001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.lang3.math;
018
019import java.math.BigInteger;
020
021import org.apache.commons.lang3.Validate;
022
023/**
024 * <p><code>Fraction</code> is a <code>Number</code> implementation that
025 * stores fractions accurately.</p>
026 *
027 * <p>This class is immutable, and interoperable with most methods that accept
028 * a <code>Number</code>.</p>
029 *
030 * <p>Note that this class is intended for common use cases, it is <i>int</i>
031 * based and thus suffers from various overflow issues. For a BigInteger based
032 * equivalent, please see the Commons Math BigFraction class. </p>
033 *
034 * @since 2.0
035 */
036public final class Fraction extends Number implements Comparable<Fraction> {
037
038    /**
039     * Required for serialization support. Lang version 2.0.
040     *
041     * @see java.io.Serializable
042     */
043    private static final long serialVersionUID = 65382027393090L;
044
045    /**
046     * <code>Fraction</code> representation of 0.
047     */
048    public static final Fraction ZERO = new Fraction(0, 1);
049    /**
050     * <code>Fraction</code> representation of 1.
051     */
052    public static final Fraction ONE = new Fraction(1, 1);
053    /**
054     * <code>Fraction</code> representation of 1/2.
055     */
056    public static final Fraction ONE_HALF = new Fraction(1, 2);
057    /**
058     * <code>Fraction</code> representation of 1/3.
059     */
060    public static final Fraction ONE_THIRD = new Fraction(1, 3);
061    /**
062     * <code>Fraction</code> representation of 2/3.
063     */
064    public static final Fraction TWO_THIRDS = new Fraction(2, 3);
065    /**
066     * <code>Fraction</code> representation of 1/4.
067     */
068    public static final Fraction ONE_QUARTER = new Fraction(1, 4);
069    /**
070     * <code>Fraction</code> representation of 2/4.
071     */
072    public static final Fraction TWO_QUARTERS = new Fraction(2, 4);
073    /**
074     * <code>Fraction</code> representation of 3/4.
075     */
076    public static final Fraction THREE_QUARTERS = new Fraction(3, 4);
077    /**
078     * <code>Fraction</code> representation of 1/5.
079     */
080    public static final Fraction ONE_FIFTH = new Fraction(1, 5);
081    /**
082     * <code>Fraction</code> representation of 2/5.
083     */
084    public static final Fraction TWO_FIFTHS = new Fraction(2, 5);
085    /**
086     * <code>Fraction</code> representation of 3/5.
087     */
088    public static final Fraction THREE_FIFTHS = new Fraction(3, 5);
089    /**
090     * <code>Fraction</code> representation of 4/5.
091     */
092    public static final Fraction FOUR_FIFTHS = new Fraction(4, 5);
093
094
095    /**
096     * The numerator number part of the fraction (the three in three sevenths).
097     */
098    private final int numerator;
099    /**
100     * The denominator number part of the fraction (the seven in three sevenths).
101     */
102    private final int denominator;
103
104    /**
105     * Cached output hashCode (class is immutable).
106     */
107    private transient int hashCode = 0;
108    /**
109     * Cached output toString (class is immutable).
110     */
111    private transient String toString = null;
112    /**
113     * Cached output toProperString (class is immutable).
114     */
115    private transient String toProperString = null;
116
117    /**
118     * <p>Constructs a <code>Fraction</code> instance with the 2 parts
119     * of a fraction Y/Z.</p>
120     *
121     * @param numerator  the numerator, for example the three in 'three sevenths'
122     * @param denominator  the denominator, for example the seven in 'three sevenths'
123     */
124    private Fraction(final int numerator, final int denominator) {
125        super();
126        this.numerator = numerator;
127        this.denominator = denominator;
128    }
129
130    /**
131     * <p>Creates a <code>Fraction</code> instance with the 2 parts
132     * of a fraction Y/Z.</p>
133     *
134     * <p>Any negative signs are resolved to be on the numerator.</p>
135     *
136     * @param numerator  the numerator, for example the three in 'three sevenths'
137     * @param denominator  the denominator, for example the seven in 'three sevenths'
138     * @return a new fraction instance
139     * @throws ArithmeticException if the denominator is <code>zero</code>
140     * or the denominator is {@code negative} and the numerator is {@code Integer#MIN_VALUE}
141     */
142    public static Fraction getFraction(int numerator, int denominator) {
143        if (denominator == 0) {
144            throw new ArithmeticException("The denominator must not be zero");
145        }
146        if (denominator < 0) {
147            if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
148                throw new ArithmeticException("overflow: can't negate");
149            }
150            numerator = -numerator;
151            denominator = -denominator;
152        }
153        return new Fraction(numerator, denominator);
154    }
155
156    /**
157     * <p>Creates a <code>Fraction</code> instance with the 3 parts
158     * of a fraction X Y/Z.</p>
159     *
160     * <p>The negative sign must be passed in on the whole number part.</p>
161     *
162     * @param whole  the whole number, for example the one in 'one and three sevenths'
163     * @param numerator  the numerator, for example the three in 'one and three sevenths'
164     * @param denominator  the denominator, for example the seven in 'one and three sevenths'
165     * @return a new fraction instance
166     * @throws ArithmeticException if the denominator is <code>zero</code>
167     * @throws ArithmeticException if the denominator is negative
168     * @throws ArithmeticException if the numerator is negative
169     * @throws ArithmeticException if the resulting numerator exceeds
170     *  <code>Integer.MAX_VALUE</code>
171     */
172    public static Fraction getFraction(final int whole, final int numerator, final int denominator) {
173        if (denominator == 0) {
174            throw new ArithmeticException("The denominator must not be zero");
175        }
176        if (denominator < 0) {
177            throw new ArithmeticException("The denominator must not be negative");
178        }
179        if (numerator < 0) {
180            throw new ArithmeticException("The numerator must not be negative");
181        }
182        long numeratorValue;
183        if (whole < 0) {
184            numeratorValue = whole * (long) denominator - numerator;
185        } else {
186            numeratorValue = whole * (long) denominator + numerator;
187        }
188        if (numeratorValue < Integer.MIN_VALUE || numeratorValue > Integer.MAX_VALUE) {
189            throw new ArithmeticException("Numerator too large to represent as an Integer.");
190        }
191        return new Fraction((int) numeratorValue, denominator);
192    }
193
194    /**
195     * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts
196     * of a fraction Y/Z.</p>
197     *
198     * <p>For example, if the input parameters represent 2/4, then the created
199     * fraction will be 1/2.</p>
200     *
201     * <p>Any negative signs are resolved to be on the numerator.</p>
202     *
203     * @param numerator  the numerator, for example the three in 'three sevenths'
204     * @param denominator  the denominator, for example the seven in 'three sevenths'
205     * @return a new fraction instance, with the numerator and denominator reduced
206     * @throws ArithmeticException if the denominator is <code>zero</code>
207     */
208    public static Fraction getReducedFraction(int numerator, int denominator) {
209        if (denominator == 0) {
210            throw new ArithmeticException("The denominator must not be zero");
211        }
212        if (numerator == 0) {
213            return ZERO; // normalize zero.
214        }
215        // allow 2^k/-2^31 as a valid fraction (where k>0)
216        if (denominator == Integer.MIN_VALUE && (numerator & 1) == 0) {
217            numerator /= 2;
218            denominator /= 2;
219        }
220        if (denominator < 0) {
221            if (numerator == Integer.MIN_VALUE || denominator == Integer.MIN_VALUE) {
222                throw new ArithmeticException("overflow: can't negate");
223            }
224            numerator = -numerator;
225            denominator = -denominator;
226        }
227        // simplify fraction.
228        final int gcd = greatestCommonDivisor(numerator, denominator);
229        numerator /= gcd;
230        denominator /= gcd;
231        return new Fraction(numerator, denominator);
232    }
233
234    /**
235     * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p>
236     *
237     * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/">
238     *  continued fraction algorithm</a>, computing a maximum of
239     *  25 convergents and bounding the denominator by 10,000.</p>
240     *
241     * @param value  the double value to convert
242     * @return a new fraction instance that is close to the value
243     * @throws ArithmeticException if <code>|value| &gt; Integer.MAX_VALUE</code>
244     *  or <code>value = NaN</code>
245     * @throws ArithmeticException if the calculated denominator is <code>zero</code>
246     * @throws ArithmeticException if the the algorithm does not converge
247     */
248    public static Fraction getFraction(double value) {
249        final int sign = value < 0 ? -1 : 1;
250        value = Math.abs(value);
251        if (value > Integer.MAX_VALUE || Double.isNaN(value)) {
252            throw new ArithmeticException("The value must not be greater than Integer.MAX_VALUE or NaN");
253        }
254        final int wholeNumber = (int) value;
255        value -= wholeNumber;
256
257        int numer0 = 0; // the pre-previous
258        int denom0 = 1; // the pre-previous
259        int numer1 = 1; // the previous
260        int denom1 = 0; // the previous
261        int numer2 = 0; // the current, setup in calculation
262        int denom2 = 0; // the current, setup in calculation
263        int a1 = (int) value;
264        int a2 = 0;
265        double x1 = 1;
266        double x2 = 0;
267        double y1 = value - a1;
268        double y2 = 0;
269        double delta1, delta2 = Double.MAX_VALUE;
270        double fraction;
271        int i = 1;
272        // System.out.println("---");
273        do {
274            delta1 = delta2;
275            a2 = (int) (x1 / y1);
276            x2 = y1;
277            y2 = x1 - a2 * y1;
278            numer2 = a1 * numer1 + numer0;
279            denom2 = a1 * denom1 + denom0;
280            fraction = (double) numer2 / (double) denom2;
281            delta2 = Math.abs(value - fraction);
282            // System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1);
283            a1 = a2;
284            x1 = x2;
285            y1 = y2;
286            numer0 = numer1;
287            denom0 = denom1;
288            numer1 = numer2;
289            denom1 = denom2;
290            i++;
291            // System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2);
292        } while (delta1 > delta2 && denom2 <= 10000 && denom2 > 0 && i < 25);
293        if (i == 25) {
294            throw new ArithmeticException("Unable to convert double to fraction");
295        }
296        return getReducedFraction((numer0 + wholeNumber * denom0) * sign, denom0);
297    }
298
299    /**
300     * <p>Creates a Fraction from a <code>String</code>.</p>
301     *
302     * <p>The formats accepted are:</p>
303     *
304     * <ol>
305     *  <li><code>double</code> String containing a dot</li>
306     *  <li>'X Y/Z'</li>
307     *  <li>'Y/Z'</li>
308     *  <li>'X' (a simple whole number)</li>
309     * </ol>
310     * <p>and a .</p>
311     *
312     * @param str  the string to parse, must not be <code>null</code>
313     * @return the new <code>Fraction</code> instance
314     * @throws IllegalArgumentException if the string is <code>null</code>
315     * @throws NumberFormatException if the number format is invalid
316     */
317    public static Fraction getFraction(String str) {
318        Validate.isTrue(str != null, "The string must not be null");
319        // parse double format
320        int pos = str.indexOf('.');
321        if (pos >= 0) {
322            return getFraction(Double.parseDouble(str));
323        }
324
325        // parse X Y/Z format
326        pos = str.indexOf(' ');
327        if (pos > 0) {
328            final int whole = Integer.parseInt(str.substring(0, pos));
329            str = str.substring(pos + 1);
330            pos = str.indexOf('/');
331            if (pos < 0) {
332                throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z");
333            }
334            final int numer = Integer.parseInt(str.substring(0, pos));
335            final int denom = Integer.parseInt(str.substring(pos + 1));
336            return getFraction(whole, numer, denom);
337        }
338
339        // parse Y/Z format
340        pos = str.indexOf('/');
341        if (pos < 0) {
342            // simple whole number
343            return getFraction(Integer.parseInt(str), 1);
344        }
345        final int numer = Integer.parseInt(str.substring(0, pos));
346        final int denom = Integer.parseInt(str.substring(pos + 1));
347        return getFraction(numer, denom);
348    }
349
350    // Accessors
351    //-------------------------------------------------------------------
352
353    /**
354     * <p>Gets the numerator part of the fraction.</p>
355     *
356     * <p>This method may return a value greater than the denominator, an
357     * improper fraction, such as the seven in 7/4.</p>
358     *
359     * @return the numerator fraction part
360     */
361    public int getNumerator() {
362        return numerator;
363    }
364
365    /**
366     * <p>Gets the denominator part of the fraction.</p>
367     *
368     * @return the denominator fraction part
369     */
370    public int getDenominator() {
371        return denominator;
372    }
373
374    /**
375     * <p>Gets the proper numerator, always positive.</p>
376     *
377     * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
378     * This method returns the 3 from the proper fraction.</p>
379     *
380     * <p>If the fraction is negative such as -7/4, it can be resolved into
381     * -1 3/4, so this method returns the positive proper numerator, 3.</p>
382     *
383     * @return the numerator fraction part of a proper fraction, always positive
384     */
385    public int getProperNumerator() {
386        return Math.abs(numerator % denominator);
387    }
388
389    /**
390     * <p>Gets the proper whole part of the fraction.</p>
391     *
392     * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
393     * This method returns the 1 from the proper fraction.</p>
394     *
395     * <p>If the fraction is negative such as -7/4, it can be resolved into
396     * -1 3/4, so this method returns the positive whole part -1.</p>
397     *
398     * @return the whole fraction part of a proper fraction, that includes the sign
399     */
400    public int getProperWhole() {
401        return numerator / denominator;
402    }
403
404    // Number methods
405    //-------------------------------------------------------------------
406
407    /**
408     * <p>Gets the fraction as an <code>int</code>. This returns the whole number
409     * part of the fraction.</p>
410     *
411     * @return the whole number fraction part
412     */
413    @Override
414    public int intValue() {
415        return numerator / denominator;
416    }
417
418    /**
419     * <p>Gets the fraction as a <code>long</code>. This returns the whole number
420     * part of the fraction.</p>
421     *
422     * @return the whole number fraction part
423     */
424    @Override
425    public long longValue() {
426        return (long) numerator / denominator;
427    }
428
429    /**
430     * <p>Gets the fraction as a <code>float</code>. This calculates the fraction
431     * as the numerator divided by denominator.</p>
432     *
433     * @return the fraction as a <code>float</code>
434     */
435    @Override
436    public float floatValue() {
437        return (float) numerator / (float) denominator;
438    }
439
440    /**
441     * <p>Gets the fraction as a <code>double</code>. This calculates the fraction
442     * as the numerator divided by denominator.</p>
443     *
444     * @return the fraction as a <code>double</code>
445     */
446    @Override
447    public double doubleValue() {
448        return (double) numerator / (double) denominator;
449    }
450
451    // Calculations
452    //-------------------------------------------------------------------
453
454    /**
455     * <p>Reduce the fraction to the smallest values for the numerator and
456     * denominator, returning the result.</p>
457     *
458     * <p>For example, if this fraction represents 2/4, then the result
459     * will be 1/2.</p>
460     *
461     * @return a new reduced fraction instance, or this if no simplification possible
462     */
463    public Fraction reduce() {
464        if (numerator == 0) {
465            return equals(ZERO) ? this : ZERO;
466        }
467        final int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
468        if (gcd == 1) {
469            return this;
470        }
471        return Fraction.getFraction(numerator / gcd, denominator / gcd);
472    }
473
474    /**
475     * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p>
476     *
477     * <p>The returned fraction is not reduced.</p>
478     *
479     * @return a new fraction instance with the numerator and denominator
480     *         inverted.
481     * @throws ArithmeticException if the fraction represents zero.
482     */
483    public Fraction invert() {
484        if (numerator == 0) {
485            throw new ArithmeticException("Unable to invert zero.");
486        }
487        if (numerator==Integer.MIN_VALUE) {
488            throw new ArithmeticException("overflow: can't negate numerator");
489        }
490        if (numerator<0) {
491            return new Fraction(-denominator, -numerator);
492        }
493        return new Fraction(denominator, numerator);
494    }
495
496    /**
497     * <p>Gets a fraction that is the negative (-fraction) of this one.</p>
498     *
499     * <p>The returned fraction is not reduced.</p>
500     *
501     * @return a new fraction instance with the opposite signed numerator
502     */
503    public Fraction negate() {
504        // the positive range is one smaller than the negative range of an int.
505        if (numerator==Integer.MIN_VALUE) {
506            throw new ArithmeticException("overflow: too large to negate");
507        }
508        return new Fraction(-numerator, denominator);
509    }
510
511    /**
512     * <p>Gets a fraction that is the positive equivalent of this one.</p>
513     * <p>More precisely: <code>(fraction &gt;= 0 ? this : -fraction)</code></p>
514     *
515     * <p>The returned fraction is not reduced.</p>
516     *
517     * @return <code>this</code> if it is positive, or a new positive fraction
518     *  instance with the opposite signed numerator
519     */
520    public Fraction abs() {
521        if (numerator >= 0) {
522            return this;
523        }
524        return negate();
525    }
526
527    /**
528     * <p>Gets a fraction that is raised to the passed in power.</p>
529     *
530     * <p>The returned fraction is in reduced form.</p>
531     *
532     * @param power  the power to raise the fraction to
533     * @return <code>this</code> if the power is one, <code>ONE</code> if the power
534     * is zero (even if the fraction equals ZERO) or a new fraction instance
535     * raised to the appropriate power
536     * @throws ArithmeticException if the resulting numerator or denominator exceeds
537     *  <code>Integer.MAX_VALUE</code>
538     */
539    public Fraction pow(final int power) {
540        if (power == 1) {
541            return this;
542        } else if (power == 0) {
543            return ONE;
544        } else if (power < 0) {
545            if (power == Integer.MIN_VALUE) { // MIN_VALUE can't be negated.
546                return this.invert().pow(2).pow(-(power / 2));
547            }
548            return this.invert().pow(-power);
549        } else {
550            final Fraction f = this.multiplyBy(this);
551            if (power % 2 == 0) { // if even...
552                return f.pow(power / 2);
553            }
554            return f.pow(power / 2).multiplyBy(this);
555        }
556    }
557
558    /**
559     * <p>Gets the greatest common divisor of the absolute value of
560     * two numbers, using the "binary gcd" method which avoids
561     * division and modulo operations.  See Knuth 4.5.2 algorithm B.
562     * This algorithm is due to Josef Stein (1961).</p>
563     *
564     * @param u  a non-zero number
565     * @param v  a non-zero number
566     * @return the greatest common divisor, never zero
567     */
568    private static int greatestCommonDivisor(int u, int v) {
569        // From Commons Math:
570        if (u == 0 || v == 0) {
571            if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) {
572                throw new ArithmeticException("overflow: gcd is 2^31");
573            }
574            return Math.abs(u) + Math.abs(v);
575        }
576        // if either operand is abs 1, return 1:
577        if (Math.abs(u) == 1 || Math.abs(v) == 1) {
578            return 1;
579        }
580        // keep u and v negative, as negative integers range down to
581        // -2^31, while positive numbers can only be as large as 2^31-1
582        // (i.e. we can't necessarily negate a negative number without
583        // overflow)
584        if (u > 0) {
585            u = -u;
586        } // make u negative
587        if (v > 0) {
588            v = -v;
589        } // make v negative
590        // B1. [Find power of 2]
591        int k = 0;
592        while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are both even...
593            u /= 2;
594            v /= 2;
595            k++; // cast out twos.
596        }
597        if (k == 31) {
598            throw new ArithmeticException("overflow: gcd is 2^31");
599        }
600        // B2. Initialize: u and v have been divided by 2^k and at least
601        // one is odd.
602        int t = (u & 1) == 1 ? v : -(u / 2)/* B3 */;
603        // t negative: u was odd, v may be even (t replaces v)
604        // t positive: u was even, v is odd (t replaces u)
605        do {
606            /* assert u<0 && v<0; */
607            // B4/B3: cast out twos from t.
608            while ((t & 1) == 0) { // while t is even..
609                t /= 2; // cast out twos
610            }
611            // B5 [reset max(u,v)]
612            if (t > 0) {
613                u = -t;
614            } else {
615                v = t;
616            }
617            // B6/B3. at this point both u and v should be odd.
618            t = (v - u) / 2;
619            // |u| larger: t positive (replace u)
620            // |v| larger: t negative (replace v)
621        } while (t != 0);
622        return -u * (1 << k); // gcd is u*2^k
623    }
624
625    // Arithmetic
626    //-------------------------------------------------------------------
627
628    /**
629     * Multiply two integers, checking for overflow.
630     *
631     * @param x a factor
632     * @param y a factor
633     * @return the product <code>x*y</code>
634     * @throws ArithmeticException if the result can not be represented as
635     *                             an int
636     */
637    private static int mulAndCheck(final int x, final int y) {
638        final long m = (long) x * (long) y;
639        if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
640            throw new ArithmeticException("overflow: mul");
641        }
642        return (int) m;
643    }
644
645    /**
646     *  Multiply two non-negative integers, checking for overflow.
647     *
648     * @param x a non-negative factor
649     * @param y a non-negative factor
650     * @return the product <code>x*y</code>
651     * @throws ArithmeticException if the result can not be represented as
652     * an int
653     */
654    private static int mulPosAndCheck(final int x, final int y) {
655        /* assert x>=0 && y>=0; */
656        final long m = (long) x * (long) y;
657        if (m > Integer.MAX_VALUE) {
658            throw new ArithmeticException("overflow: mulPos");
659        }
660        return (int) m;
661    }
662
663    /**
664     * Add two integers, checking for overflow.
665     *
666     * @param x an addend
667     * @param y an addend
668     * @return the sum <code>x+y</code>
669     * @throws ArithmeticException if the result can not be represented as
670     * an int
671     */
672    private static int addAndCheck(final int x, final int y) {
673        final long s = (long) x + (long) y;
674        if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
675            throw new ArithmeticException("overflow: add");
676        }
677        return (int) s;
678    }
679
680    /**
681     * Subtract two integers, checking for overflow.
682     *
683     * @param x the minuend
684     * @param y the subtrahend
685     * @return the difference <code>x-y</code>
686     * @throws ArithmeticException if the result can not be represented as
687     * an int
688     */
689    private static int subAndCheck(final int x, final int y) {
690        final long s = (long) x - (long) y;
691        if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
692            throw new ArithmeticException("overflow: add");
693        }
694        return (int) s;
695    }
696
697    /**
698     * <p>Adds the value of this fraction to another, returning the result in reduced form.
699     * The algorithm follows Knuth, 4.5.1.</p>
700     *
701     * @param fraction  the fraction to add, must not be <code>null</code>
702     * @return a <code>Fraction</code> instance with the resulting values
703     * @throws IllegalArgumentException if the fraction is <code>null</code>
704     * @throws ArithmeticException if the resulting numerator or denominator exceeds
705     *  <code>Integer.MAX_VALUE</code>
706     */
707    public Fraction add(final Fraction fraction) {
708        return addSub(fraction, true /* add */);
709    }
710
711    /**
712     * <p>Subtracts the value of another fraction from the value of this one,
713     * returning the result in reduced form.</p>
714     *
715     * @param fraction  the fraction to subtract, must not be <code>null</code>
716     * @return a <code>Fraction</code> instance with the resulting values
717     * @throws IllegalArgumentException if the fraction is <code>null</code>
718     * @throws ArithmeticException if the resulting numerator or denominator
719     *   cannot be represented in an <code>int</code>.
720     */
721    public Fraction subtract(final Fraction fraction) {
722        return addSub(fraction, false /* subtract */);
723    }
724
725    /**
726     * Implement add and subtract using algorithm described in Knuth 4.5.1.
727     *
728     * @param fraction the fraction to subtract, must not be <code>null</code>
729     * @param isAdd true to add, false to subtract
730     * @return a <code>Fraction</code> instance with the resulting values
731     * @throws IllegalArgumentException if the fraction is <code>null</code>
732     * @throws ArithmeticException if the resulting numerator or denominator
733     *   cannot be represented in an <code>int</code>.
734     */
735    private Fraction addSub(final Fraction fraction, final boolean isAdd) {
736        Validate.isTrue(fraction != null, "The fraction must not be null");
737        // zero is identity for addition.
738        if (numerator == 0) {
739            return isAdd ? fraction : fraction.negate();
740        }
741        if (fraction.numerator == 0) {
742            return this;
743        }
744        // if denominators are randomly distributed, d1 will be 1 about 61%
745        // of the time.
746        final int d1 = greatestCommonDivisor(denominator, fraction.denominator);
747        if (d1 == 1) {
748            // result is ( (u*v' +/- u'v) / u'v')
749            final int uvp = mulAndCheck(numerator, fraction.denominator);
750            final int upv = mulAndCheck(fraction.numerator, denominator);
751            return new Fraction(isAdd ? addAndCheck(uvp, upv) : subAndCheck(uvp, upv), mulPosAndCheck(denominator,
752                    fraction.denominator));
753        }
754        // the quantity 't' requires 65 bits of precision; see knuth 4.5.1
755        // exercise 7. we're going to use a BigInteger.
756        // t = u(v'/d1) +/- v(u'/d1)
757        final BigInteger uvp = BigInteger.valueOf(numerator).multiply(BigInteger.valueOf(fraction.denominator / d1));
758        final BigInteger upv = BigInteger.valueOf(fraction.numerator).multiply(BigInteger.valueOf(denominator / d1));
759        final BigInteger t = isAdd ? uvp.add(upv) : uvp.subtract(upv);
760        // but d2 doesn't need extra precision because
761        // d2 = gcd(t,d1) = gcd(t mod d1, d1)
762        final int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
763        final int d2 = tmodd1 == 0 ? d1 : greatestCommonDivisor(tmodd1, d1);
764
765        // result is (t/d2) / (u'/d1)(v'/d2)
766        final BigInteger w = t.divide(BigInteger.valueOf(d2));
767        if (w.bitLength() > 31) {
768            throw new ArithmeticException("overflow: numerator too large after multiply");
769        }
770        return new Fraction(w.intValue(), mulPosAndCheck(denominator / d1, fraction.denominator / d2));
771    }
772
773    /**
774     * <p>Multiplies the value of this fraction by another, returning the
775     * result in reduced form.</p>
776     *
777     * @param fraction  the fraction to multiply by, must not be <code>null</code>
778     * @return a <code>Fraction</code> instance with the resulting values
779     * @throws IllegalArgumentException if the fraction is <code>null</code>
780     * @throws ArithmeticException if the resulting numerator or denominator exceeds
781     *  <code>Integer.MAX_VALUE</code>
782     */
783    public Fraction multiplyBy(final Fraction fraction) {
784        Validate.isTrue(fraction != null, "The fraction must not be null");
785        if (numerator == 0 || fraction.numerator == 0) {
786            return ZERO;
787        }
788        // knuth 4.5.1
789        // make sure we don't overflow unless the result *must* overflow.
790        final int d1 = greatestCommonDivisor(numerator, fraction.denominator);
791        final int d2 = greatestCommonDivisor(fraction.numerator, denominator);
792        return getReducedFraction(mulAndCheck(numerator / d1, fraction.numerator / d2),
793                mulPosAndCheck(denominator / d2, fraction.denominator / d1));
794    }
795
796    /**
797     * <p>Divide the value of this fraction by another.</p>
798     *
799     * @param fraction  the fraction to divide by, must not be <code>null</code>
800     * @return a <code>Fraction</code> instance with the resulting values
801     * @throws IllegalArgumentException if the fraction is <code>null</code>
802     * @throws ArithmeticException if the fraction to divide by is zero
803     * @throws ArithmeticException if the resulting numerator or denominator exceeds
804     *  <code>Integer.MAX_VALUE</code>
805     */
806    public Fraction divideBy(final Fraction fraction) {
807        Validate.isTrue(fraction != null, "The fraction must not be null");
808        if (fraction.numerator == 0) {
809            throw new ArithmeticException("The fraction to divide by must not be zero");
810        }
811        return multiplyBy(fraction.invert());
812    }
813
814    // Basics
815    //-------------------------------------------------------------------
816
817    /**
818     * <p>Compares this fraction to another object to test if they are equal.</p>.
819     *
820     * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p>
821     *
822     * @param obj the reference object with which to compare
823     * @return <code>true</code> if this object is equal
824     */
825    @Override
826    public boolean equals(final Object obj) {
827        if (obj == this) {
828            return true;
829        }
830        if (!(obj instanceof Fraction)) {
831            return false;
832        }
833        final Fraction other = (Fraction) obj;
834        return getNumerator() == other.getNumerator() && getDenominator() == other.getDenominator();
835    }
836
837    /**
838     * <p>Gets a hashCode for the fraction.</p>
839     *
840     * @return a hash code value for this object
841     */
842    @Override
843    public int hashCode() {
844        if (hashCode == 0) {
845            // hash code update should be atomic.
846            hashCode = 37 * (37 * 17 + getNumerator()) + getDenominator();
847        }
848        return hashCode;
849    }
850
851    /**
852     * <p>Compares this object to another based on size.</p>
853     *
854     * <p>Note: this class has a natural ordering that is inconsistent
855     * with equals, because, for example, equals treats 1/2 and 2/4 as
856     * different, whereas compareTo treats them as equal.
857     *
858     * @param other  the object to compare to
859     * @return -1 if this is less, 0 if equal, +1 if greater
860     * @throws ClassCastException if the object is not a <code>Fraction</code>
861     * @throws NullPointerException if the object is <code>null</code>
862     */
863    @Override
864    public int compareTo(final Fraction other) {
865        if (this == other) {
866            return 0;
867        }
868        if (numerator == other.numerator && denominator == other.denominator) {
869            return 0;
870        }
871
872        // otherwise see which is less
873        final long first = (long) numerator * (long) other.denominator;
874        final long second = (long) other.numerator * (long) denominator;
875        if (first == second) {
876            return 0;
877        } else if (first < second) {
878            return -1;
879        } else {
880            return 1;
881        }
882    }
883
884    /**
885     * <p>Gets the fraction as a <code>String</code>.</p>
886     *
887     * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always.
888     *
889     * @return a <code>String</code> form of the fraction
890     */
891    @Override
892    public String toString() {
893        if (toString == null) {
894            toString = getNumerator() + "/" + getDenominator();
895        }
896        return toString;
897    }
898
899    /**
900     * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p>
901     *
902     * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'.
903     * If the whole number is zero it will be omitted. If the numerator is zero,
904     * only the whole number is returned.</p>
905     *
906     * @return a <code>String</code> form of the fraction
907     */
908    public String toProperString() {
909        if (toProperString == null) {
910            if (numerator == 0) {
911                toProperString = "0";
912            } else if (numerator == denominator) {
913                toProperString = "1";
914            } else if (numerator == -1 * denominator) {
915                toProperString = "-1";
916            } else if ((numerator > 0 ? -numerator : numerator) < -denominator) {
917                // note that we do the magnitude comparison test above with
918                // NEGATIVE (not positive) numbers, since negative numbers
919                // have a larger range. otherwise numerator==Integer.MIN_VALUE
920                // is handled incorrectly.
921                final int properNumerator = getProperNumerator();
922                if (properNumerator == 0) {
923                    toProperString = Integer.toString(getProperWhole());
924                } else {
925                    toProperString = getProperWhole() + " " + properNumerator + "/" + getDenominator();
926                }
927            } else {
928                toProperString = getNumerator() + "/" + getDenominator();
929            }
930        }
931        return toProperString;
932    }
933}