Class GradientMultivariateOptimizer
- java.lang.Object
-
- org.apache.commons.math4.legacy.optim.BaseOptimizer<PAIR>
-
- org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer<PointValuePair>
-
- org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
-
- org.apache.commons.math4.legacy.optim.nonlinear.scalar.GradientMultivariateOptimizer
-
- Direct Known Subclasses:
NonLinearConjugateGradientOptimizer
public abstract class GradientMultivariateOptimizer extends MultivariateOptimizer
Base class for implementing optimizers for multivariate scalar differentiable functions. It contains boiler-plate code for dealing with gradient evaluation.- Since:
- 3.1
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
GradientMultivariateOptimizer(ConvergenceChecker<PointValuePair> checker)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected double[]
computeObjectiveGradient(double[] params)
Compute the gradient vector.PointValuePair
optimize(OptimizationData... optData)
Stores data and performs the optimization.protected void
parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that characterize the problem.-
Methods inherited from class org.apache.commons.math4.legacy.optim.nonlinear.scalar.MultivariateOptimizer
computeObjectiveValue, createLineSearch, getGoalType, getObjectiveFunction, lineSearch
-
Methods inherited from class org.apache.commons.math4.legacy.optim.BaseMultivariateOptimizer
getLowerBound, getStartPoint, getUpperBound
-
Methods inherited from class org.apache.commons.math4.legacy.optim.BaseOptimizer
doOptimize, getAbsoluteTolerance, getConvergenceChecker, getEvaluations, getIterations, getMaxEvaluations, getMaxIterations, getRelativeTolerance, incrementEvaluationCount, incrementIterationCount, optimize
-
-
-
-
Constructor Detail
-
GradientMultivariateOptimizer
protected GradientMultivariateOptimizer(ConvergenceChecker<PointValuePair> checker)
- Parameters:
checker
- Convergence checker.
-
-
Method Detail
-
computeObjectiveGradient
protected double[] computeObjectiveGradient(double[] params)
Compute the gradient vector.- Parameters:
params
- Point at which the gradient must be evaluated.- Returns:
- the gradient at the specified point.
-
optimize
public PointValuePair optimize(OptimizationData... optData) throws TooManyEvaluationsException
Stores data and performs the optimization.The list of parameters is open-ended so that sub-classes can extend it with arguments specific to their concrete implementations.
When the method is called multiple times, instance data is overwritten only when actually present in the list of arguments: when not specified, data set in a previous call is retained (and thus is optional in subsequent calls).
Important note: Subclasses must override
BaseOptimizer.parseOptimizationData(OptimizationData[])
if they need to register their own options; but then, they must also callsuper.parseOptimizationData(optData)
within that method.- Overrides:
optimize
in classMultivariateOptimizer
- Parameters:
optData
- Optimization data. In addition to those documented inMultivariateOptimizer
, this method will register the following data:- Returns:
- a point/value pair that satisfies the convergence criteria.
- Throws:
TooManyEvaluationsException
- if the maximal number of evaluations (of the objective function) is exceeded.
-
parseOptimizationData
protected void parseOptimizationData(OptimizationData... optData)
Scans the list of (required and optional) optimization data that characterize the problem.- Overrides:
parseOptimizationData
in classMultivariateOptimizer
- Parameters:
optData
- Optimization data. The following data will be looked for:
-
-