>null</code> 818 * @throws ArithmeticException if the fraction to divide by is zero 819 * @throws ArithmeticException if the resulting numerator or denominator exceeds 820 * <code>Integer.MAX_VALUE</code> 821 */ 822 public Fraction divideBy(final Fraction fraction) { 823 if (fraction == null) { 824 throw new IllegalArgumentException("The fraction must not be null"); 825 } 826 if (fraction.numerator == 0) { 827 throw new ArithmeticException("The fraction to divide by must not be zero"); 828 } 829 return multiplyBy(fraction.invert()); 830 } 831 832 // Basics 833 //------------------------------------------------------------------- 834 835 /** 836 * <p>Compares this fraction to another object to test if they are equal.</p>. 837 * 838 * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p> 839 * 840 * @param obj the reference object with which to compare 841 * @return <code>true</code> if this object is equal 842 */ 843 @Override 844 public boolean equals(final Object obj) { 845 if (obj == this) { 846 return true; 847 } 848 if (obj instanceof Fraction == false) { 849 return false; 850 } 851 final Fraction other = (Fraction) obj; 852 return getNumerator() == other.getNumerator() && 853 getDenominator() == other.getDenominator(); 854 } 855 856 /** 857 * <p>Gets a hashCode for the fraction.</p> 858 * 859 * @return a hash code value for this object 860 */ 861 @Override 862 public int hashCode() { 863 if (hashCode == 0) { 864 // hashcode update should be atomic. 865 hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator(); 866 } 867 return hashCode; 868 } 869 870 /** 871 * <p>Compares this object to another based on size.</p> 872 * 873 * <p>Note: this class has a natural ordering that is inconsistent 874 * with equals, because, for example, equals treats 1/2 and 2/4 as 875 * different, whereas compareTo treats them as equal. 876 * 877 * @param other the object to compare to 878 * @return -1 if this is less, 0 if equal, +1 if greater 879 * @throws ClassCastException if the object is not a <code>Fraction</code> 880 * @throws NullPointerException if the object is <code>null</code> 881 */ 882 @Override 883 public int compareTo(final Fraction other) { 884 if (this==other) { 885 return 0; 886 } 887 if (numerator == other.numerator && denominator == other.denominator) { 888 return 0; 889 } 890 891 // otherwise see which is less 892 final long first = (long) numerator * (long) other.denominator; 893 final long second = (long) other.numerator * (long) denominator; 894 if (first == second) { 895 return 0; 896 } else if (first < second) { 897 return -1; 898 } else { 899 return 1; 900 } 901 } 902 903 /** 904 * <p>Gets the fraction as a <code>String</code>.</p> 905 * 906 * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always. 907 * 908 * @return a <code>String</code> form of the fraction 909 */ 910 @Override 911 public String toString() { 912 if (toString == null) { 913 toString = new StringBuilder(32) 914 .append(getNumerator()) 915 .append('/') 916 .append(getDenominator()).toString(); 917 } 918 return toString; 919 } 920 921 /** 922 * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p> 923 * 924 * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'. 925 * If the whole number is zero it will be omitted. If the numerator is zero, 926 * only the whole number is returned.</p> 927 * 928 * @return a <code>String</code> form of the fraction 929 */ 930 public String toProperString() { 931 if (toProperString == null) { 932 if (numerator == 0) { 933 toProperString = "0"; 934 } else if (numerator == denominator) { 935 toProperString = "1"; 936 } else if (numerator == -1 * denominator) { 937 toProperString = "-1"; 938 } else if ((numerator>0?-numerator:numerator) < -denominator) { 939 // note that we do the magnitude comparison test above with 940 // NEGATIVE (not positive) numbers, since negative numbers 941 // have a larger range. otherwise numerator==Integer.MIN_VALUE 942 // is handled incorrectly. 943 final int properNumerator = getProperNumerator(); 944 if (properNumerator == 0) { 945 toProperString = Integer.toString(getProperWhole()); 946 } else { 947 toProperString = new StringBuilder(32) 948 .append(getProperWhole()).append(' ') 949 .append(properNumerator).append('/') 950 .append(getDenominator()).toString(); 951 } 952 } else { 953 toProperString = new StringBuilder(32) 954 .append(getNumerator()).append('/') 955 .append(getDenominator()).toString(); 956 } 957 } 958 return toProperString; 959 } 960}