Class AdamsIntegrator
- java.lang.Object
-
- org.apache.commons.math4.legacy.ode.AbstractIntegrator
-
- org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
-
- org.apache.commons.math4.legacy.ode.MultistepIntegrator
-
- org.apache.commons.math4.legacy.ode.nonstiff.AdamsIntegrator
-
- All Implemented Interfaces:
FirstOrderIntegrator
,ODEIntegrator
- Direct Known Subclasses:
AdamsBashforthIntegrator
,AdamsMoultonIntegrator
public abstract class AdamsIntegrator extends MultistepIntegrator
Base class forAdams-Bashforth
andAdams-Moulton
integrators.- Since:
- 2.0
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class org.apache.commons.math4.legacy.ode.MultistepIntegrator
MultistepIntegrator.NordsieckTransformer
-
-
Field Summary
-
Fields inherited from class org.apache.commons.math4.legacy.ode.MultistepIntegrator
nordsieck, scaled
-
Fields inherited from class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
mainSetDimension, scalAbsoluteTolerance, scalRelativeTolerance, vecAbsoluteTolerance, vecRelativeTolerance
-
Fields inherited from class org.apache.commons.math4.legacy.ode.AbstractIntegrator
isLastStep, resetOccurred, stepHandlers, stepSize, stepStart
-
-
Constructor Summary
Constructors Constructor Description AdamsIntegrator(String name, int nSteps, int order, double minStep, double maxStep, double[] vecAbsoluteTolerance, double[] vecRelativeTolerance)
Build an Adams integrator with the given order and step control parameters.AdamsIntegrator(String name, int nSteps, int order, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance)
Build an Adams integrator with the given order and step control parameters.
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description protected Array2DRowRealMatrix
initializeHighOrderDerivatives(double h, double[] t, double[][] y, double[][] yDot)
Initialize the high order scaled derivatives at step start.abstract void
integrate(ExpandableStatefulODE equations, double t)
Integrate a set of differential equations up to the given time.Array2DRowRealMatrix
updateHighOrderDerivativesPhase1(Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives for Adams integrators (phase 1).void
updateHighOrderDerivativesPhase2(double[] start, double[] end, Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives Adams integrators (phase 2).-
Methods inherited from class org.apache.commons.math4.legacy.ode.MultistepIntegrator
computeStepGrowShrinkFactor, getMaxGrowth, getMinReduction, getNSteps, getSafety, getStarterIntegrator, setMaxGrowth, setMinReduction, setSafety, setStarterIntegrator, start
-
Methods inherited from class org.apache.commons.math4.legacy.ode.nonstiff.AdaptiveStepsizeIntegrator
filterStep, getCurrentStepStart, getMaxStep, getMinStep, initializeStep, resetInternalState, sanityChecks, setInitialStepSize, setStepSizeControl, setStepSizeControl
-
Methods inherited from class org.apache.commons.math4.legacy.ode.AbstractIntegrator
acceptStep, addEventHandler, addEventHandler, addStepHandler, clearEventHandlers, clearStepHandlers, computeDerivatives, getCounter, getCurrentSignedStepsize, getEvaluations, getEventHandlers, getExpandable, getMaxEvaluations, getName, getStepHandlers, initIntegration, integrate, setEquations, setMaxEvaluations, setStateInitialized
-
-
-
-
Constructor Detail
-
AdamsIntegrator
public AdamsIntegrator(String name, int nSteps, int order, double minStep, double maxStep, double scalAbsoluteTolerance, double scalRelativeTolerance) throws NumberIsTooSmallException
Build an Adams integrator with the given order and step control parameters.- Parameters:
name
- name of the methodnSteps
- number of steps of the method excluding the one being computedorder
- order of the methodminStep
- minimal step (sign is irrelevant, regardless of integration direction, forward or backward), the last step can be smaller than thismaxStep
- maximal step (sign is irrelevant, regardless of integration direction, forward or backward), the last step can be smaller than thisscalAbsoluteTolerance
- allowed absolute errorscalRelativeTolerance
- allowed relative error- Throws:
NumberIsTooSmallException
- if order is 1 or less
-
AdamsIntegrator
public AdamsIntegrator(String name, int nSteps, int order, double minStep, double maxStep, double[] vecAbsoluteTolerance, double[] vecRelativeTolerance) throws IllegalArgumentException
Build an Adams integrator with the given order and step control parameters.- Parameters:
name
- name of the methodnSteps
- number of steps of the method excluding the one being computedorder
- order of the methodminStep
- minimal step (sign is irrelevant, regardless of integration direction, forward or backward), the last step can be smaller than thismaxStep
- maximal step (sign is irrelevant, regardless of integration direction, forward or backward), the last step can be smaller than thisvecAbsoluteTolerance
- allowed absolute errorvecRelativeTolerance
- allowed relative error- Throws:
IllegalArgumentException
- if order is 1 or less
-
-
Method Detail
-
integrate
public abstract void integrate(ExpandableStatefulODE equations, double t) throws NumberIsTooSmallException, DimensionMismatchException, MaxCountExceededException, NoBracketingException
Integrate a set of differential equations up to the given time.This method solves an Initial Value Problem (IVP).
The set of differential equations is composed of a main set, which can be extended by some sets of secondary equations. The set of equations must be already set up with initial time and partial states. At integration completion, the final time and partial states will be available in the same object.
Since this method stores some internal state variables made available in its public interface during integration (
AbstractIntegrator.getCurrentSignedStepsize()
), it is not thread-safe.- Specified by:
integrate
in classAdaptiveStepsizeIntegrator
- Parameters:
equations
- complete set of differential equations to integratet
- target time for the integration (can be set to a value smaller thant0
for backward integration)- Throws:
NumberIsTooSmallException
- if integration step is too smallDimensionMismatchException
- if the dimension of the complete state does not match the complete equations sets dimensionMaxCountExceededException
- if the number of functions evaluations is exceededNoBracketingException
- if the location of an event cannot be bracketed
-
initializeHighOrderDerivatives
protected Array2DRowRealMatrix initializeHighOrderDerivatives(double h, double[] t, double[][] y, double[][] yDot)
Initialize the high order scaled derivatives at step start.- Specified by:
initializeHighOrderDerivatives
in classMultistepIntegrator
- Parameters:
h
- step size to use for scalingt
- first steps timesy
- first steps statesyDot
- first steps derivatives- Returns:
- Nordieck vector at first step (h2/2 y''n, h3/6 y'''n ... hk/k! y(k)n)
-
updateHighOrderDerivativesPhase1
public Array2DRowRealMatrix updateHighOrderDerivativesPhase1(Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives for Adams integrators (phase 1).The complete update of high order derivatives has a form similar to:
this method computes the P-1 A P rn part.rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rn
- Parameters:
highOrder
- high order scaled derivatives (h2/2 y'', ... hk/k! y(k))- Returns:
- updated high order derivatives
- See Also:
updateHighOrderDerivativesPhase2(double[], double[], Array2DRowRealMatrix)
-
updateHighOrderDerivativesPhase2
public void updateHighOrderDerivativesPhase2(double[] start, double[] end, Array2DRowRealMatrix highOrder)
Update the high order scaled derivatives Adams integrators (phase 2).The complete update of high order derivatives has a form similar to:
this method computes the (s1(n) - s1(n+1)) P-1 u part.rn+1 = (s1(n) - s1(n+1)) P-1 u + P-1 A P rn
Phase 1 of the update must already have been performed.
- Parameters:
start
- first order scaled derivatives at step startend
- first order scaled derivatives at step endhighOrder
- high order scaled derivatives, will be modified (h2/2 y'', ... hk/k! y(k))- See Also:
updateHighOrderDerivativesPhase1(Array2DRowRealMatrix)
-
-