001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.lang3.stream; 018 019import java.lang.reflect.Array; 020import java.util.ArrayList; 021import java.util.Collection; 022import java.util.Collections; 023import java.util.List; 024import java.util.Set; 025import java.util.function.BiConsumer; 026import java.util.function.BinaryOperator; 027import java.util.function.Consumer; 028import java.util.function.Function; 029import java.util.function.Predicate; 030import java.util.function.Supplier; 031import java.util.stream.Collector; 032import java.util.stream.Collectors; 033import java.util.stream.Stream; 034 035import org.apache.commons.lang3.function.Failable; 036import org.apache.commons.lang3.function.FailableConsumer; 037import org.apache.commons.lang3.function.FailableFunction; 038import org.apache.commons.lang3.function.FailablePredicate; 039 040/** 041 * Provides utility functions, and classes for working with the 042 * {@code java.util.stream} package, or more generally, with Java 8 lambdas. More 043 * specifically, it attempts to address the fact that lambdas are supposed 044 * not to throw Exceptions, at least not checked Exceptions, AKA instances 045 * of {@link Exception}. This enforces the use of constructs like 046 * <pre> 047 * Consumer<java.lang.reflect.Method> consumer = (m) -> { 048 * try { 049 * m.invoke(o, args); 050 * } catch (Throwable t) { 051 * throw Failable.rethrow(t); 052 * } 053 * }; 054 * stream.forEach(consumer); 055 * </pre> 056 * Using a {@link FailableStream}, this can be rewritten as follows: 057 * <pre> 058 * Streams.failable(stream).forEach((m) -> m.invoke(o, args)); 059 * </pre> 060 * Obviously, the second version is much more concise and the spirit of 061 * Lambda expressions is met better than in the first version. 062 * 063 * @see Stream 064 * @see Failable 065 * @since 3.11 066 */ 067public class Streams { 068 069 public static class ArrayCollector<O> implements Collector<O, List<O>, O[]> { 070 private static final Set<Characteristics> characteristics = Collections.emptySet(); 071 private final Class<O> elementType; 072 073 public ArrayCollector(final Class<O> elementType) { 074 this.elementType = elementType; 075 } 076 077 @Override 078 public BiConsumer<List<O>, O> accumulator() { 079 return List::add; 080 } 081 082 @Override 083 public Set<Characteristics> characteristics() { 084 return characteristics; 085 } 086 087 @Override 088 public BinaryOperator<List<O>> combiner() { 089 return (left, right) -> { 090 left.addAll(right); 091 return left; 092 }; 093 } 094 095 @Override 096 public Function<List<O>, O[]> finisher() { 097 return list -> { 098 @SuppressWarnings("unchecked") 099 final O[] array = (O[]) Array.newInstance(elementType, list.size()); 100 return list.toArray(array); 101 }; 102 } 103 104 @Override 105 public Supplier<List<O>> supplier() { 106 return ArrayList::new; 107 } 108 } 109 110 /** 111 * A reduced, and simplified version of a {@link Stream} with failable method signatures. 112 * 113 * @param <O> The streams element type. 114 */ 115 public static class FailableStream<O extends Object> { 116 117 private Stream<O> stream; 118 private boolean terminated; 119 120 /** 121 * Constructs a new instance with the given {@code stream}. 122 * 123 * @param stream The stream. 124 */ 125 public FailableStream(final Stream<O> stream) { 126 this.stream = stream; 127 } 128 129 /** 130 * Returns whether all elements of this stream match the provided predicate. May not evaluate the predicate on 131 * all elements if not necessary for determining the result. If the stream is empty then {@code true} is 132 * returned and the predicate is not evaluated. 133 * 134 * <p> 135 * This is a short-circuiting terminal operation. 136 * 137 * Note This method evaluates the <em>universal quantification</em> of the predicate over the elements of 138 * the stream (for all x P(x)). If the stream is empty, the quantification is said to be <em>vacuously 139 * satisfied</em> and is always {@code true} (regardless of P(x)). 140 * 141 * @param predicate A non-interfering, stateless predicate to apply to elements of this stream 142 * @return {@code true} If either all elements of the stream match the provided predicate or the stream is 143 * empty, otherwise {@code false}. 144 */ 145 public boolean allMatch(final FailablePredicate<O, ?> predicate) { 146 assertNotTerminated(); 147 return stream().allMatch(Failable.asPredicate(predicate)); 148 } 149 150 /** 151 * Returns whether any elements of this stream match the provided predicate. May not evaluate the predicate on 152 * all elements if not necessary for determining the result. If the stream is empty then {@code false} is 153 * returned and the predicate is not evaluated. 154 * 155 * <p> 156 * This is a short-circuiting terminal operation. 157 * 158 * Note This method evaluates the <em>existential quantification</em> of the predicate over the elements of 159 * the stream (for some x P(x)). 160 * 161 * @param predicate A non-interfering, stateless predicate to apply to elements of this stream 162 * @return {@code true} if any elements of the stream match the provided predicate, otherwise {@code false} 163 */ 164 public boolean anyMatch(final FailablePredicate<O, ?> predicate) { 165 assertNotTerminated(); 166 return stream().anyMatch(Failable.asPredicate(predicate)); 167 } 168 169 protected void assertNotTerminated() { 170 if (terminated) { 171 throw new IllegalStateException("This stream is already terminated."); 172 } 173 } 174 175 /** 176 * Performs a mutable reduction operation on the elements of this stream using a {@code Collector}. A 177 * {@code Collector} encapsulates the functions used as arguments to 178 * {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of collection strategies and 179 * composition of collect operations such as multiple-level grouping or partitioning. 180 * 181 * <p> 182 * If the underlying stream is parallel, and the {@code Collector} is concurrent, and either the stream is 183 * unordered or the collector is unordered, then a concurrent reduction will be performed (see {@link Collector} 184 * for details on concurrent reduction.) 185 * 186 * <p> 187 * This is a terminal operation. 188 * 189 * <p> 190 * When executed in parallel, multiple intermediate results may be instantiated, populated, and merged so as to 191 * maintain isolation of mutable data structures. Therefore, even when executed in parallel with non-thread-safe 192 * data structures (such as {@code ArrayList}), no additional synchronization is needed for a parallel 193 * reduction. 194 * 195 * Note The following will accumulate strings into an ArrayList: 196 * 197 * <pre> 198 * {@code 199 * List<String> asList = stringStream.collect(Collectors.toList()); 200 * } 201 * </pre> 202 * 203 * <p> 204 * The following will classify {@code Person} objects by city: 205 * 206 * <pre> 207 * {@code 208 * Map<String, List<Person>> peopleByCity = personStream.collect(Collectors.groupingBy(Person::getCity)); 209 * } 210 * </pre> 211 * 212 * <p> 213 * The following will classify {@code Person} objects by state and city, cascading two {@code Collector}s 214 * together: 215 * 216 * <pre> 217 * {@code 218 * Map<String, Map<String, List<Person>>> peopleByStateAndCity = personStream 219 * .collect(Collectors.groupingBy(Person::getState, Collectors.groupingBy(Person::getCity))); 220 * } 221 * </pre> 222 * 223 * @param <R> the type of the result 224 * @param <A> the intermediate accumulation type of the {@code Collector} 225 * @param collector the {@code Collector} describing the reduction 226 * @return the result of the reduction 227 * @see #collect(Supplier, BiConsumer, BiConsumer) 228 * @see Collectors 229 */ 230 public <A, R> R collect(final Collector<? super O, A, R> collector) { 231 makeTerminated(); 232 return stream().collect(collector); 233 } 234 235 /** 236 * Performs a mutable reduction operation on the elements of this FailableStream. A mutable reduction is one in 237 * which the reduced value is a mutable result container, such as an {@code ArrayList}, and elements are 238 * incorporated by updating the state of the result rather than by replacing the result. This produces a result 239 * equivalent to: 240 * 241 * <pre> 242 * {@code 243 * R result = supplier.get(); 244 * for (T element : this stream) 245 * accumulator.accept(result, element); 246 * return result; 247 * } 248 * </pre> 249 * 250 * <p> 251 * Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations can be parallelized without 252 * requiring additional synchronization. 253 * 254 * <p> 255 * This is a terminal operation. 256 * 257 * Note There are many existing classes in the JDK whose signatures are well-suited for use with method 258 * references as arguments to {@code collect()}. For example, the following will accumulate strings into an 259 * {@code ArrayList}: 260 * 261 * <pre> 262 * {@code 263 * List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add, ArrayList::addAll); 264 * } 265 * </pre> 266 * 267 * <p> 268 * The following will take a stream of strings and concatenates them into a single string: 269 * 270 * <pre> 271 * {@code 272 * String concat = stringStream.collect(StringBuilder::new, StringBuilder::append, StringBuilder::append) 273 * .toString(); 274 * } 275 * </pre> 276 * 277 * @param <R> type of the result 278 * @param <A> Type of the accumulator. 279 * @param pupplier a function that creates a new result container. For a parallel execution, this function may 280 * be called multiple times and must return a fresh value each time. 281 * @param accumulator An associative, non-interfering, stateless function for incorporating an additional 282 * element into a result 283 * @param combiner An associative, non-interfering, stateless function for combining two values, which must be 284 * compatible with the accumulator function 285 * @return The result of the reduction 286 */ 287 public <A, R> R collect(final Supplier<R> pupplier, final BiConsumer<R, ? super O> accumulator, 288 final BiConsumer<R, R> combiner) { 289 makeTerminated(); 290 return stream().collect(pupplier, accumulator, combiner); 291 } 292 293 /** 294 * Returns a FailableStream consisting of the elements of this stream that match the given FailablePredicate. 295 * 296 * <p> 297 * This is an intermediate operation. 298 * 299 * @param predicate a non-interfering, stateless predicate to apply to each element to determine if it should be 300 * included. 301 * @return the new stream 302 */ 303 public FailableStream<O> filter(final FailablePredicate<O, ?> predicate) { 304 assertNotTerminated(); 305 stream = stream.filter(Failable.asPredicate(predicate)); 306 return this; 307 } 308 309 /** 310 * Performs an action for each element of this stream. 311 * 312 * <p> 313 * This is a terminal operation. 314 * 315 * <p> 316 * The behavior of this operation is explicitly nondeterministic. For parallel stream pipelines, this operation 317 * does <em>not</em> guarantee to respect the encounter order of the stream, as doing so would sacrifice the 318 * benefit of parallelism. For any given element, the action may be performed at whatever time and in whatever 319 * thread the library chooses. If the action accesses shared state, it is responsible for providing the required 320 * synchronization. 321 * 322 * @param action a non-interfering action to perform on the elements 323 */ 324 public void forEach(final FailableConsumer<O, ?> action) { 325 makeTerminated(); 326 stream().forEach(Failable.asConsumer(action)); 327 } 328 329 protected void makeTerminated() { 330 assertNotTerminated(); 331 terminated = true; 332 } 333 334 /** 335 * Returns a stream consisting of the results of applying the given function to the elements of this stream. 336 * 337 * <p> 338 * This is an intermediate operation. 339 * 340 * @param <R> The element type of the new stream 341 * @param mapper A non-interfering, stateless function to apply to each element 342 * @return the new stream 343 */ 344 public <R> FailableStream<R> map(final FailableFunction<O, R, ?> mapper) { 345 assertNotTerminated(); 346 return new FailableStream<>(stream.map(Failable.asFunction(mapper))); 347 } 348 349 /** 350 * Performs a reduction on the elements of this stream, using the provided identity value and an associative 351 * accumulation function, and returns the reduced value. This is equivalent to: 352 * 353 * <pre> 354 * {@code 355 * T result = identity; 356 * for (T element : this stream) 357 * result = accumulator.apply(result, element) 358 * return result; 359 * } 360 * </pre> 361 * 362 * but is not constrained to execute sequentially. 363 * 364 * <p> 365 * The {@code identity} value must be an identity for the accumulator function. This means that for all 366 * {@code t}, {@code accumulator.apply(identity, t)} is equal to {@code t}. The {@code accumulator} function 367 * must be an associative function. 368 * 369 * <p> 370 * This is a terminal operation. 371 * 372 * Note Sum, min, max, average, and string concatenation are all special cases of reduction. Summing a 373 * stream of numbers can be expressed as: 374 * 375 * <pre> 376 * {@code 377 * Integer sum = integers.reduce(0, (a, b) -> a + b); 378 * } 379 * </pre> 380 * 381 * or: 382 * 383 * <pre> 384 * {@code 385 * Integer sum = integers.reduce(0, Integer::sum); 386 * } 387 * </pre> 388 * 389 * <p> 390 * While this may seem a more roundabout way to perform an aggregation compared to simply mutating a running 391 * total in a loop, reduction operations parallelize more gracefully, without needing additional synchronization 392 * and with greatly reduced risk of data races. 393 * 394 * @param identity the identity value for the accumulating function 395 * @param accumulator an associative, non-interfering, stateless function for combining two values 396 * @return the result of the reduction 397 */ 398 public O reduce(final O identity, final BinaryOperator<O> accumulator) { 399 makeTerminated(); 400 return stream().reduce(identity, accumulator); 401 } 402 403 /** 404 * Converts the FailableStream into an equivalent stream. 405 * 406 * @return A stream, which will return the same elements, which this FailableStream would return. 407 */ 408 public Stream<O> stream() { 409 return stream; 410 } 411 } 412 413 /** 414 * Converts the given {@link Collection} into a {@link FailableStream}. This is basically a simplified, reduced 415 * version of the {@link Stream} class, with the same underlying element stream, except that failable objects, like 416 * {@link FailablePredicate}, {@link FailableFunction}, or {@link FailableConsumer} may be applied, instead of 417 * {@link Predicate}, {@link Function}, or {@link Consumer}. The idea is to rewrite a code snippet like this: 418 * 419 * <pre> 420 * final List<O> list; 421 * final Method m; 422 * final Function<O, String> mapper = (o) -> { 423 * try { 424 * return (String) m.invoke(o); 425 * } catch (Throwable t) { 426 * throw Failable.rethrow(t); 427 * } 428 * }; 429 * final List<String> strList = list.stream().map(mapper).collect(Collectors.toList()); 430 * </pre> 431 * 432 * as follows: 433 * 434 * <pre> 435 * final List<O> list; 436 * final Method m; 437 * final List<String> strList = Failable.stream(list.stream()).map((o) -> (String) m.invoke(o)) 438 * .collect(Collectors.toList()); 439 * </pre> 440 * 441 * While the second version may not be <em>quite</em> as efficient (because it depends on the creation of 442 * additional, intermediate objects, of type FailableStream), it is much more concise, and readable, and meets the 443 * spirit of Lambdas better than the first version. 444 * 445 * @param <O> The streams element type. 446 * @param stream The stream, which is being converted. 447 * @return The {@link FailableStream}, which has been created by converting the stream. 448 */ 449 public static <O> FailableStream<O> stream(final Collection<O> stream) { 450 return stream(stream.stream()); 451 } 452 453 /** 454 * Converts the given {@link Stream stream} into a {@link FailableStream}. This is basically a simplified, reduced 455 * version of the {@link Stream} class, with the same underlying element stream, except that failable objects, like 456 * {@link FailablePredicate}, {@link FailableFunction}, or {@link FailableConsumer} may be applied, instead of 457 * {@link Predicate}, {@link Function}, or {@link Consumer}. The idea is to rewrite a code snippet like this: 458 * 459 * <pre> 460 * final List<O> list; 461 * final Method m; 462 * final Function<O, String> mapper = (o) -> { 463 * try { 464 * return (String) m.invoke(o); 465 * } catch (Throwable t) { 466 * throw Failable.rethrow(t); 467 * } 468 * }; 469 * final List<String> strList = list.stream().map(mapper).collect(Collectors.toList()); 470 * </pre> 471 * 472 * as follows: 473 * 474 * <pre> 475 * final List<O> list; 476 * final Method m; 477 * final List<String> strList = Failable.stream(list.stream()).map((o) -> (String) m.invoke(o)) 478 * .collect(Collectors.toList()); 479 * </pre> 480 * 481 * While the second version may not be <em>quite</em> as efficient (because it depends on the creation of 482 * additional, intermediate objects, of type FailableStream), it is much more concise, and readable, and meets the 483 * spirit of Lambdas better than the first version. 484 * 485 * @param <O> The streams element type. 486 * @param stream The stream, which is being converted. 487 * @return The {@link FailableStream}, which has been created by converting the stream. 488 */ 489 public static <O> FailableStream<O> stream(final Stream<O> stream) { 490 return new FailableStream<>(stream); 491 } 492 493 /** 494 * Returns a {@code Collector} that accumulates the input elements into a new array. 495 * 496 * @param pElementType Type of an element in the array. 497 * @param <O> the type of the input elements 498 * @return a {@code Collector} which collects all the input elements into an array, in encounter order 499 */ 500 public static <O extends Object> Collector<O, ?, O[]> toArray(final Class<O> pElementType) { 501 return new ArrayCollector<>(pElementType); 502 } 503}