Uses of Class
org.apache.commons.math4.legacy.exception.NullArgumentException
-
Packages that use NullArgumentException Package Description org.apache.commons.math4.legacy.analysis.function Thefunctionpackage contains function objects that wrap the methods contained inMath, as well as common mathematical functions such as the gaussian and sinc functions.org.apache.commons.math4.legacy.analysis.interpolation Univariate real functions interpolation algorithms.org.apache.commons.math4.legacy.analysis.polynomials Univariate real polynomials implementations, seen as differentiable univariate real functions.org.apache.commons.math4.legacy.analysis.solvers Root finding algorithms, for univariate real functions.org.apache.commons.math4.legacy.core Core math utilities.org.apache.commons.math4.legacy.filter Implementations of common discrete-time linear filters.org.apache.commons.math4.legacy.genetics This package provides Genetic Algorithms components and implementations.org.apache.commons.math4.legacy.linear Linear algebra support.org.apache.commons.math4.legacy.stat Data storage, manipulation and summary routines.org.apache.commons.math4.legacy.stat.descriptive Generic univariate summary statistic objects.org.apache.commons.math4.legacy.stat.descriptive.moment Summary statistics based on moments.org.apache.commons.math4.legacy.stat.descriptive.rank Summary statistics based on ranks.org.apache.commons.math4.legacy.stat.descriptive.summary Other summary statistics.org.apache.commons.math4.legacy.stat.inference Classes providing hypothesis testing.org.apache.commons.math4.legacy.util Convenience routines and common data structures used throughout the commons-math library. -
-
Uses of NullArgumentException in org.apache.commons.math4.legacy.analysis.function
Methods in org.apache.commons.math4.legacy.analysis.function that throw NullArgumentException Modifier and Type Method Description double[]Gaussian.Parametric. gradient(double x, double... param)Computes the value of the gradient atx.double[]HarmonicOscillator.Parametric. gradient(double x, double... param)Computes the value of the gradient atx.double[]Logistic.Parametric. gradient(double x, double... param)Computes the value of the gradient atx.double[]Logit.Parametric. gradient(double x, double... param)Computes the value of the gradient atx.double[]Sigmoid.Parametric. gradient(double x, double... param)Computes the value of the gradient atx.doubleGaussian.Parametric. value(double x, double... param)Computes the value of the Gaussian atx.doubleHarmonicOscillator.Parametric. value(double x, double... param)Computes the value of the harmonic oscillator atx.doubleLogistic.Parametric. value(double x, double... param)Computes the value of the sigmoid atx.doubleLogit.Parametric. value(double x, double... param)Computes the value of the logit atx.doubleSigmoid.Parametric. value(double x, double... param)Computes the value of the sigmoid atx.Constructors in org.apache.commons.math4.legacy.analysis.function that throw NullArgumentException Constructor Description StepFunction(double[] x, double[] y)Builds a step function from a list of arguments and the corresponding values. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.analysis.interpolation
Methods in org.apache.commons.math4.legacy.analysis.interpolation that throw NullArgumentException Modifier and Type Method Description voidFieldHermiteInterpolator. addSamplePoint(T x, T[]... value)Add a sample point.T[][]FieldHermiteInterpolator. derivatives(T x, int order)Interpolate value and first derivatives at a specified abscissa.MultivariateFunctionMicrosphereProjectionInterpolator. interpolate(double[][] xval, double[] yval)Computes an interpolating function for the data set.MultivariateFunctionMultivariateInterpolator. interpolate(double[][] xval, double[] yval)Computes an interpolating function for the data set.PiecewiseBicubicSplineInterpolatingFunctionPiecewiseBicubicSplineInterpolator. interpolate(double[] xval, double[] yval, double[][] fval)Compute an interpolating function for the dataset.T[]FieldHermiteInterpolator. value(T x)Interpolate value at a specified abscissa.Constructors in org.apache.commons.math4.legacy.analysis.interpolation that throw NullArgumentException Constructor Description PiecewiseBicubicSplineInterpolatingFunction(double[] x, double[] y, double[][] f) -
Uses of NullArgumentException in org.apache.commons.math4.legacy.analysis.polynomials
Methods in org.apache.commons.math4.legacy.analysis.polynomials that throw NullArgumentException Modifier and Type Method Description protected static double[]PolynomialFunction. differentiate(double[] coefficients)Returns the coefficients of the derivative of the polynomial with the given coefficients.protected static doublePolynomialFunction. evaluate(double[] coefficients, double argument)Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.static doublePolynomialFunctionNewtonForm. evaluate(double[] a, double[] c, double z)Evaluate the Newton polynomial using nested multiplication.DerivativeStructurePolynomialFunction. value(DerivativeStructure t)Simple mathematical function.protected static voidPolynomialFunctionNewtonForm. verifyInputArray(double[] a, double[] c)Verifies that the input arrays are valid.Constructors in org.apache.commons.math4.legacy.analysis.polynomials that throw NullArgumentException Constructor Description PolynomialFunction(double[] c)Construct a polynomial with the given coefficients.PolynomialFunctionNewtonForm(double[] a, double[] c)Construct a Newton polynomial with the given a[] and c[].PolynomialSplineFunction(double[] knots, PolynomialFunction[] polynomials)Construct a polynomial spline function with the given segment delimiters and interpolating polynomials. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.analysis.solvers
Methods in org.apache.commons.math4.legacy.analysis.solvers that throw NullArgumentException Modifier and Type Method Description static double[]UnivariateSolverUtils. bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0 andmaximumIterationsset toInteger.MAX_VALUE.static double[]UnivariateSolverUtils. bracket(UnivariateFunction function, double initial, double lowerBound, double upperBound, int maximumIterations)This method simply callsbracket(function, initial, lowerBound, upperBound, q, r, maximumIterations)withqandrset to 1.0.static booleanUnivariateSolverUtils. isBracketing(UnivariateFunction function, double lower, double upper)Check whether the interval bounds bracket a root.TFieldBracketingNthOrderBrentSolver. solve(int maxEval, RealFieldUnivariateFunction<T> f, T min, T max, AllowedSolution allowedSolution)Solve for a zero in the given interval.TFieldBracketingNthOrderBrentSolver. solve(int maxEval, RealFieldUnivariateFunction<T> f, T min, T max, T startValue, AllowedSolution allowedSolution)Solve for a zero in the given interval, start atstartValue.static doubleUnivariateSolverUtils. solve(UnivariateFunction function, double x0, double x1)Convenience method to find a zero of a univariate real function.static doubleUnivariateSolverUtils. solve(UnivariateFunction function, double x0, double x1, double absoluteAccuracy)Convenience method to find a zero of a univariate real function.org.apache.commons.numbers.complex.Complex[]LaguerreSolver. solveAllComplex(double[] coefficients, double initial)Find all complex roots for the polynomial with the given coefficients, starting from the given initial value.org.apache.commons.numbers.complex.ComplexLaguerreSolver. solveComplex(double[] coefficients, double initial)Find a complex root for the polynomial with the given coefficients, starting from the given initial value.static voidUnivariateSolverUtils. verifyBracketing(UnivariateFunction function, double lower, double upper)Check that the endpoints specify an interval and the end points bracket a root. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.core
Methods in org.apache.commons.math4.legacy.core that throw NullArgumentException Modifier and Type Method Description TFieldElement. add(T a)Compute this + a.TFieldElement. divide(T a)Compute this ÷ a.TFieldElement. multiply(T a)Compute this × a.TFieldElement. subtract(T a)Compute this - a. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.filter
Methods in org.apache.commons.math4.legacy.filter that throw NullArgumentException Modifier and Type Method Description voidKalmanFilter. correct(double[] z)Correct the current state estimate with an actual measurement.voidKalmanFilter. correct(RealVector z)Correct the current state estimate with an actual measurement.Constructors in org.apache.commons.math4.legacy.filter that throw NullArgumentException Constructor Description DefaultMeasurementModel(double[][] measMatrix, double[][] measNoise)Create a newMeasurementModel, taking double arrays as input parameters for the respective measurement matrix and noise.DefaultProcessModel(double[][] stateTransition, double[][] control, double[][] processNoise)Create a newProcessModel, taking double arrays as input parameters.DefaultProcessModel(double[][] stateTransition, double[][] control, double[][] processNoise, double[] initialStateEstimate, double[][] initialErrorCovariance)Create a newProcessModel, taking double arrays as input parameters.KalmanFilter(ProcessModel process, MeasurementModel measurement)Creates a new Kalman filter with the given process and measurement models. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.genetics
Constructors in org.apache.commons.math4.legacy.genetics that throw NullArgumentException Constructor Description ElitisticListPopulation(List<Chromosome> chromosomes, int populationLimit, double elitismRate)Creates a newElitisticListPopulationinstance.ListPopulation(List<Chromosome> chromosomes, int populationLimit)Creates a new ListPopulation instance. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.linear
Methods in org.apache.commons.math4.legacy.linear that throw NullArgumentException Modifier and Type Method Description FieldVector<T>SparseFieldVector. append(T d)Construct a vector by appending a T to this vector.protected static voidIterativeLinearSolver. checkParameters(RealLinearOperator a, RealVector b, RealVector x0)Performs all dimension checks on the parameters ofsolveandsolveInPlace, and throws an exception if one of the checks fails.protected static voidPreconditionedIterativeLinearSolver. checkParameters(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)Performs all dimension checks on the parameters ofsolveandsolveInPlace, and throws an exception if one of the checks fails.protected voidAbstractFieldMatrix. checkSubMatrixIndex(int[] selectedRows, int[] selectedColumns)Check if submatrix ranges indices are valid.static voidMatrixUtils. checkSubMatrixIndex(AnyMatrix m, int[] selectedRows, int[] selectedColumns)Check if submatrix ranges indices are valid.voidAbstractFieldMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, T[][] destination)Copy a submatrix.voidAbstractRealMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, double[][] destination)Copy a submatrix.voidFieldMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, T[][] destination)Copy a submatrix.voidRealMatrix. copySubMatrix(int[] selectedRows, int[] selectedColumns, double[][] destination)Copy a submatrix.static <T extends FieldElement<T>>
FieldMatrix<T>MatrixUtils. createColumnFieldMatrix(T[] columnData)Creates a columnFieldMatrixusing the data from the input array.static RealMatrixMatrixUtils. createColumnRealMatrix(double[] columnData)Creates a columnRealMatrixusing the data from the input array.static <T extends FieldElement<T>>
FieldMatrix<T>MatrixUtils. createFieldMatrix(T[][] data)Returns aFieldMatrixwhose entries are the values in the the input array.static <T extends FieldElement<T>>
FieldVector<T>MatrixUtils. createFieldVector(T[] data)Creates aFieldVectorusing the data from the input array.static RealMatrixMatrixUtils. createRealMatrix(double[][] data)Returns aRealMatrixwhose entries are the values in the the input array.static RealVectorMatrixUtils. createRealVector(double[] data)Creates aRealVectorusing the data from the input array.static <T extends FieldElement<T>>
FieldMatrix<T>MatrixUtils. createRowFieldMatrix(T[] rowData)Create a rowFieldMatrixusing the data from the input array.static RealMatrixMatrixUtils. createRowRealMatrix(double[] rowData)Create a rowRealMatrixusing the data from the input array.protected static <T extends FieldElement<T>>
Field<T>AbstractFieldMatrix. extractField(T[][] d)Get the elements type from an array.FieldMatrix<T>AbstractFieldMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)Get a submatrix.RealMatrixAbstractRealMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)Gets a submatrix.FieldMatrix<T>FieldMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)Get a submatrix.RealMatrixRealMatrix. getSubMatrix(int[] selectedRows, int[] selectedColumns)Gets a submatrix.static RealMatrixMatrixUtils. inverse(RealMatrix matrix)Computes the inverse of the given matrix.static RealMatrixMatrixUtils. inverse(RealMatrix matrix, double threshold)Computes the inverse of the given matrix.FieldVector<T>ArrayFieldVector. mapAdd(T d)Map an addition operation to each entry.FieldVector<T>FieldVector. mapAdd(T d)Map an addition operation to each entry.FieldVector<T>SparseFieldVector. mapAdd(T d)Map an addition operation to each entry.FieldVector<T>ArrayFieldVector. mapAddToSelf(T d)Map an addition operation to each entry.FieldVector<T>FieldVector. mapAddToSelf(T d)Map an addition operation to each entry.FieldVector<T>SparseFieldVector. mapAddToSelf(T d)Map an addition operation to each entry.FieldVector<T>ArrayFieldVector. mapDivide(T d)Map a division operation to each entry.FieldVector<T>FieldVector. mapDivide(T d)Map a division operation to each entry.FieldVector<T>SparseFieldVector. mapDivide(T d)Map a division operation to each entry.FieldVector<T>ArrayFieldVector. mapDivideToSelf(T d)Map a division operation to each entry.FieldVector<T>FieldVector. mapDivideToSelf(T d)Map a division operation to each entry.FieldVector<T>SparseFieldVector. mapDivideToSelf(T d)Map a division operation to each entry.FieldVector<T>ArrayFieldVector. mapMultiply(T d)Map a multiplication operation to each entry.FieldVector<T>FieldVector. mapMultiply(T d)Map a multiplication operation to each entry.FieldVector<T>SparseFieldVector. mapMultiply(T d)Map a multiplication operation to each entry.FieldVector<T>ArrayFieldVector. mapMultiplyToSelf(T d)Map a multiplication operation to each entry.FieldVector<T>FieldVector. mapMultiplyToSelf(T d)Map a multiplication operation to each entry.FieldVector<T>SparseFieldVector. mapMultiplyToSelf(T d)Map a multiplication operation to each entry.FieldVector<T>ArrayFieldVector. mapSubtract(T d)Map a subtraction operation to each entry.FieldVector<T>FieldVector. mapSubtract(T d)Map a subtraction operation to each entry.FieldVector<T>SparseFieldVector. mapSubtract(T d)Map a subtraction operation to each entry.FieldVector<T>ArrayFieldVector. mapSubtractToSelf(T d)Map a subtraction operation to each entry.FieldVector<T>FieldVector. mapSubtractToSelf(T d)Map a subtraction operation to each entry.FieldVector<T>SparseFieldVector. mapSubtractToSelf(T d)Map a subtraction operation to each entry.voidSparseFieldVector. setEntry(int index, T value)Set a single element.voidAbstractFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidAbstractRealMatrix. setSubMatrix(double[][] subMatrix, int row, int column)Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.voidArray2DRowFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidBlockFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidBlockRealMatrix. setSubMatrix(double[][] subMatrix, int row, int column)Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.voidFieldMatrix. setSubMatrix(T[][] subMatrix, int row, int column)Replace the submatrix starting at(row, column)using data in the inputsubMatrixarray.voidRealMatrix. setSubMatrix(double[][] subMatrix, int row, int column)Replace the submatrix starting atrow, columnusing data in the inputsubMatrixarray.RealVectorIterativeLinearSolver. solve(RealLinearOperator a, RealVector b)Returns an estimate of the solution to the linear system A · x = b.RealVectorIterativeLinearSolver. solve(RealLinearOperator a, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.RealVectorPreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealLinearOperator m, RealVector b)Returns an estimate of the solution to the linear system A · x = b.RealVectorPreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.RealVectorPreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealVector b)Returns an estimate of the solution to the linear system A · x = b.RealVectorPreconditionedIterativeLinearSolver. solve(RealLinearOperator a, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, boolean goodb, double shift)Returns an estimate of the solution to the linear system (A - shift · I) · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealVector b)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealVector b, boolean goodb, double shift)Returns the solution to the system (A - shift · I) · x = b.RealVectorSymmLQ. solve(RealLinearOperator a, RealVector b, RealVector x)Returns an estimate of the solution to the linear system A · x = b.RealVectorConjugateGradient. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.abstract RealVectorPreconditionedIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.RealVectorPreconditionedIterativeLinearSolver. solveInPlace(RealLinearOperator a, RealVector b, RealVector x0)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x)Returns an estimate of the solution to the linear system A · x = b.RealVectorSymmLQ. solveInPlace(RealLinearOperator a, RealLinearOperator m, RealVector b, RealVector x, boolean goodb, double shift)Returns an estimate of the solution to the linear system (A - shift · I) · x = b.RealVectorSymmLQ. solveInPlace(RealLinearOperator a, RealVector b, RealVector x)Returns an estimate of the solution to the linear system A · x = b.Constructors in org.apache.commons.math4.legacy.linear that throw NullArgumentException Constructor Description Array2DRowFieldMatrix(Field<T> field, T[][] d)Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowFieldMatrix(Field<T> field, T[][] d, boolean copyArray)Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowFieldMatrix(T[][] d)Create a newFieldMatrix<T>using the input array as the underlying data array.Array2DRowFieldMatrix(T[][] d, boolean copyArray)Create a newFieldMatrix<T>using the input array as the underlying data array.ArrayFieldVector(Field<T> field, T[] d)Construct a vector from an array, copying the input array.ArrayFieldVector(Field<T> field, T[] d, boolean copyArray)Create a new ArrayFieldVector using the input array as the underlying data array.ArrayFieldVector(Field<T> field, T[] d, int pos, int size)Construct a vector from part of a array.ArrayFieldVector(Field<T> field, T[] v1, T[] v2)Construct a vector by appending one vector to another vector.ArrayFieldVector(ArrayFieldVector<T> v)Construct a vector from another vector, using a deep copy.ArrayFieldVector(ArrayFieldVector<T> v, boolean deep)Construct a vector from another vector.ArrayFieldVector(FieldVector<T> v)Construct a vector from another vector, using a deep copy.ArrayFieldVector(FieldVector<T> v1, FieldVector<T> v2)Construct a vector by appending one vector to another vector.ArrayFieldVector(FieldVector<T> v1, T[] v2)Construct a vector by appending one vector to another vector.ArrayFieldVector(T[] d)Construct a vector from an array, copying the input array.ArrayFieldVector(T[] d, boolean copyArray)Create a new ArrayFieldVector using the input array as the underlying data array.ArrayFieldVector(T[] d, int pos, int size)Construct a vector from part of a array.ArrayFieldVector(T[] v1, FieldVector<T> v2)Construct a vector by appending one vector to another vector.ArrayFieldVector(T[] v1, T[] v2)Construct a vector by appending one vector to another vector.ArrayRealVector(double[] d, boolean copyArray)Create a new ArrayRealVector using the input array as the underlying data array.ArrayRealVector(double[] d, int pos, int size)Construct a vector from part of a array.ArrayRealVector(Double[] d, int pos, int size)Construct a vector from part of an array.ArrayRealVector(ArrayRealVector v)Construct a vector from another vector, using a deep copy.ArrayRealVector(RealVector v)Construct a vector from another vector, using a deep copy.ConjugateGradient(IterationManager manager, double delta, boolean check)Creates a new instance of this class, with default stopping criterion and custom iteration manager.DiagonalMatrix(double[] d, boolean copyArray)Creates a matrix using the input array as the underlying data.IterativeLinearSolver(IterationManager manager)Creates a new instance of this class, with custom iteration manager.PreconditionedIterativeLinearSolver(IterationManager manager)Creates a new instance of this class, with custom iteration manager.SparseFieldVector(Field<T> field, T[] values)Create from a Field array. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat
Methods in org.apache.commons.math4.legacy.stat that throw NullArgumentException Modifier and Type Method Description voidFrequency. merge(Collection<Frequency<T>> others)Merge aCollectionofFrequencyobjects into this instance.voidFrequency. merge(Frequency<T> other)Merge another Frequency object's counts into this instance. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat.descriptive
Methods in org.apache.commons.math4.legacy.stat.descriptive that throw NullArgumentException Modifier and Type Method Description static voidDescriptiveStatistics. copy(DescriptiveStatistics source, DescriptiveStatistics dest)Copies source to dest.static voidSummaryStatistics. copy(SummaryStatistics source, SummaryStatistics dest)Copies source to dest.static voidSynchronizedDescriptiveStatistics. copy(SynchronizedDescriptiveStatistics source, SynchronizedDescriptiveStatistics dest)Copies source to dest.static voidSynchronizedSummaryStatistics. copy(SynchronizedSummaryStatistics source, SynchronizedSummaryStatistics dest)Copies source to dest.Constructors in org.apache.commons.math4.legacy.stat.descriptive that throw NullArgumentException Constructor Description AggregateSummaryStatistics(SummaryStatistics prototypeStatistics)Initializes a new AggregateSummaryStatistics with the specified statistics object as a prototype for contributing statistics and for the internal aggregate statistics.DescriptiveStatistics(DescriptiveStatistics original)Copy constructor.SummaryStatistics(SummaryStatistics original)A copy constructor.SynchronizedDescriptiveStatistics(SynchronizedDescriptiveStatistics original)A copy constructor.SynchronizedSummaryStatistics(SynchronizedSummaryStatistics original)A copy constructor. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat.descriptive.moment
Methods in org.apache.commons.math4.legacy.stat.descriptive.moment that throw NullArgumentException Modifier and Type Method Description static voidGeometricMean. copy(GeometricMean source, GeometricMean dest)Copies source to dest.static voidKurtosis. copy(Kurtosis source, Kurtosis dest)Copies source to dest.static voidMean. copy(Mean source, Mean dest)Copies source to dest.static voidSecondMoment. copy(SecondMoment source, SecondMoment dest)Copies source to dest.static voidSemiVariance. copy(SemiVariance source, SemiVariance dest)Copies source to dest.static voidSkewness. copy(Skewness source, Skewness dest)Copies source to dest.static voidStandardDeviation. copy(StandardDeviation source, StandardDeviation dest)Copies source to dest.static voidVariance. copy(Variance source, Variance dest)Copies source to dest.Constructors in org.apache.commons.math4.legacy.stat.descriptive.moment that throw NullArgumentException Constructor Description GeometricMean(GeometricMean original)Copy constructor, creates a newGeometricMeanidentical to theoriginal.Kurtosis(Kurtosis original)Copy constructor, creates a newKurtosisidentical to theoriginal.Mean(Mean original)Copy constructor, creates a newMeanidentical to theoriginal.SecondMoment(SecondMoment original)Copy constructor, creates a newSecondMomentidentical to theoriginal.SemiVariance(SemiVariance original)Copy constructor, creates a newSemiVarianceidentical to theoriginal.Skewness(Skewness original)Copy constructor, creates a newSkewnessidentical to theoriginal.StandardDeviation(StandardDeviation original)Copy constructor, creates a newStandardDeviationidentical to theoriginal.Variance(Variance original)Copy constructor, creates a newVarianceidentical to theoriginal. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat.descriptive.rank
Methods in org.apache.commons.math4.legacy.stat.descriptive.rank that throw NullArgumentException Modifier and Type Method Description static voidMax. copy(Max source, Max dest)Copies source to dest.static voidMin. copy(Min source, Min dest)Copies source to dest.Constructors in org.apache.commons.math4.legacy.stat.descriptive.rank that throw NullArgumentException Constructor Description Max(Max original)Copy constructor, creates a newMaxidentical to theoriginal.Median(Median original)Copy constructor, creates a newMedianidentical.Min(Min original)Copy constructor, creates a newMinidentical to theoriginal. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat.descriptive.summary
Methods in org.apache.commons.math4.legacy.stat.descriptive.summary that throw NullArgumentException Modifier and Type Method Description static voidProduct. copy(Product source, Product dest)Copies source to dest.static voidSum. copy(Sum source, Sum dest)Copies source to dest.static voidSumOfLogs. copy(SumOfLogs source, SumOfLogs dest)Copies source to dest.static voidSumOfSquares. copy(SumOfSquares source, SumOfSquares dest)Copies source to dest.Constructors in org.apache.commons.math4.legacy.stat.descriptive.summary that throw NullArgumentException Constructor Description Product(Product original)Copy constructor, creates a newProductidentical to theoriginal.Sum(Sum original)Copy constructor, creates a newSumidentical to theoriginal.SumOfLogs(SumOfLogs original)Copy constructor, creates a newSumOfLogsidentical to theoriginal.SumOfSquares(SumOfSquares original)Copy constructor, creates a newSumOfSquaresidentical to theoriginal. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.stat.inference
Methods in org.apache.commons.math4.legacy.stat.inference that throw NullArgumentException Modifier and Type Method Description doubleOneWayAnova. anovaFValue(Collection<double[]> categoryData)Computes the ANOVA F-value for a collection ofdouble[]arrays.doubleOneWayAnova. anovaPValue(Collection<double[]> categoryData)Computes the ANOVA P-value for a collection ofdouble[]arrays.doubleOneWayAnova. anovaPValue(Collection<SummaryStatistics> categoryData, boolean allowOneElementData)Computes the ANOVA P-value for a collection ofSummaryStatistics.booleanOneWayAnova. anovaTest(Collection<double[]> categoryData, double alpha)Performs an ANOVA test, evaluating the null hypothesis that there is no difference among the means of the data categories.doubleChiSquareTest. chiSquare(long[][] counts)Computes the Chi-Square statistic associated with a chi-square test of independence based on the inputcountsarray, viewed as a two-way table.static doubleInferenceTestUtils. chiSquare(long[][] counts)doubleChiSquareTest. chiSquareTest(long[][] counts)Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the inputcountsarray, viewed as a two-way table.booleanChiSquareTest. chiSquareTest(long[][] counts, double alpha)Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance levelalpha.static doubleInferenceTestUtils. chiSquareTest(long[][] counts)static booleanInferenceTestUtils. chiSquareTest(long[][] counts, double alpha)static doubleInferenceTestUtils. homoscedasticT(double[] sample1, double[] sample2)static doubleInferenceTestUtils. homoscedasticT(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)doubleTTest. homoscedasticT(double[] sample1, double[] sample2)Computes a 2-sample t statistic, under the hypothesis of equal subpopulation variances.doubleTTest. homoscedasticT(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)Computes a 2-sample t statistic, comparing the means of the datasets described by twoStatisticalSummaryinstances, under the assumption of equal subpopulation variances.static doubleInferenceTestUtils. homoscedasticTTest(double[] sample1, double[] sample2)static booleanInferenceTestUtils. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)static doubleInferenceTestUtils. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)doubleTTest. homoscedasticTTest(double[] sample1, double[] sample2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.booleanTTest. homoscedasticTTest(double[] sample1, double[] sample2, double alpha)Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha, assuming that the subpopulation variances are equal.doubleTTest. homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.static doubleInferenceTestUtils. kolmogorovSmirnovStatistic(double[] x, double[] y)static doubleInferenceTestUtils. kolmogorovSmirnovStatistic(org.apache.commons.statistics.distribution.ContinuousDistribution dist, double[] data)static doubleInferenceTestUtils. kolmogorovSmirnovTest(double[] x, double[] y)static doubleInferenceTestUtils. kolmogorovSmirnovTest(double[] x, double[] y, boolean strict)static doubleInferenceTestUtils. kolmogorovSmirnovTest(org.apache.commons.statistics.distribution.ContinuousDistribution dist, double[] data)static doubleInferenceTestUtils. kolmogorovSmirnovTest(org.apache.commons.statistics.distribution.ContinuousDistribution dist, double[] data, boolean strict)static booleanInferenceTestUtils. kolmogorovSmirnovTest(org.apache.commons.statistics.distribution.ContinuousDistribution dist, double[] data, double alpha)doubleMannWhitneyUTest. mannWhitneyU(double[] x, double[] y)Computes the Mann-Whitney U statistic comparing mean for two independent samples possibly of different length.doubleMannWhitneyUTest. mannWhitneyUTest(double[] x, double[] y)Returns the asymptotic observed significance level, or p-value, associated with a Mann-Whitney U statistic comparing mean for two independent samples.static doubleInferenceTestUtils. oneWayAnovaFValue(Collection<double[]> categoryData)static doubleInferenceTestUtils. oneWayAnovaPValue(Collection<double[]> categoryData)static booleanInferenceTestUtils. oneWayAnovaTest(Collection<double[]> categoryData, double alpha)static doubleInferenceTestUtils. pairedT(double[] sample1, double[] sample2)doubleTTest. pairedT(double[] sample1, double[] sample2)Computes a paired, 2-sample t-statistic based on the data in the input arrays.static doubleInferenceTestUtils. pairedTTest(double[] sample1, double[] sample2)static booleanInferenceTestUtils. pairedTTest(double[] sample1, double[] sample2, double alpha)doubleTTest. pairedTTest(double[] sample1, double[] sample2)Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.booleanTTest. pairedTTest(double[] sample1, double[] sample2, double alpha)Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences betweensample1andsample2is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance levelalpha.static doubleInferenceTestUtils. t(double[] sample1, double[] sample2)static doubleInferenceTestUtils. t(double mu, double[] observed)static doubleInferenceTestUtils. t(double mu, StatisticalSummary sampleStats)static doubleInferenceTestUtils. t(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)doubleTTest. t(double[] sample1, double[] sample2)Computes a 2-sample t statistic, without the hypothesis of equal subpopulation variances.doubleTTest. t(double mu, double[] observed)Computes a t statistic given observed values and a comparison constant.doubleTTest. t(double mu, StatisticalSummary sampleStats)doubleTTest. t(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)Computes a 2-sample t statistic, comparing the means of the datasets described by twoStatisticalSummaryinstances, without the assumption of equal subpopulation variances.static doubleInferenceTestUtils. tTest(double[] sample1, double[] sample2)static booleanInferenceTestUtils. tTest(double[] sample1, double[] sample2, double alpha)static doubleInferenceTestUtils. tTest(double mu, double[] sample)static booleanInferenceTestUtils. tTest(double mu, double[] sample, double alpha)static doubleInferenceTestUtils. tTest(double mu, StatisticalSummary sampleStats)static booleanInferenceTestUtils. tTest(double mu, StatisticalSummary sampleStats, double alpha)static doubleInferenceTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)static booleanInferenceTestUtils. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)doubleTTest. tTest(double[] sample1, double[] sample2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.booleanTTest. tTest(double[] sample1, double[] sample2, double alpha)Performs a two-sided t-test evaluating the null hypothesis thatsample1andsample2are drawn from populations with the same mean, with significance levelalpha.doubleTTest. tTest(double mu, double[] sample)Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constantmu.booleanTTest. tTest(double mu, double[] sample, double alpha)Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from whichsampleis drawn equalsmu.doubleTTest. tTest(double mu, StatisticalSummary sampleStats)Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described bysampleStatswith the constantmu.booleanTTest. tTest(double mu, StatisticalSummary sampleStats, double alpha)Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described bystatsis drawn equalsmu.doubleTTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.booleanTTest. tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)Performs a two-sided t-test evaluating the null hypothesis thatsampleStats1andsampleStats2describe datasets drawn from populations with the same mean, with significance levelalpha.doubleWilcoxonSignedRankTest. wilcoxonSignedRank(double[] x, double[] y)Computes the Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample.doubleWilcoxonSignedRankTest. wilcoxonSignedRankTest(double[] x, double[] y, boolean exactPValue)Returns the observed significance level, or p-value, associated with a Wilcoxon signed ranked statistic comparing mean for two related samples or repeated measurements on a single sample. -
Uses of NullArgumentException in org.apache.commons.math4.legacy.util
Methods in org.apache.commons.math4.legacy.util that throw NullArgumentException Modifier and Type Method Description static ComplexFormatComplexFormat. getInstance(String imaginaryCharacter, Locale locale)Returns the default complex format for the given locale.Constructors in org.apache.commons.math4.legacy.util that throw NullArgumentException Constructor Description ComplexFormat(String imaginaryCharacter)Create an instance with a custom imaginary character, and the default number format for both real and imaginary parts.ComplexFormat(String imaginaryCharacter, NumberFormat format)Create an instance with a custom imaginary character, and a custom number format for both real and imaginary parts.ComplexFormat(String imaginaryCharacter, NumberFormat realFormat, NumberFormat imaginaryFormat)Create an instance with a custom imaginary character, a custom number format for the real part, and a custom number format for the imaginary part.ComplexFormat(NumberFormat format)Create an instance with a custom number format for both real and imaginary parts.ComplexFormat(NumberFormat realFormat, NumberFormat imaginaryFormat)Create an instance with a custom number format for the real part and a custom number format for the imaginary part.
-