001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.lang3.math; 018 019import java.math.BigInteger; 020 021/** 022 * <p><code>Fraction</code> is a <code>Number</code> implementation that 023 * stores fractions accurately.</p> 024 * 025 * <p>This class is immutable, and interoperable with most methods that accept 026 * a <code>Number</code>.</p> 027 * 028 * <p>Note that this class is intended for common use cases, it is <i>int</i> 029 * based and thus suffers from various overflow issues. For a BigInteger based 030 * equivalent, please see the Commons Math BigFraction class. </p> 031 * 032 * @since 2.0 033 * @version $Id: Fraction.java 1606086 2014-06-27 13:09:03Z ggregory $ 034 */ 035public final class Fraction extends Number implements Comparable<Fraction> { 036 037 /** 038 * Required for serialization support. Lang version 2.0. 039 * 040 * @see java.io.Serializable 041 */ 042 private static final long serialVersionUID = 65382027393090L; 043 044 /** 045 * <code>Fraction</code> representation of 0. 046 */ 047 public static final Fraction ZERO = new Fraction(0, 1); 048 /** 049 * <code>Fraction</code> representation of 1. 050 */ 051 public static final Fraction ONE = new Fraction(1, 1); 052 /** 053 * <code>Fraction</code> representation of 1/2. 054 */ 055 public static final Fraction ONE_HALF = new Fraction(1, 2); 056 /** 057 * <code>Fraction</code> representation of 1/3. 058 */ 059 public static final Fraction ONE_THIRD = new Fraction(1, 3); 060 /** 061 * <code>Fraction</code> representation of 2/3. 062 */ 063 public static final Fraction TWO_THIRDS = new Fraction(2, 3); 064 /** 065 * <code>Fraction</code> representation of 1/4. 066 */ 067 public static final Fraction ONE_QUARTER = new Fraction(1, 4); 068 /** 069 * <code>Fraction</code> representation of 2/4. 070 */ 071 public static final Fraction TWO_QUARTERS = new Fraction(2, 4); 072 /** 073 * <code>Fraction</code> representation of 3/4. 074 */ 075 public static final Fraction THREE_QUARTERS = new Fraction(3, 4); 076 /** 077 * <code>Fraction</code> representation of 1/5. 078 */ 079 public static final Fraction ONE_FIFTH = new Fraction(1, 5); 080 /** 081 * <code>Fraction</code> representation of 2/5. 082 */ 083 public static final Fraction TWO_FIFTHS = new Fraction(2, 5); 084 /** 085 * <code>Fraction</code> representation of 3/5. 086 */ 087 public static final Fraction THREE_FIFTHS = new Fraction(3, 5); 088 /** 089 * <code>Fraction</code> representation of 4/5. 090 */ 091 public static final Fraction FOUR_FIFTHS = new Fraction(4, 5); 092 093 094 /** 095 * The numerator number part of the fraction (the three in three sevenths). 096 */ 097 private final int numerator; 098 /** 099 * The denominator number part of the fraction (the seven in three sevenths). 100 */ 101 private final int denominator; 102 103 /** 104 * Cached output hashCode (class is immutable). 105 */ 106 private transient int hashCode = 0; 107 /** 108 * Cached output toString (class is immutable). 109 */ 110 private transient String toString = null; 111 /** 112 * Cached output toProperString (class is immutable). 113 */ 114 private transient String toProperString = null; 115 116 /** 117 * <p>Constructs a <code>Fraction</code> instance with the 2 parts 118 * of a fraction Y/Z.</p> 119 * 120 * @param numerator the numerator, for example the three in 'three sevenths' 121 * @param denominator the denominator, for example the seven in 'three sevenths' 122 */ 123 private Fraction(final int numerator, final int denominator) { 124 super(); 125 this.numerator = numerator; 126 this.denominator = denominator; 127 } 128 129 /** 130 * <p>Creates a <code>Fraction</code> instance with the 2 parts 131 * of a fraction Y/Z.</p> 132 * 133 * <p>Any negative signs are resolved to be on the numerator.</p> 134 * 135 * @param numerator the numerator, for example the three in 'three sevenths' 136 * @param denominator the denominator, for example the seven in 'three sevenths' 137 * @return a new fraction instance 138 * @throws ArithmeticException if the denominator is <code>zero</code> 139 * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE} 140 */ 141 public static Fraction getFraction(int numerator, int denominator) { 142 if (denominator == 0) { 143 throw new ArithmeticException("The denominator must not be zero"); 144 } 145 if (denominator < 0) { 146 if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) { 147 throw new ArithmeticException("overflow: can't negate"); 148 } 149 numerator = -numerator; 150 denominator = -denominator; 151 } 152 return new Fraction(numerator, denominator); 153 } 154 155 /** 156 * <p>Creates a <code>Fraction</code> instance with the 3 parts 157 * of a fraction X Y/Z.</p> 158 * 159 * <p>The negative sign must be passed in on the whole number part.</p> 160 * 161 * @param whole the whole number, for example the one in 'one and three sevenths' 162 * @param numerator the numerator, for example the three in 'one and three sevenths' 163 * @param denominator the denominator, for example the seven in 'one and three sevenths' 164 * @return a new fraction instance 165 * @throws ArithmeticException if the denominator is <code>zero</code> 166 * @throws ArithmeticException if the denominator is negative 167 * @throws ArithmeticException if the numerator is negative 168 * @throws ArithmeticException if the resulting numerator exceeds 169 * <code>Integer.MAX_VALUE</code> 170 */ 171 public static Fraction getFraction(final int whole, final int numerator, final int denominator) { 172 if (denominator == 0) { 173 throw new ArithmeticException("The denominator must not be zero"); 174 } 175 if (denominator < 0) { 176 throw new ArithmeticException("The denominator must not be negative"); 177 } 178 if (numerator < 0) { 179 throw new ArithmeticException("The numerator must not be negative"); 180 } 181 long numeratorValue; 182 if (whole < 0) { 183 numeratorValue = whole * (long) denominator - numerator; 184 } else { 185 numeratorValue = whole * (long) denominator + numerator; 186 } 187 if (numeratorValue < Integer.MIN_VALUE || numeratorValue > Integer.MAX_VALUE) { 188 throw new ArithmeticException("Numerator too large to represent as an Integer."); 189 } 190 return new Fraction((int) numeratorValue, denominator); 191 } 192 193 /** 194 * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts 195 * of a fraction Y/Z.</p> 196 * 197 * <p>For example, if the input parameters represent 2/4, then the created 198 * fraction will be 1/2.</p> 199 * 200 * <p>Any negative signs are resolved to be on the numerator.</p> 201 * 202 * @param numerator the numerator, for example the three in 'three sevenths' 203 * @param denominator the denominator, for example the seven in 'three sevenths' 204 * @return a new fraction instance, with the numerator and denominator reduced 205 * @throws ArithmeticException if the denominator is <code>zero</code> 206 */ 207 public static Fraction getReducedFraction(int numerator, int denominator) { 208 if (denominator == 0) { 209 throw new ArithmeticException("The denominator must not be zero"); 210 } 211 if (numerator == 0) { 212 return ZERO; // normalize zero. 213 } 214 // allow 2^k/-2^31 as a valid fraction (where k>0) 215 if (denominator == Integer.MIN_VALUE && (numerator & 1) == 0) { 216 numerator /= 2; 217 denominator /= 2; 218 } 219 if (denominator < 0) { 220 if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) { 221 throw new ArithmeticException("overflow: can't negate"); 222 } 223 numerator = -numerator; 224 denominator = -denominator; 225 } 226 // simplify fraction. 227 final int gcd = greatestCommonDivisor(numerator, denominator); 228 numerator /= gcd; 229 denominator /= gcd; 230 return new Fraction(numerator, denominator); 231 } 232 233 /** 234 * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p> 235 * 236 * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/"> 237 * continued fraction algorithm</a>, computing a maximum of 238 * 25 convergents and bounding the denominator by 10,000.</p> 239 * 240 * @param value the double value to convert 241 * @return a new fraction instance that is close to the value 242 * @throws ArithmeticException if <code>|value| > Integer.MAX_VALUE</code> 243 * or <code>value = NaN</code> 244 * @throws ArithmeticException if the calculated denominator is <code>zero</code> 245 * @throws ArithmeticException if the the algorithm does not converge 246 */ 247 public static Fraction getFraction(double value) { 248 final int sign = value < 0 ? -1 : 1; 249 value = Math.abs(value); 250 if (value > Integer.MAX_VALUE || Double.isNaN(value)) { 251 throw new ArithmeticException("The value must not be greater than Integer.MAX_VALUE or NaN"); 252 } 253 final int wholeNumber = (int) value; 254 value -= wholeNumber; 255 256 int numer0 = 0; // the pre-previous 257 int denom0 = 1; // the pre-previous 258 int numer1 = 1; // the previous 259 int denom1 = 0; // the previous 260 int numer2 = 0; // the current, setup in calculation 261 int denom2 = 0; // the current, setup in calculation 262 int a1 = (int) value; 263 int a2 = 0; 264 double x1 = 1; 265 double x2 = 0; 266 double y1 = value - a1; 267 double y2 = 0; 268 double delta1, delta2 = Double.MAX_VALUE; 269 double fraction; 270 int i = 1; 271 // System.out.println("---"); 272 do { 273 delta1 = delta2; 274 a2 = (int) (x1 / y1); 275 x2 = y1; 276 y2 = x1 - a2 * y1; 277 numer2 = a1 * numer1 + numer0; 278 denom2 = a1 * denom1 + denom0; 279 fraction = (double) numer2 / (double) denom2; 280 delta2 = Math.abs(value - fraction); 281 // System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1); 282 a1 = a2; 283 x1 = x2; 284 y1 = y2; 285 numer0 = numer1; 286 denom0 = denom1; 287 numer1 = numer2; 288 denom1 = denom2; 289 i++; 290 // System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2); 291 } while (delta1 > delta2 && denom2 <= 10000 && denom2 > 0 && i < 25); 292 if (i == 25) { 293 throw new ArithmeticException("Unable to convert double to fraction"); 294 } 295 return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0); 296 } 297 298 /** 299 * <p>Creates a Fraction from a <code>String</code>.</p> 300 * 301 * <p>The formats accepted are:</p> 302 * 303 * <ol> 304 * <li><code>double</code> String containing a dot</li> 305 * <li>'X Y/Z'</li> 306 * <li>'Y/Z'</li> 307 * <li>'X' (a simple whole number)</li> 308 * </ol> 309 * <p>and a .</p> 310 * 311 * @param str the string to parse, must not be <code>null</code> 312 * @return the new <code>Fraction</code> instance 313 * @throws IllegalArgumentException if the string is <code>null</code> 314 * @throws NumberFormatException if the number format is invalid 315 */ 316 public static Fraction getFraction(String str) { 317 if (str == null) { 318 throw new IllegalArgumentException("The string must not be null"); 319 } 320 // parse double format 321 int pos = str.indexOf('.'); 322 if (pos >= 0) { 323 return getFraction(Double.parseDouble(str)); 324 } 325 326 // parse X Y/Z format 327 pos = str.indexOf(' '); 328 if (pos > 0) { 329 final int whole = Integer.parseInt(str.substring(0, pos)); 330 str = str.substring(pos + 1); 331 pos = str.indexOf('/'); 332 if (pos < 0) { 333 throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z"); 334 } 335 final int numer = Integer.parseInt(str.substring(0, pos)); 336 final int denom = Integer.parseInt(str.substring(pos + 1)); 337 return getFraction(whole, numer, denom); 338 } 339 340 // parse Y/Z format 341 pos = str.indexOf('/'); 342 if (pos < 0) { 343 // simple whole number 344 return getFraction(Integer.parseInt(str), 1); 345 } 346 final int numer = Integer.parseInt(str.substring(0, pos)); 347 final int denom = Integer.parseInt(str.substring(pos + 1)); 348 return getFraction(numer, denom); 349 } 350 351 // Accessors 352 //------------------------------------------------------------------- 353 354 /** 355 * <p>Gets the numerator part of the fraction.</p> 356 * 357 * <p>This method may return a value greater than the denominator, an 358 * improper fraction, such as the seven in 7/4.</p> 359 * 360 * @return the numerator fraction part 361 */ 362 public int getNumerator() { 363 return numerator; 364 } 365 366 /** 367 * <p>Gets the denominator part of the fraction.</p> 368 * 369 * @return the denominator fraction part 370 */ 371 public int getDenominator() { 372 return denominator; 373 } 374 375 /** 376 * <p>Gets the proper numerator, always positive.</p> 377 * 378 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 379 * This method returns the 3 from the proper fraction.</p> 380 * 381 * <p>If the fraction is negative such as -7/4, it can be resolved into 382 * -1 3/4, so this method returns the positive proper numerator, 3.</p> 383 * 384 * @return the numerator fraction part of a proper fraction, always positive 385 */ 386 public int getProperNumerator() { 387 return Math.abs(numerator % denominator); 388 } 389 390 /** 391 * <p>Gets the proper whole part of the fraction.</p> 392 * 393 * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4. 394 * This method returns the 1 from the proper fraction.</p> 395 * 396 * <p>If the fraction is negative such as -7/4, it can be resolved into 397 * -1 3/4, so this method returns the positive whole part -1.</p> 398 * 399 * @return the whole fraction part of a proper fraction, that includes the sign 400 */ 401 public int getProperWhole() { 402 return numerator / denominator; 403 } 404 405 // Number methods 406 //------------------------------------------------------------------- 407 408 /** 409 * <p>Gets the fraction as an <code>int</code>. This returns the whole number 410 * part of the fraction.</p> 411 * 412 * @return the whole number fraction part 413 */ 414 @Override 415 public int intValue() { 416 return numerator / denominator; 417 } 418 419 /** 420 * <p>Gets the fraction as a <code>long</code>. This returns the whole number 421 * part of the fraction.</p> 422 * 423 * @return the whole number fraction part 424 */ 425 @Override 426 public long longValue() { 427 return (long) numerator / denominator; 428 } 429 430 /** 431 * <p>Gets the fraction as a <code>float</code>. This calculates the fraction 432 * as the numerator divided by denominator.</p> 433 * 434 * @return the fraction as a <code>float</code> 435 */ 436 @Override 437 public float floatValue() { 438 return (float) numerator / (float) denominator; 439 } 440 441 /** 442 * <p>Gets the fraction as a <code>double</code>. This calculates the fraction 443 * as the numerator divided by denominator.</p> 444 * 445 * @return the fraction as a <code>double</code> 446 */ 447 @Override 448 public double doubleValue() { 449 return (double) numerator / (double) denominator; 450 } 451 452 // Calculations 453 //------------------------------------------------------------------- 454 455 /** 456 * <p>Reduce the fraction to the smallest values for the numerator and 457 * denominator, returning the result.</p> 458 * 459 * <p>For example, if this fraction represents 2/4, then the result 460 * will be 1/2.</p> 461 * 462 * @return a new reduced fraction instance, or this if no simplification possible 463 */ 464 public Fraction reduce() { 465 if (numerator == 0) { 466 return equals(ZERO) ? this : ZERO; 467 } 468 final int gcd = greatestCommonDivisor(Math.abs(numerator), denominator); 469 if (gcd == 1) { 470 return this; 471 } 472 return Fraction.getFraction(numerator / gcd, denominator / gcd); 473 } 474 475 /** 476 * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p> 477 * 478 * <p>The returned fraction is not reduced.</p> 479 * 480 * @return a new fraction instance with the numerator and denominator 481 * inverted. 482 * @throws ArithmeticException if the fraction represents zero. 483 */ 484 public Fraction invert() { 485 if (numerator == 0) { 486 throw new ArithmeticException("Unable to invert zero."); 487 } 488 if (numerator==Integer.MIN_VALUE) { 489 throw new ArithmeticException("overflow: can't negate numerator"); 490 } 491 if (numerator<0) { 492 return new Fraction(-denominator, -numerator); 493 } 494 return new Fraction(denominator, numerator); 495 } 496 497 /** 498 * <p>Gets a fraction that is the negative (-fraction) of this one.</p> 499 * 500 * <p>The returned fraction is not reduced.</p> 501 * 502 * @return a new fraction instance with the opposite signed numerator 503 */ 504 public Fraction negate() { 505 // the positive range is one smaller than the negative range of an int. 506 if (numerator==Integer.MIN_VALUE) { 507 throw new ArithmeticException("overflow: too large to negate"); 508 } 509 return new Fraction(-numerator, denominator); 510 } 511 512 /** 513 * <p>Gets a fraction that is the positive equivalent of this one.</p> 514 * <p>More precisely: <code>(fraction >= 0 ? this : -fraction)</code></p> 515 * 516 * <p>The returned fraction is not reduced.</p> 517 * 518 * @return <code>this</code> if it is positive, or a new positive fraction 519 * instance with the opposite signed numerator 520 */ 521 public Fraction abs() { 522 if (numerator >= 0) { 523 return this; 524 } 525 return negate(); 526 } 527 528 /** 529 * <p>Gets a fraction that is raised to the passed in power.</p> 530 * 531 * <p>The returned fraction is in reduced form.</p> 532 * 533 * @param power the power to raise the fraction to 534 * @return <code>this</code> if the power is one, <code>ONE</code> if the power 535 * is zero (even if the fraction equals ZERO) or a new fraction instance 536 * raised to the appropriate power 537 * @throws ArithmeticException if the resulting numerator or denominator exceeds 538 * <code>Integer.MAX_VALUE</code> 539 */ 540 public Fraction pow(final int power) { 541 if (power == 1) { 542 return this; 543 } else if (power == 0) { 544 return ONE; 545 } else if (power < 0) { 546 if (power == Integer.MIN_VALUE) { // MIN_VALUE can't be negated. 547 return this.invert().pow(2).pow(-(power / 2)); 548 } 549 return this.invert().pow(-power); 550 } else { 551 final Fraction f = this.multiplyBy(this); 552 if (power % 2 == 0) { // if even... 553 return f.pow(power / 2); 554 } 555 return f.pow(power / 2).multiplyBy(this); 556 } 557 } 558 559 /** 560 * <p>Gets the greatest common divisor of the absolute value of 561 * two numbers, using the "binary gcd" method which avoids 562 * division and modulo operations. See Knuth 4.5.2 algorithm B. 563 * This algorithm is due to Josef Stein (1961).</p> 564 * 565 * @param u a non-zero number 566 * @param v a non-zero number 567 * @return the greatest common divisor, never zero 568 */ 569 private static int greatestCommonDivisor(int u, int v) { 570 // From Commons Math: 571 if (u == 0 || v == 0) { 572 if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) { 573 throw new ArithmeticException("overflow: gcd is 2^31"); 574 } 575 return Math.abs(u) + Math.abs(v); 576 } 577 // if either operand is abs 1, return 1: 578 if (Math.abs(u) == 1 || Math.abs(v) == 1) { 579 return 1; 580 } 581 // keep u and v negative, as negative integers range down to 582 // -2^31, while positive numbers can only be as large as 2^31-1 583 // (i.e. we can't necessarily negate a negative number without 584 // overflow) 585 if (u > 0) { 586 u = -u; 587 } // make u negative 588 if (v > 0) { 589 v = -v; 590 } // make v negative 591 // B1. [Find power of 2] 592 int k = 0; 593 while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are both even... 594 u /= 2; 595 v /= 2; 596 k++; // cast out twos. 597 } 598 if (k == 31) { 599 throw new ArithmeticException("overflow: gcd is 2^31"); 600 } 601 // B2. Initialize: u and v have been divided by 2^k and at least 602 // one is odd. 603 int t = (u & 1) == 1 ? v : -(u / 2)/* B3 */; 604 // t negative: u was odd, v may be even (t replaces v) 605 // t positive: u was even, v is odd (t replaces u) 606 do { 607 /* assert u<0 && v<0; */ 608 // B4/B3: cast out twos from t. 609 while ((t & 1) == 0) { // while t is even.. 610 t /= 2; // cast out twos 611 } 612 // B5 [reset max(u,v)] 613 if (t > 0) { 614 u = -t; 615 } else { 616 v = t; 617 } 618 // B6/B3. at this point both u and v should be odd. 619 t = (v - u) / 2; 620 // |u| larger: t positive (replace u) 621 // |v| larger: t negative (replace v) 622 } while (t != 0); 623 return -u * (1 << k); // gcd is u*2^k 624 } 625 626 // Arithmetic 627 //------------------------------------------------------------------- 628 629 /** 630 * Multiply two integers, checking for overflow. 631 * 632 * @param x a factor 633 * @param y a factor 634 * @return the product <code>x*y</code> 635 * @throws ArithmeticException if the result can not be represented as 636 * an int 637 */ 638 private static int mulAndCheck(final int x, final int y) { 639 final long m = (long) x * (long) y; 640 if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) { 641 throw new ArithmeticException("overflow: mul"); 642 } 643 return (int) m; 644 } 645 646 /** 647 * Multiply two non-negative integers, checking for overflow. 648 * 649 * @param x a non-negative factor 650 * @param y a non-negative factor 651 * @return the product <code>x*y</code> 652 * @throws ArithmeticException if the result can not be represented as 653 * an int 654 */ 655 private static int mulPosAndCheck(final int x, final int y) { 656 /* assert x>=0 && y>=0; */ 657 final long m = (long) x * (long) y; 658 if (m > Integer.MAX_VALUE) { 659 throw new ArithmeticException("overflow: mulPos"); 660 } 661 return (int) m; 662 } 663 664 /** 665 * Add two integers, checking for overflow. 666 * 667 * @param x an addend 668 * @param y an addend 669 * @return the sum <code>x+y</code> 670 * @throws ArithmeticException if the result can not be represented as 671 * an int 672 */ 673 private static int addAndCheck(final int x, final int y) { 674 final long s = (long) x + (long) y; 675 if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { 676 throw new ArithmeticException("overflow: add"); 677 } 678 return (int) s; 679 } 680 681 /** 682 * Subtract two integers, checking for overflow. 683 * 684 * @param x the minuend 685 * @param y the subtrahend 686 * @return the difference <code>x-y</code> 687 * @throws ArithmeticException if the result can not be represented as 688 * an int 689 */ 690 private static int subAndCheck(final int x, final int y) { 691 final long s = (long) x - (long) y; 692 if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { 693 throw new ArithmeticException("overflow: add"); 694 } 695 return (int) s; 696 } 697 698 /** 699 * <p>Adds the value of this fraction to another, returning the result in reduced form. 700 * The algorithm follows Knuth, 4.5.1.</p> 701 * 702 * @param fraction the fraction to add, must not be <code>null</code> 703 * @return a <code>Fraction</code> instance with the resulting values 704 * @throws IllegalArgumentException if the fraction is <code>null</code> 705 * @throws ArithmeticException if the resulting numerator or denominator exceeds 706 * <code>Integer.MAX_VALUE</code> 707 */ 708 public Fraction add(final Fraction fraction) { 709 return addSub(fraction, true /* add */); 710 } 711 712 /** 713 * <p>Subtracts the value of another fraction from the value of this one, 714 * returning the result in reduced form.</p> 715 * 716 * @param fraction the fraction to subtract, must not be <code>null</code> 717 * @return a <code>Fraction</code> instance with the resulting values 718 * @throws IllegalArgumentException if the fraction is <code>null</code> 719 * @throws ArithmeticException if the resulting numerator or denominator 720 * cannot be represented in an <code>int</code>. 721 */ 722 public Fraction subtract(final Fraction fraction) { 723 return addSub(fraction, false /* subtract */); 724 } 725 726 /** 727 * Implement add and subtract using algorithm described in Knuth 4.5.1. 728 * 729 * @param fraction the fraction to subtract, must not be <code>null</code> 730 * @param isAdd true to add, false to subtract 731 * @return a <code>Fraction</code> instance with the resulting values 732 * @throws IllegalArgumentException if the fraction is <code>null</code> 733 * @throws ArithmeticException if the resulting numerator or denominator 734 * cannot be represented in an <code>int</code>. 735 */ 736 private Fraction addSub(final Fraction fraction, final boolean isAdd) { 737 if (fraction == null) { 738 throw new IllegalArgumentException("The fraction must not be null"); 739 } 740 // zero is identity for addition. 741 if (numerator == 0) { 742 return isAdd ? fraction : fraction.negate(); 743 } 744 if (fraction.numerator == 0) { 745 return this; 746 } 747 // if denominators are randomly distributed, d1 will be 1 about 61% 748 // of the time. 749 final int d1 = greatestCommonDivisor(denominator, fraction.denominator); 750 if (d1 == 1) { 751 // result is ( (u*v' +/- u'v) / u'v') 752 final int uvp = mulAndCheck(numerator, fraction.denominator); 753 final int upv = mulAndCheck(fraction.numerator, denominator); 754 return new Fraction(isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), mulPosAndCheck(denominator, 755 fraction.denominator)); 756 } 757 // the quantity 't' requires 65 bits of precision; see knuth 4.5.1 758 // exercise 7. we're going to use a BigInteger. 759 // t = u(v'/d1) +/- v(u'/d1) 760 final BigInteger uvp = BigInteger.valueOf(numerator).multiply(BigInteger.valueOf(fraction.denominator / d1)); 761 final BigInteger upv = BigInteger.valueOf(fraction.numerator).multiply(BigInteger.valueOf(denominator / d1)); 762 final BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv); 763 // but d2 doesn't need extra precision because 764 // d2 = gcd(t,d1) = gcd(t mod d1, d1) 765 final int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue(); 766 final int d2 = tmodd1 == 0 ? d1 : greatestCommonDivisor(tmodd1, d1); 767 768 // result is (t/d2) / (u'/d1)(v'/d2) 769 final BigInteger w = t.divide(BigInteger.valueOf(d2)); 770 if (w.bitLength() > 31) { 771 throw new ArithmeticException("overflow: numerator too large after multiply"); 772 } 773 return new Fraction(w.intValue(), mulPosAndCheck(denominator / d1, fraction.denominator / d2)); 774 } 775 776 /** 777 * <p>Multiplies the value of this fraction by another, returning the 778 * result in reduced form.</p> 779 * 780 * @param fraction the fraction to multiply by, must not be <code>null</code> 781 * @return a <code>Fraction</code> instance with the resulting values 782 * @throws IllegalArgumentException if the fraction is <code>null</code> 783 * @throws ArithmeticException if the resulting numerator or denominator exceeds 784 * <code>Integer.MAX_VALUE</code> 785 */ 786 public Fraction multiplyBy(final Fraction fraction) { 787 if (fraction == null) { 788 throw new IllegalArgumentException("The fraction must not be null"); 789 } 790 if (numerator == 0 || fraction.numerator == 0) { 791 return ZERO; 792 } 793 // knuth 4.5.1 794 // make sure we don't overflow unless the result *must* overflow. 795 final int d1 = greatestCommonDivisor(numerator, fraction.denominator); 796 final int d2 = greatestCommonDivisor(fraction.numerator, denominator); 797 return getReducedFraction(mulAndCheck(numerator / d1, fraction.numerator / d2), 798 mulPosAndCheck(denominator / d2, fraction.denominator / d1)); 799 } 800 801 /** 802 * <p>Divide the value of this fraction by another.</p> 803 * 804 * @param fraction the fraction to divide by, must not be <code>null</code> 805 * @return a <code>Fraction</code> instance with the resulting values 806 * @throws IllegalArgumentException if the fraction is <code>null</code> 807 * @throws ArithmeticException if the fraction to divide by is zero 808 * @throws ArithmeticException if the resulting numerator or denominator exceeds 809 * <code>Integer.MAX_VALUE</code> 810 */ 811 public Fraction divideBy(final Fraction fraction) { 812 if (fraction == null) { 813 throw new IllegalArgumentException("The fraction must not be null"); 814 } 815 if (fraction.numerator == 0) { 816 throw new ArithmeticException("The fraction to divide by must not be zero"); 817 } 818 return multiplyBy(fraction.invert()); 819 } 820 821 // Basics 822 //------------------------------------------------------------------- 823 824 /** 825 * <p>Compares this fraction to another object to test if they are equal.</p>. 826 * 827 * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p> 828 * 829 * @param obj the reference object with which to compare 830 * @return <code>true</code> if this object is equal 831 */ 832 @Override 833 public boolean equals(final Object obj) { 834 if (obj == this) { 835 return true; 836 } 837 if (obj instanceof Fraction == false) { 838 return false; 839 } 840 final Fraction other = (Fraction) obj; 841 return getNumerator() == other.getNumerator() && getDenominator() == other.getDenominator(); 842 } 843 844 /** 845 * <p>Gets a hashCode for the fraction.</p> 846 * 847 * @return a hash code value for this object 848 */ 849 @Override 850 public int hashCode() { 851 if (hashCode == 0) { 852 // hashcode update should be atomic. 853 hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator(); 854 } 855 return hashCode; 856 } 857 858 /** 859 * <p>Compares this object to another based on size.</p> 860 * 861 * <p>Note: this class has a natural ordering that is inconsistent 862 * with equals, because, for example, equals treats 1/2 and 2/4 as 863 * different, whereas compareTo treats them as equal. 864 * 865 * @param other the object to compare to 866 * @return -1 if this is less, 0 if equal, +1 if greater 867 * @throws ClassCastException if the object is not a <code>Fraction</code> 868 * @throws NullPointerException if the object is <code>null</code> 869 */ 870 @Override 871 public int compareTo(final Fraction other) { 872 if (this == other) { 873 return 0; 874 } 875 if (numerator == other.numerator && denominator == other.denominator) { 876 return 0; 877 } 878 879 // otherwise see which is less 880 final long first = (long) numerator * (long) other.denominator; 881 final long second = (long) other.numerator * (long) denominator; 882 if (first == second) { 883 return 0; 884 } else if (first < second) { 885 return -1; 886 } else { 887 return 1; 888 } 889 } 890 891 /** 892 * <p>Gets the fraction as a <code>String</code>.</p> 893 * 894 * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always. 895 * 896 * @return a <code>String</code> form of the fraction 897 */ 898 @Override 899 public String toString() { 900 if (toString == null) { 901 toString = new StringBuilder(32).append(getNumerator()).append('/').append(getDenominator()).toString(); 902 } 903 return toString; 904 } 905 906 /** 907 * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p> 908 * 909 * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'. 910 * If the whole number is zero it will be omitted. If the numerator is zero, 911 * only the whole number is returned.</p> 912 * 913 * @return a <code>String</code> form of the fraction 914 */ 915 public String toProperString() { 916 if (toProperString == null) { 917 if (numerator == 0) { 918 toProperString = "0"; 919 } else if (numerator == denominator) { 920 toProperString = "1"; 921 } else if (numerator == -1 * denominator) { 922 toProperString = "-1"; 923 } else if ((numerator > 0 ? -numerator : numerator) < -denominator) { 924 // note that we do the magnitude comparison test above with 925 // NEGATIVE (not positive) numbers, since negative numbers 926 // have a larger range. otherwise numerator==Integer.MIN_VALUE 927 // is handled incorrectly. 928 final int properNumerator = getProperNumerator(); 929 if (properNumerator == 0) { 930 toProperString = Integer.toString(getProperWhole()); 931 } else { 932 toProperString = new StringBuilder(32).append(getProperWhole()).append(' ').append(properNumerator) 933 .append('/').append(getDenominator()).toString(); 934 } 935 } else { 936 toProperString = new StringBuilder(32).append(getNumerator()).append('/').append(getDenominator()) 937 .toString(); 938 } 939 } 940 return toProperString; 941 } 942}