Uses of Class
org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException
-
Packages that use NotStrictlyPositiveException Package Description org.apache.commons.math4.legacy.analysis.function Thefunction
package contains function objects that wrap the methods contained inMath
, as well as common mathematical functions such as the gaussian and sinc functions.org.apache.commons.math4.legacy.analysis.solvers Root finding algorithms, for univariate real functions.org.apache.commons.math4.legacy.distribution Implementations of probability distributions.org.apache.commons.math4.legacy.distribution.fitting Fitting of parameters against distributions.org.apache.commons.math4.legacy.genetics This package provides Genetic Algorithms components and implementations.org.apache.commons.math4.legacy.linear Linear algebra support.org.apache.commons.math4.legacy.optim.nonlinear.scalar Algorithms for optimizing a scalar function.org.apache.commons.math4.legacy.stat.correlation Correlations/Covariance computations.org.apache.commons.math4.legacy.stat.inference Classes providing hypothesis testing.org.apache.commons.math4.legacy.stat.interval Classes providing binomial proportion confidence interval construction. -
-
Uses of NotStrictlyPositiveException in org.apache.commons.math4.legacy.analysis.function
Methods in org.apache.commons.math4.legacy.analysis.function that throw NotStrictlyPositiveException Modifier and Type Method Description double[]
Gaussian.Parametric. gradient(double x, double... param)
Computes the value of the gradient atx
.double[]
Logistic.Parametric. gradient(double x, double... param)
Computes the value of the gradient atx
.double
Gaussian.Parametric. value(double x, double... param)
Computes the value of the Gaussian atx
.double
Logistic.Parametric. value(double x, double... param)
Computes the value of the sigmoid atx
.Constructors in org.apache.commons.math4.legacy.analysis.function that throw NotStrictlyPositiveException Constructor Description Gaussian(double mean, double sigma)
Normalized gaussian with given mean and standard deviation.Gaussian(double norm, double mean, double sigma)
Gaussian with given normalization factor, mean and standard deviation.Logistic(double k, double m, double b, double q, double a, double n)
-
Uses of NotStrictlyPositiveException in org.apache.commons.math4.legacy.analysis.solvers
Methods in org.apache.commons.math4.legacy.analysis.solvers that throw NotStrictlyPositiveException Modifier and Type Method Description static double[]
UnivariateSolverUtils. bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0 andmaximumIterations
set toInteger.MAX_VALUE
.static double[]
UnivariateSolverUtils. bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound, int maximumIterations)
This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)
withq
andr
set to 1.0. -
Uses of NotStrictlyPositiveException in org.apache.commons.math4.legacy.distribution
Methods in org.apache.commons.math4.legacy.distribution that throw NotStrictlyPositiveException Modifier and Type Method Description Object[]
EnumeratedDistribution.Sampler. sample(int sampleSize)
Generates a random sample from the distribution.T[]
EnumeratedDistribution.Sampler. sample(int sampleSize, T[] array)
Generates a random sample from the distribution. -
Uses of NotStrictlyPositiveException in org.apache.commons.math4.legacy.distribution.fitting
Methods in org.apache.commons.math4.legacy.distribution.fitting that throw NotStrictlyPositiveException Modifier and Type Method Description static MixtureMultivariateNormalDistribution
MultivariateNormalMixtureExpectationMaximization. estimate(double[][] data, int numComponents)
Helper method to create a multivariate normal mixture model which can be used to initializeMultivariateNormalMixtureExpectationMaximization.fit(MixtureMultivariateNormalDistribution)
.void
MultivariateNormalMixtureExpectationMaximization. fit(MixtureMultivariateNormalDistribution initialMixture)
Fit a mixture model to the data supplied to the constructor.void
MultivariateNormalMixtureExpectationMaximization. fit(MixtureMultivariateNormalDistribution initialMixture, int maxIterations, double threshold)
Fit a mixture model to the data supplied to the constructor.Constructors in org.apache.commons.math4.legacy.distribution.fitting that throw NotStrictlyPositiveException Constructor Description MultivariateNormalMixtureExpectationMaximization(double[][] data)
Creates an object to fit a multivariate normal mixture model to data. -
Uses of NotStrictlyPositiveException in org.apache.commons.math4.legacy.genetics
Constructors in org.apache.commons.math4.legacy.genetics that throw NotStrictlyPositiveException Constructor Description NPointCrossover(int crossoverPoints)
Creates a newNPointCrossover
policy using the given number of points. -
Uses of NotStrictlyPositiveException in org.apache.commons.math4.legacy.linear
Methods in org.apache.commons.math4.legacy.linear that throw NotStrictlyPositiveException Modifier and Type Method Description abstract FieldMatrix<T>
AbstractFieldMatrix. createMatrix(int rowDimension, int columnDimension)
Create a newFieldMatrix<T>
of the same type as the instance with the supplied row and column dimensions.abstract RealMatrix
AbstractRealMatrix. createMatrix(int rowDimension, int columnDimension)
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.FieldMatrix<T>
Array2DRowFieldMatrix. createMatrix(int rowDimension, int columnDimension)
Create a newFieldMatrix<T>
of the same type as the instance with the supplied row and column dimensions.FieldMatrix<T>
BlockFieldMatrix. createMatrix(int rowDimension, int columnDimension)
Create a newFieldMatrix<T>
of the same type as the instance with the supplied row and column dimensions.BlockRealMatrix
BlockRealMatrix. createMatrix(int rowDimension, int columnDimension)
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.RealMatrix
DiagonalMatrix. createMatrix(int rowDimension, int columnDimension)
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.FieldMatrix<T>
FieldMatrix. createMatrix(int rowDimension, int columnDimension)
Create a newFieldMatrix<T>
of the same type as the instance with the supplied row and column dimensions.OpenMapRealMatrix
OpenMapRealMatrix. createMatrix(int rowDimension, int columnDimension)
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.RealMatrix
RealMatrix. createMatrix(int rowDimension, int columnDimension)
Create a new RealMatrix of the same type as the instance with the supplied row and column dimensions.Constructors in org.apache.commons.math4.legacy.linear that throw NotStrictlyPositiveException Constructor Description AbstractFieldMatrix(Field<T> field, int rowDimension, int columnDimension)
Create a newFieldMatrix<T>
with the supplied row and column dimensions.AbstractRealMatrix(int rowDimension, int columnDimension)
Create a new RealMatrix with the supplied row and column dimensions.Array2DRowFieldMatrix(Field<T> field, int rowDimension, int columnDimension)
Create a newFieldMatrix<T>
with the supplied row and column dimensions.BlockFieldMatrix(int rows, int columns, T[][] blockData, boolean copyArray)
Create a new dense matrix copying entries from block layout data.BlockFieldMatrix(Field<T> field, int rows, int columns)
Create a new matrix with the supplied row and column dimensions.BlockRealMatrix(double[][] rawData)
Create a new dense matrix copying entries from raw layout data.BlockRealMatrix(int rows, int columns)
Create a new matrix with the supplied row and column dimensions.BlockRealMatrix(int rows, int columns, double[][] blockData, boolean copyArray)
Create a new dense matrix copying entries from block layout data.DiagonalMatrix(int dimension)
Creates a matrix with the supplied dimension.OpenMapRealMatrix(int rowDimension, int columnDimension)
Build a sparse matrix with the supplied row and column dimensions. -
Uses of NotStrictlyPositiveException in org.apache.commons.math4.legacy.optim.nonlinear.scalar
Constructors in org.apache.commons.math4.legacy.optim.nonlinear.scalar that throw NotStrictlyPositiveException Constructor Description PopulationSize(int size)
-
Uses of NotStrictlyPositiveException in org.apache.commons.math4.legacy.stat.correlation
Methods in org.apache.commons.math4.legacy.stat.correlation that throw NotStrictlyPositiveException Modifier and Type Method Description protected RealMatrix
Covariance. computeCovarianceMatrix(double[][] data)
Create a covariance matrix from a rectangular array whose columns represent covariates.protected RealMatrix
Covariance. computeCovarianceMatrix(double[][] data, boolean biasCorrected)
Compute a covariance matrix from a rectangular array whose columns represent covariates.Constructors in org.apache.commons.math4.legacy.stat.correlation that throw NotStrictlyPositiveException Constructor Description Covariance(double[][] data)
Create a Covariance matrix from a rectangular array whose columns represent covariates.Covariance(double[][] data, boolean biasCorrected)
Create a Covariance matrix from a rectangular array whose columns represent covariates. -
Uses of NotStrictlyPositiveException in org.apache.commons.math4.legacy.stat.inference
Methods in org.apache.commons.math4.legacy.stat.inference that throw NotStrictlyPositiveException Modifier and Type Method Description double
ChiSquareTest. chiSquare(double[] expected, long[] observed)
static double
InferenceTestUtils. chiSquare(double[] expected, long[] observed)
double
ChiSquareTest. chiSquareTest(double[] expected, long[] observed)
Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing theobserved
frequency counts to those in theexpected
array.boolean
ChiSquareTest. chiSquareTest(double[] expected, long[] observed, double alpha)
Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha
.static double
InferenceTestUtils. chiSquareTest(double[] expected, long[] observed)
static boolean
InferenceTestUtils. chiSquareTest(double[] expected, long[] observed, double alpha)
double
GTest. g(double[] expected, long[] observed)
static double
InferenceTestUtils. g(double[] expected, long[] observed)
double
GTest. gTest(double[] expected, long[] observed)
Returns the observed significance level, or p-value, associated with a G-Test for goodness of fit comparing theobserved
frequency counts to those in theexpected
array.boolean
GTest. gTest(double[] expected, long[] observed, double alpha)
Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance levelalpha
.static double
InferenceTestUtils. gTest(double[] expected, long[] observed)
static boolean
InferenceTestUtils. gTest(double[] expected, long[] observed, double alpha)
double
GTest. gTestIntrinsic(double[] expected, long[] observed)
Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described in p64-69 of McDonald, J.H.static double
InferenceTestUtils. gTestIntrinsic(double[] expected, long[] observed)
protected double
TTest. homoscedasticTTest(double m1, double m2, double v1, double v2, double n1, double n2)
Computes p-value for 2-sided, 2-sample t-test, under the assumption of equal subpopulation variances.protected double
TTest. tTest(double m1, double m2, double v1, double v2, double n1, double n2)
Computes p-value for 2-sided, 2-sample t-test. -
Uses of NotStrictlyPositiveException in org.apache.commons.math4.legacy.stat.interval
Methods in org.apache.commons.math4.legacy.stat.interval that throw NotStrictlyPositiveException Modifier and Type Method Description ConfidenceInterval
BinomialConfidenceInterval. createInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel)
Create a confidence interval for the true probability of success of an unknown binomial distribution with the given observed number of trials, successes and confidence level.
-