001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 * 
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 * 
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.lang3.math;
018
019import java.math.BigInteger;
020
021/**
022 * <p><code>Fraction</code> is a <code>Number</code> implementation that
023 * stores fractions accurately.</p>
024 *
025 * <p>This class is immutable, and interoperable with most methods that accept
026 * a <code>Number</code>.</p>
027 *
028 * <p>Note that this class is intended for common use cases, it is <i>int</i>
029 * based and thus suffers from various overflow issues. For a BigInteger based 
030 * equivalent, please see the Commons Math BigFraction class. </p>
031 *
032 * @since 2.0
033 */
034public final class Fraction extends Number implements Comparable<Fraction> {
035
036    /**
037     * Required for serialization support. Lang version 2.0.
038     * 
039     * @see java.io.Serializable
040     */
041    private static final long serialVersionUID = 65382027393090L;
042
043    /**
044     * <code>Fraction</code> representation of 0.
045     */
046    public static final Fraction ZERO = new Fraction(0, 1);
047    /**
048     * <code>Fraction</code> representation of 1.
049     */
050    public static final Fraction ONE = new Fraction(1, 1);
051    /**
052     * <code>Fraction</code> representation of 1/2.
053     */
054    public static final Fraction ONE_HALF = new Fraction(1, 2);
055    /**
056     * <code>Fraction</code> representation of 1/3.
057     */
058    public static final Fraction ONE_THIRD = new Fraction(1, 3);
059    /**
060     * <code>Fraction</code> representation of 2/3.
061     */
062    public static final Fraction TWO_THIRDS = new Fraction(2, 3);
063    /**
064     * <code>Fraction</code> representation of 1/4.
065     */
066    public static final Fraction ONE_QUARTER = new Fraction(1, 4);
067    /**
068     * <code>Fraction</code> representation of 2/4.
069     */
070    public static final Fraction TWO_QUARTERS = new Fraction(2, 4);
071    /**
072     * <code>Fraction</code> representation of 3/4.
073     */
074    public static final Fraction THREE_QUARTERS = new Fraction(3, 4);
075    /**
076     * <code>Fraction</code> representation of 1/5.
077     */
078    public static final Fraction ONE_FIFTH = new Fraction(1, 5);
079    /**
080     * <code>Fraction</code> representation of 2/5.
081     */
082    public static final Fraction TWO_FIFTHS = new Fraction(2, 5);
083    /**
084     * <code>Fraction</code> representation of 3/5.
085     */
086    public static final Fraction THREE_FIFTHS = new Fraction(3, 5);
087    /**
088     * <code>Fraction</code> representation of 4/5.
089     */
090    public static final Fraction FOUR_FIFTHS = new Fraction(4, 5);
091
092
093    /**
094     * The numerator number part of the fraction (the three in three sevenths).
095     */
096    private final int numerator;
097    /**
098     * The denominator number part of the fraction (the seven in three sevenths).
099     */
100    private final int denominator;
101
102    /**
103     * Cached output hashCode (class is immutable).
104     */
105    private transient int hashCode = 0;
106    /**
107     * Cached output toString (class is immutable).
108     */
109    private transient String toString = null;
110    /**
111     * Cached output toProperString (class is immutable).
112     */
113    private transient String toProperString = null;
114
115    /**
116     * <p>Constructs a <code>Fraction</code> instance with the 2 parts
117     * of a fraction Y/Z.</p>
118     *
119     * @param numerator  the numerator, for example the three in 'three sevenths'
120     * @param denominator  the denominator, for example the seven in 'three sevenths'
121     */
122    private Fraction(final int numerator, final int denominator) {
123        super();
124        this.numerator = numerator;
125        this.denominator = denominator;
126    }
127
128    /**
129     * <p>Creates a <code>Fraction</code> instance with the 2 parts
130     * of a fraction Y/Z.</p>
131     *
132     * <p>Any negative signs are resolved to be on the numerator.</p>
133     *
134     * @param numerator  the numerator, for example the three in 'three sevenths'
135     * @param denominator  the denominator, for example the seven in 'three sevenths'
136     * @return a new fraction instance
137     * @throws ArithmeticException if the denominator is <code>zero</code>
138     * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE}
139     */
140    public static Fraction getFraction(int numerator, int denominator) {
141        if (denominator == 0) {
142            throw new ArithmeticException("The denominator must not be zero");
143        }
144        if (denominator < 0) {
145            if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
146                throw new ArithmeticException("overflow: can't negate");
147            }
148            numerator = -numerator;
149            denominator = -denominator;
150        }
151        return new Fraction(numerator, denominator);
152    }
153
154    /**
155     * <p>Creates a <code>Fraction</code> instance with the 3 parts
156     * of a fraction X Y/Z.</p>
157     *
158     * <p>The negative sign must be passed in on the whole number part.</p>
159     *
160     * @param whole  the whole number, for example the one in 'one and three sevenths'
161     * @param numerator  the numerator, for example the three in 'one and three sevenths'
162     * @param denominator  the denominator, for example the seven in 'one and three sevenths'
163     * @return a new fraction instance
164     * @throws ArithmeticException if the denominator is <code>zero</code>
165     * @throws ArithmeticException if the denominator is negative
166     * @throws ArithmeticException if the numerator is negative
167     * @throws ArithmeticException if the resulting numerator exceeds 
168     *  <code>Integer.MAX_VALUE</code>
169     */
170    public static Fraction getFraction(final int whole, final int numerator, final int denominator) {
171        if (denominator == 0) {
172            throw new ArithmeticException("The denominator must not be zero");
173        }
174        if (denominator < 0) {
175            throw new ArithmeticException("The denominator must not be negative");
176        }
177        if (numerator < 0) {
178            throw new ArithmeticException("The numerator must not be negative");
179        }
180        long numeratorValue;
181        if (whole < 0) {
182            numeratorValue = whole * (long) denominator - numerator;
183        } else {
184            numeratorValue = whole * (long) denominator + numerator;
185        }
186        if (numeratorValue < Integer.MIN_VALUE || numeratorValue > Integer.MAX_VALUE) {
187            throw new ArithmeticException("Numerator too large to represent as an Integer.");
188        }
189        return new Fraction((int) numeratorValue, denominator);
190    }
191
192    /**
193     * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts
194     * of a fraction Y/Z.</p>
195     *
196     * <p>For example, if the input parameters represent 2/4, then the created
197     * fraction will be 1/2.</p>
198     *
199     * <p>Any negative signs are resolved to be on the numerator.</p>
200     *
201     * @param numerator  the numerator, for example the three in 'three sevenths'
202     * @param denominator  the denominator, for example the seven in 'three sevenths'
203     * @return a new fraction instance, with the numerator and denominator reduced
204     * @throws ArithmeticException if the denominator is <code>zero</code>
205     */
206    public static Fraction getReducedFraction(int numerator, int denominator) {
207        if (denominator == 0) {
208            throw new ArithmeticException("The denominator must not be zero");
209        }
210        if (numerator == 0) {
211            return ZERO; // normalize zero.
212        }
213        // allow 2^k/-2^31 as a valid fraction (where k>0)
214        if (denominator == Integer.MIN_VALUE && (numerator & 1) == 0) {
215            numerator /= 2;
216            denominator /= 2;
217        }
218        if (denominator < 0) {
219            if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
220                throw new ArithmeticException("overflow: can't negate");
221            }
222            numerator = -numerator;
223            denominator = -denominator;
224        }
225        // simplify fraction.
226        final int gcd = greatestCommonDivisor(numerator, denominator);
227        numerator /= gcd;
228        denominator /= gcd;
229        return new Fraction(numerator, denominator);
230    }
231
232    /**
233     * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p>
234     *
235     * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/">
236     *  continued fraction algorithm</a>, computing a maximum of
237     *  25 convergents and bounding the denominator by 10,000.</p>
238     *
239     * @param value  the double value to convert
240     * @return a new fraction instance that is close to the value
241     * @throws ArithmeticException if <code>|value| &gt; Integer.MAX_VALUE</code> 
242     *  or <code>value = NaN</code>
243     * @throws ArithmeticException if the calculated denominator is <code>zero</code>
244     * @throws ArithmeticException if the the algorithm does not converge
245     */
246    public static Fraction getFraction(double value) {
247        final int sign = value < 0 ? -1 : 1;
248        value = Math.abs(value);
249        if (value > Integer.MAX_VALUE || Double.isNaN(value)) {
250            throw new ArithmeticException("The value must not be greater than Integer.MAX_VALUE or NaN");
251        }
252        final int wholeNumber = (int) value;
253        value -= wholeNumber;
254
255        int numer0 = 0; // the pre-previous
256        int denom0 = 1; // the pre-previous
257        int numer1 = 1; // the previous
258        int denom1 = 0; // the previous
259        int numer2 = 0; // the current, setup in calculation
260        int denom2 = 0; // the current, setup in calculation
261        int a1 = (int) value;
262        int a2 = 0;
263        double x1 = 1;
264        double x2 = 0;
265        double y1 = value - a1;
266        double y2 = 0;
267        double delta1, delta2 = Double.MAX_VALUE;
268        double fraction;
269        int i = 1;
270        // System.out.println("---");
271        do {
272            delta1 = delta2;
273            a2 = (int) (x1 / y1);
274            x2 = y1;
275            y2 = x1 - a2 * y1;
276            numer2 = a1 * numer1 + numer0;
277            denom2 = a1 * denom1 + denom0;
278            fraction = (double) numer2 / (double) denom2;
279            delta2 = Math.abs(value - fraction);
280            // System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1);
281            a1 = a2;
282            x1 = x2;
283            y1 = y2;
284            numer0 = numer1;
285            denom0 = denom1;
286            numer1 = numer2;
287            denom1 = denom2;
288            i++;
289            // System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2);
290        } while (delta1 > delta2 && denom2 <= 10000 && denom2 > 0 && i < 25);
291        if (i == 25) {
292            throw new ArithmeticException("Unable to convert double to fraction");
293        }
294        return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0);
295    }
296
297    /**
298     * <p>Creates a Fraction from a <code>String</code>.</p>
299     *
300     * <p>The formats accepted are:</p>
301     *
302     * <ol>
303     *  <li><code>double</code> String containing a dot</li>
304     *  <li>'X Y/Z'</li>
305     *  <li>'Y/Z'</li>
306     *  <li>'X' (a simple whole number)</li>
307     * </ol>
308     * <p>and a .</p>
309     *
310     * @param str  the string to parse, must not be <code>null</code>
311     * @return the new <code>Fraction</code> instance
312     * @throws IllegalArgumentException if the string is <code>null</code>
313     * @throws NumberFormatException if the number format is invalid
314     */
315    public static Fraction getFraction(String str) {
316        if (str == null) {
317            throw new IllegalArgumentException("The string must not be null");
318        }
319        // parse double format
320        int pos = str.indexOf('.');
321        if (pos >= 0) {
322            return getFraction(Double.parseDouble(str));
323        }
324
325        // parse X Y/Z format
326        pos = str.indexOf(' ');
327        if (pos > 0) {
328            final int whole = Integer.parseInt(str.substring(0, pos));
329            str = str.substring(pos + 1);
330            pos = str.indexOf('/');
331            if (pos < 0) {
332                throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z");
333            }
334            final int numer = Integer.parseInt(str.substring(0, pos));
335            final int denom = Integer.parseInt(str.substring(pos + 1));
336            return getFraction(whole, numer, denom);
337        }
338
339        // parse Y/Z format
340        pos = str.indexOf('/');
341        if (pos < 0) {
342            // simple whole number
343            return getFraction(Integer.parseInt(str), 1);
344        }
345        final int numer = Integer.parseInt(str.substring(0, pos));
346        final int denom = Integer.parseInt(str.substring(pos + 1));
347        return getFraction(numer, denom);
348    }
349
350    // Accessors
351    //-------------------------------------------------------------------
352
353    /**
354     * <p>Gets the numerator part of the fraction.</p>
355     *
356     * <p>This method may return a value greater than the denominator, an
357     * improper fraction, such as the seven in 7/4.</p>
358     *
359     * @return the numerator fraction part
360     */
361    public int getNumerator() {
362        return numerator;
363    }
364
365    /**
366     * <p>Gets the denominator part of the fraction.</p>
367     *
368     * @return the denominator fraction part
369     */
370    public int getDenominator() {
371        return denominator;
372    }
373
374    /**
375     * <p>Gets the proper numerator, always positive.</p>
376     *
377     * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
378     * This method returns the 3 from the proper fraction.</p>
379     *
380     * <p>If the fraction is negative such as -7/4, it can be resolved into
381     * -1 3/4, so this method returns the positive proper numerator, 3.</p>
382     *
383     * @return the numerator fraction part of a proper fraction, always positive
384     */
385    public int getProperNumerator() {
386        return Math.abs(numerator % denominator);
387    }
388
389    /**
390     * <p>Gets the proper whole part of the fraction.</p>
391     *
392     * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
393     * This method returns the 1 from the proper fraction.</p>
394     *
395     * <p>If the fraction is negative such as -7/4, it can be resolved into
396     * -1 3/4, so this method returns the positive whole part -1.</p>
397     *
398     * @return the whole fraction part of a proper fraction, that includes the sign
399     */
400    public int getProperWhole() {
401        return numerator / denominator;
402    }
403
404    // Number methods
405    //-------------------------------------------------------------------
406
407    /**
408     * <p>Gets the fraction as an <code>int</code>. This returns the whole number
409     * part of the fraction.</p>
410     *
411     * @return the whole number fraction part
412     */
413    @Override
414    public int intValue() {
415        return numerator / denominator;
416    }
417
418    /**
419     * <p>Gets the fraction as a <code>long</code>. This returns the whole number
420     * part of the fraction.</p>
421     *
422     * @return the whole number fraction part
423     */
424    @Override
425    public long longValue() {
426        return (long) numerator / denominator;
427    }
428
429    /**
430     * <p>Gets the fraction as a <code>float</code>. This calculates the fraction
431     * as the numerator divided by denominator.</p>
432     *
433     * @return the fraction as a <code>float</code>
434     */
435    @Override
436    public float floatValue() {
437        return (float) numerator / (float) denominator;
438    }
439
440    /**
441     * <p>Gets the fraction as a <code>double</code>. This calculates the fraction
442     * as the numerator divided by denominator.</p>
443     *
444     * @return the fraction as a <code>double</code>
445     */
446    @Override
447    public double doubleValue() {
448        return (double) numerator / (double) denominator;
449    }
450
451    // Calculations
452    //-------------------------------------------------------------------
453
454    /**
455     * <p>Reduce the fraction to the smallest values for the numerator and
456     * denominator, returning the result.</p>
457     * 
458     * <p>For example, if this fraction represents 2/4, then the result
459     * will be 1/2.</p>
460     *
461     * @return a new reduced fraction instance, or this if no simplification possible
462     */
463    public Fraction reduce() {
464        if (numerator == 0) {
465            return equals(ZERO) ? this : ZERO;
466        }
467        final int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
468        if (gcd == 1) {
469            return this;
470        }
471        return Fraction.getFraction(numerator / gcd, denominator / gcd);
472    }
473
474    /**
475     * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p>
476     * 
477     * <p>The returned fraction is not reduced.</p>
478     *
479     * @return a new fraction instance with the numerator and denominator
480     *         inverted.
481     * @throws ArithmeticException if the fraction represents zero.
482     */
483    public Fraction invert() {
484        if (numerator == 0) {
485            throw new ArithmeticException("Unable to invert zero.");
486        }
487        if (numerator==Integer.MIN_VALUE) {
488            throw new ArithmeticException("overflow: can't negate numerator");
489        }
490        if (numerator<0) {
491            return new Fraction(-denominator, -numerator);
492        }
493        return new Fraction(denominator, numerator);
494    }
495
496    /**
497     * <p>Gets a fraction that is the negative (-fraction) of this one.</p>
498     *
499     * <p>The returned fraction is not reduced.</p>
500     *
501     * @return a new fraction instance with the opposite signed numerator
502     */
503    public Fraction negate() {
504        // the positive range is one smaller than the negative range of an int.
505        if (numerator==Integer.MIN_VALUE) {
506            throw new ArithmeticException("overflow: too large to negate");
507        }
508        return new Fraction(-numerator, denominator);
509    }
510
511    /**
512     * <p>Gets a fraction that is the positive equivalent of this one.</p>
513     * <p>More precisely: <code>(fraction &gt;= 0 ? this : -fraction)</code></p>
514     *
515     * <p>The returned fraction is not reduced.</p>
516     *
517     * @return <code>this</code> if it is positive, or a new positive fraction
518     *  instance with the opposite signed numerator
519     */
520    public Fraction abs() {
521        if (numerator >= 0) {
522            return this;
523        }
524        return negate();
525    }
526
527    /**
528     * <p>Gets a fraction that is raised to the passed in power.</p>
529     *
530     * <p>The returned fraction is in reduced form.</p>
531     *
532     * @param power  the power to raise the fraction to
533     * @return <code>this</code> if the power is one, <code>ONE</code> if the power
534     * is zero (even if the fraction equals ZERO) or a new fraction instance 
535     * raised to the appropriate power
536     * @throws ArithmeticException if the resulting numerator or denominator exceeds
537     *  <code>Integer.MAX_VALUE</code>
538     */
539    public Fraction pow(final int power) {
540        if (power == 1) {
541            return this;
542        } else if (power == 0) {
543            return ONE;
544        } else if (power < 0) {
545            if (power == Integer.MIN_VALUE) { // MIN_VALUE can't be negated.
546                return this.invert().pow(2).pow(-(power / 2));
547            }
548            return this.invert().pow(-power);
549        } else {
550            final Fraction f = this.multiplyBy(this);
551            if (power % 2 == 0) { // if even...
552                return f.pow(power / 2);
553            }
554            return f.pow(power / 2).multiplyBy(this);
555        }
556    }
557
558    /**
559     * <p>Gets the greatest common divisor of the absolute value of
560     * two numbers, using the "binary gcd" method which avoids
561     * division and modulo operations.  See Knuth 4.5.2 algorithm B.
562     * This algorithm is due to Josef Stein (1961).</p>
563     *
564     * @param u  a non-zero number
565     * @param v  a non-zero number
566     * @return the greatest common divisor, never zero
567     */
568    private static int greatestCommonDivisor(int u, int v) {
569        // From Commons Math:
570        if (u == 0 || v == 0) {
571            if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) {
572                throw new ArithmeticException("overflow: gcd is 2^31");
573            }
574            return Math.abs(u) + Math.abs(v);
575        }
576        // if either operand is abs 1, return 1:
577        if (Math.abs(u) == 1 || Math.abs(v) == 1) {
578            return 1;
579        }
580        // keep u and v negative, as negative integers range down to
581        // -2^31, while positive numbers can only be as large as 2^31-1
582        // (i.e. we can't necessarily negate a negative number without
583        // overflow)
584        if (u > 0) {
585            u = -u;
586        } // make u negative
587        if (v > 0) {
588            v = -v;
589        } // make v negative
590        // B1. [Find power of 2]
591        int k = 0;
592        while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are both even...
593            u /= 2;
594            v /= 2;
595            k++; // cast out twos.
596        }
597        if (k == 31) {
598            throw new ArithmeticException("overflow: gcd is 2^31");
599        }
600        // B2. Initialize: u and v have been divided by 2^k and at least
601        // one is odd.
602        int t = (u & 1) == 1 ? v : -(u / 2)/* B3 */;
603        // t negative: u was odd, v may be even (t replaces v)
604        // t positive: u was even, v is odd (t replaces u)
605        do {
606            /* assert u<0 && v<0; */
607            // B4/B3: cast out twos from t.
608            while ((t & 1) == 0) { // while t is even..
609                t /= 2; // cast out twos
610            }
611            // B5 [reset max(u,v)]
612            if (t > 0) {
613                u = -t;
614            } else {
615                v = t;
616            }
617            // B6/B3. at this point both u and v should be odd.
618            t = (v - u) / 2;
619            // |u| larger: t positive (replace u)
620            // |v| larger: t negative (replace v)
621        } while (t != 0);
622        return -u * (1 << k); // gcd is u*2^k
623    }
624
625    // Arithmetic
626    //-------------------------------------------------------------------
627
628    /** 
629     * Multiply two integers, checking for overflow.
630     * 
631     * @param x a factor
632     * @param y a factor
633     * @return the product <code>x*y</code>
634     * @throws ArithmeticException if the result can not be represented as
635     *                             an int
636     */
637    private static int mulAndCheck(final int x, final int y) {
638        final long m = (long) x * (long) y;
639        if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
640            throw new ArithmeticException("overflow: mul");
641        }
642        return (int) m;
643    }
644    
645    /**
646     *  Multiply two non-negative integers, checking for overflow.
647     * 
648     * @param x a non-negative factor
649     * @param y a non-negative factor
650     * @return the product <code>x*y</code>
651     * @throws ArithmeticException if the result can not be represented as
652     * an int
653     */
654    private static int mulPosAndCheck(final int x, final int y) {
655        /* assert x>=0 && y>=0; */
656        final long m = (long) x * (long) y;
657        if (m > Integer.MAX_VALUE) {
658            throw new ArithmeticException("overflow: mulPos");
659        }
660        return (int) m;
661    }
662    
663    /** 
664     * Add two integers, checking for overflow.
665     * 
666     * @param x an addend
667     * @param y an addend
668     * @return the sum <code>x+y</code>
669     * @throws ArithmeticException if the result can not be represented as
670     * an int
671     */
672    private static int addAndCheck(final int x, final int y) {
673        final long s = (long) x + (long) y;
674        if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
675            throw new ArithmeticException("overflow: add");
676        }
677        return (int) s;
678    }
679    
680    /** 
681     * Subtract two integers, checking for overflow.
682     * 
683     * @param x the minuend
684     * @param y the subtrahend
685     * @return the difference <code>x-y</code>
686     * @throws ArithmeticException if the result can not be represented as
687     * an int
688     */
689    private static int subAndCheck(final int x, final int y) {
690        final long s = (long) x - (long) y;
691        if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
692            throw new ArithmeticException("overflow: add");
693        }
694        return (int) s;
695    }
696    
697    /**
698     * <p>Adds the value of this fraction to another, returning the result in reduced form.
699     * The algorithm follows Knuth, 4.5.1.</p>
700     *
701     * @param fraction  the fraction to add, must not be <code>null</code>
702     * @return a <code>Fraction</code> instance with the resulting values
703     * @throws IllegalArgumentException if the fraction is <code>null</code>
704     * @throws ArithmeticException if the resulting numerator or denominator exceeds
705     *  <code>Integer.MAX_VALUE</code>
706     */
707    public Fraction add(final Fraction fraction) {
708        return addSub(fraction, true /* add */);
709    }
710
711    /**
712     * <p>Subtracts the value of another fraction from the value of this one, 
713     * returning the result in reduced form.</p>
714     *
715     * @param fraction  the fraction to subtract, must not be <code>null</code>
716     * @return a <code>Fraction</code> instance with the resulting values
717     * @throws IllegalArgumentException if the fraction is <code>null</code>
718     * @throws ArithmeticException if the resulting numerator or denominator
719     *   cannot be represented in an <code>int</code>.
720     */
721    public Fraction subtract(final Fraction fraction) {
722        return addSub(fraction, false /* subtract */);
723    }
724
725    /** 
726     * Implement add and subtract using algorithm described in Knuth 4.5.1.
727     * 
728     * @param fraction the fraction to subtract, must not be <code>null</code>
729     * @param isAdd true to add, false to subtract
730     * @return a <code>Fraction</code> instance with the resulting values
731     * @throws IllegalArgumentException if the fraction is <code>null</code>
732     * @throws ArithmeticException if the resulting numerator or denominator
733     *   cannot be represented in an <code>int</code>.
734     */
735    private Fraction addSub(final Fraction fraction, final boolean isAdd) {
736        if (fraction == null) {
737            throw new IllegalArgumentException("The fraction must not be null");
738        }
739        // zero is identity for addition.
740        if (numerator == 0) {
741            return isAdd ? fraction : fraction.negate();
742        }
743        if (fraction.numerator == 0) {
744            return this;
745        }
746        // if denominators are randomly distributed, d1 will be 1 about 61%
747        // of the time.
748        final int d1 = greatestCommonDivisor(denominator, fraction.denominator);
749        if (d1 == 1) {
750            // result is ( (u*v' +/- u'v) / u'v')
751            final int uvp = mulAndCheck(numerator, fraction.denominator);
752            final int upv = mulAndCheck(fraction.numerator, denominator);
753            return new Fraction(isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), mulPosAndCheck(denominator,
754                    fraction.denominator));
755        }
756        // the quantity 't' requires 65 bits of precision; see knuth 4.5.1
757        // exercise 7. we're going to use a BigInteger.
758        // t = u(v'/d1) +/- v(u'/d1)
759        final BigInteger uvp = BigInteger.valueOf(numerator).multiply(BigInteger.valueOf(fraction.denominator / d1));
760        final BigInteger upv = BigInteger.valueOf(fraction.numerator).multiply(BigInteger.valueOf(denominator / d1));
761        final BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
762        // but d2 doesn't need extra precision because
763        // d2 = gcd(t,d1) = gcd(t mod d1, d1)
764        final int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
765        final int d2 = tmodd1 == 0 ? d1 : greatestCommonDivisor(tmodd1, d1);
766
767        // result is (t/d2) / (u'/d1)(v'/d2)
768        final BigInteger w = t.divide(BigInteger.valueOf(d2));
769        if (w.bitLength() > 31) {
770            throw new ArithmeticException("overflow: numerator too large after multiply");
771        }
772        return new Fraction(w.intValue(), mulPosAndCheck(denominator / d1, fraction.denominator / d2));
773    }
774
775    /**
776     * <p>Multiplies the value of this fraction by another, returning the 
777     * result in reduced form.</p>
778     *
779     * @param fraction  the fraction to multiply by, must not be <code>null</code>
780     * @return a <code>Fraction</code> instance with the resulting values
781     * @throws IllegalArgumentException if the fraction is <code>null</code>
782     * @throws ArithmeticException if the resulting numerator or denominator exceeds
783     *  <code>Integer.MAX_VALUE</code>
784     */
785    public Fraction multiplyBy(final Fraction fraction) {
786        if (fraction == null) {
787            throw new IllegalArgumentException("The fraction must not be null");
788        }
789        if (numerator == 0 || fraction.numerator == 0) {
790            return ZERO;
791        }
792        // knuth 4.5.1
793        // make sure we don't overflow unless the result *must* overflow.
794        final int d1 = greatestCommonDivisor(numerator, fraction.denominator);
795        final int d2 = greatestCommonDivisor(fraction.numerator, denominator);
796        return getReducedFraction(mulAndCheck(numerator / d1, fraction.numerator / d2),
797                mulPosAndCheck(denominator / d2, fraction.denominator / d1));
798    }
799
800    /**
801     * <p>Divide the value of this fraction by another.</p>
802     *
803     * @param fraction  the fraction to divide by, must not be <code>null</code>
804     * @return a <code>Fraction</code> instance with the resulting values
805     * @throws IllegalArgumentException if the fraction is <code>null</code>
806     * @throws ArithmeticException if the fraction to divide by is zero
807     * @throws ArithmeticException if the resulting numerator or denominator exceeds
808     *  <code>Integer.MAX_VALUE</code>
809     */
810    public Fraction divideBy(final Fraction fraction) {
811        if (fraction == null) {
812            throw new IllegalArgumentException("The fraction must not be null");
813        }
814        if (fraction.numerator == 0) {
815            throw new ArithmeticException("The fraction to divide by must not be zero");
816        }
817        return multiplyBy(fraction.invert());
818    }
819
820    // Basics
821    //-------------------------------------------------------------------
822
823    /**
824     * <p>Compares this fraction to another object to test if they are equal.</p>.
825     *
826     * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p>
827     *
828     * @param obj the reference object with which to compare
829     * @return <code>true</code> if this object is equal
830     */
831    @Override
832    public boolean equals(final Object obj) {
833        if (obj == this) {
834            return true;
835        }
836        if (obj instanceof Fraction == false) {
837            return false;
838        }
839        final Fraction other = (Fraction) obj;
840        return getNumerator() == other.getNumerator() && getDenominator() == other.getDenominator();
841    }
842
843    /**
844     * <p>Gets a hashCode for the fraction.</p>
845     *
846     * @return a hash code value for this object
847     */
848    @Override
849    public int hashCode() {
850        if (hashCode == 0) {
851            // hashcode update should be atomic.
852            hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator();
853        }
854        return hashCode;
855    }
856
857    /**
858     * <p>Compares this object to another based on size.</p>
859     *
860     * <p>Note: this class has a natural ordering that is inconsistent
861     * with equals, because, for example, equals treats 1/2 and 2/4 as
862     * different, whereas compareTo treats them as equal.
863     *
864     * @param other  the object to compare to
865     * @return -1 if this is less, 0 if equal, +1 if greater
866     * @throws ClassCastException if the object is not a <code>Fraction</code>
867     * @throws NullPointerException if the object is <code>null</code>
868     */
869    @Override
870    public int compareTo(final Fraction other) {
871        if (this == other) {
872            return 0;
873        }
874        if (numerator == other.numerator && denominator == other.denominator) {
875            return 0;
876        }
877
878        // otherwise see which is less
879        final long first = (long) numerator * (long) other.denominator;
880        final long second = (long) other.numerator * (long) denominator;
881        if (first == second) {
882            return 0;
883        } else if (first < second) {
884            return -1;
885        } else {
886            return 1;
887        }
888    }
889
890    /**
891     * <p>Gets the fraction as a <code>String</code>.</p>
892     *
893     * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always.
894     *
895     * @return a <code>String</code> form of the fraction
896     */
897    @Override
898    public String toString() {
899        if (toString == null) {
900            toString = getNumerator() + "/" + getDenominator();
901        }
902        return toString;
903    }
904
905    /**
906     * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p>
907     *
908     * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'.
909     * If the whole number is zero it will be omitted. If the numerator is zero,
910     * only the whole number is returned.</p>
911     *
912     * @return a <code>String</code> form of the fraction
913     */
914    public String toProperString() {
915        if (toProperString == null) {
916            if (numerator == 0) {
917                toProperString = "0";
918            } else if (numerator == denominator) {
919                toProperString = "1";
920            } else if (numerator == -1 * denominator) {
921                toProperString = "-1";
922            } else if ((numerator > 0 ? -numerator : numerator) < -denominator) {
923                // note that we do the magnitude comparison test above with
924                // NEGATIVE (not positive) numbers, since negative numbers
925                // have a larger range. otherwise numerator==Integer.MIN_VALUE
926                // is handled incorrectly.
927                final int properNumerator = getProperNumerator();
928                if (properNumerator == 0) {
929                    toProperString = Integer.toString(getProperWhole());
930                } else {
931                    toProperString = getProperWhole() + " " + properNumerator + "/" + getDenominator();
932                }
933            } else {
934                toProperString = getNumerator() + "/" + getDenominator();
935            }
936        }
937        return toProperString;
938    }
939}