001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.math4.legacy.analysis.function;
019
020import java.util.Arrays;
021
022import org.apache.commons.math4.legacy.analysis.ParametricUnivariateFunction;
023import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
024import org.apache.commons.math4.legacy.analysis.differentiation.UnivariateDifferentiableFunction;
025import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
026import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
027import org.apache.commons.math4.legacy.exception.NullArgumentException;
028import org.apache.commons.math4.core.jdkmath.JdkMath;
029import org.apache.commons.numbers.core.Precision;
030
031/**
032 * <a href="http://en.wikipedia.org/wiki/Gaussian_function">
033 *  Gaussian</a> function.
034 *
035 * @since 3.0
036 */
037public class Gaussian implements UnivariateDifferentiableFunction {
038    /** Mean. */
039    private final double mean;
040    /** Inverse of the standard deviation. */
041    private final double is;
042    /** Inverse of twice the square of the standard deviation. */
043    private final double i2s2;
044    /** Normalization factor. */
045    private final double norm;
046
047    /**
048     * Gaussian with given normalization factor, mean and standard deviation.
049     *
050     * @param norm Normalization factor.
051     * @param mean Mean.
052     * @param sigma Standard deviation.
053     * @throws NotStrictlyPositiveException if {@code sigma <= 0}.
054     */
055    public Gaussian(double norm,
056                    double mean,
057                    double sigma)
058        throws NotStrictlyPositiveException {
059        if (sigma <= 0) {
060            throw new NotStrictlyPositiveException(sigma);
061        }
062
063        this.norm = norm;
064        this.mean = mean;
065        this.is   = 1 / sigma;
066        this.i2s2 = 0.5 * is * is;
067    }
068
069    /**
070     * Normalized gaussian with given mean and standard deviation.
071     *
072     * @param mean Mean.
073     * @param sigma Standard deviation.
074     * @throws NotStrictlyPositiveException if {@code sigma <= 0}.
075     */
076    public Gaussian(double mean,
077                    double sigma)
078        throws NotStrictlyPositiveException {
079        this(1 / (sigma * JdkMath.sqrt(2 * Math.PI)), mean, sigma);
080    }
081
082    /**
083     * Normalized gaussian with zero mean and unit standard deviation.
084     */
085    public Gaussian() {
086        this(0, 1);
087    }
088
089    /** {@inheritDoc} */
090    @Override
091    public double value(double x) {
092        return value(x - mean, norm, i2s2);
093    }
094
095    /**
096     * Parametric function where the input array contains the parameters of
097     * the Gaussian. Ordered as follows:
098     * <ul>
099     *  <li>Norm</li>
100     *  <li>Mean</li>
101     *  <li>Standard deviation</li>
102     * </ul>
103     */
104    public static class Parametric implements ParametricUnivariateFunction {
105        /**
106         * Computes the value of the Gaussian at {@code x}.
107         *
108         * @param x Value for which the function must be computed.
109         * @param param Values of norm, mean and standard deviation.
110         * @return the value of the function.
111         * @throws NullArgumentException if {@code param} is {@code null}.
112         * @throws DimensionMismatchException if the size of {@code param} is
113         * not 3.
114         * @throws NotStrictlyPositiveException if {@code param[2]} is negative.
115         */
116        @Override
117        public double value(double x, double ... param)
118            throws NullArgumentException,
119                   DimensionMismatchException,
120                   NotStrictlyPositiveException {
121            validateParameters(param);
122
123            final double diff = x - param[1];
124            final double i2s2 = 1 / (2 * param[2] * param[2]);
125            return Gaussian.value(diff, param[0], i2s2);
126        }
127
128        /**
129         * Computes the value of the gradient at {@code x}.
130         * The components of the gradient vector are the partial
131         * derivatives of the function with respect to each of the
132         * <em>parameters</em> (norm, mean and standard deviation).
133         *
134         * @param x Value at which the gradient must be computed.
135         * @param param Values of norm, mean and standard deviation.
136         * @return the gradient vector at {@code x}.
137         * @throws NullArgumentException if {@code param} is {@code null}.
138         * @throws DimensionMismatchException if the size of {@code param} is
139         * not 3.
140         * @throws NotStrictlyPositiveException if {@code param[2]} is negative.
141         */
142        @Override
143        public double[] gradient(double x, double ... param)
144            throws NullArgumentException,
145                   DimensionMismatchException,
146                   NotStrictlyPositiveException {
147            validateParameters(param);
148
149            final double norm = param[0];
150            final double diff = x - param[1];
151            final double sigma = param[2];
152            final double i2s2 = 1 / (2 * sigma * sigma);
153
154            final double n = Gaussian.value(diff, 1, i2s2);
155            final double m = norm * n * 2 * i2s2 * diff;
156            final double s = m * diff / sigma;
157
158            return new double[] { n, m, s };
159        }
160
161        /**
162         * Validates parameters to ensure they are appropriate for the evaluation of
163         * the {@link #value(double,double[])} and {@link #gradient(double,double[])}
164         * methods.
165         *
166         * @param param Values of norm, mean and standard deviation.
167         * @throws NullArgumentException if {@code param} is {@code null}.
168         * @throws DimensionMismatchException if the size of {@code param} is
169         * not 3.
170         * @throws NotStrictlyPositiveException if {@code param[2]} is negative.
171         */
172        private void validateParameters(double[] param)
173            throws NullArgumentException,
174                   DimensionMismatchException,
175                   NotStrictlyPositiveException {
176            if (param == null) {
177                throw new NullArgumentException();
178            }
179            if (param.length != 3) {
180                throw new DimensionMismatchException(param.length, 3);
181            }
182            if (param[2] <= 0) {
183                throw new NotStrictlyPositiveException(param[2]);
184            }
185        }
186    }
187
188    /**
189     * @param xMinusMean {@code x - mean}.
190     * @param norm Normalization factor.
191     * @param i2s2 Inverse of twice the square of the standard deviation.
192     * @return the value of the Gaussian at {@code x}.
193     */
194    private static double value(double xMinusMean,
195                                double norm,
196                                double i2s2) {
197        return norm * JdkMath.exp(-xMinusMean * xMinusMean * i2s2);
198    }
199
200    /** {@inheritDoc}
201     * @since 3.1
202     */
203    @Override
204    public DerivativeStructure value(final DerivativeStructure t)
205        throws DimensionMismatchException {
206
207        final double u = is * (t.getValue() - mean);
208        double[] f = new double[t.getOrder() + 1];
209
210        // the nth order derivative of the Gaussian has the form:
211        // dn(g(x)/dxn = (norm / s^n) P_n(u) exp(-u^2/2) with u=(x-m)/s
212        // where P_n(u) is a degree n polynomial with same parity as n
213        // P_0(u) = 1, P_1(u) = -u, P_2(u) = u^2 - 1, P_3(u) = -u^3 + 3 u...
214        // the general recurrence relation for P_n is:
215        // P_n(u) = P_(n-1)'(u) - u P_(n-1)(u)
216        // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array
217        final double[] p = new double[f.length];
218        p[0] = 1;
219        final double u2 = u * u;
220        double coeff = norm * JdkMath.exp(-0.5 * u2);
221        if (coeff <= Precision.SAFE_MIN) {
222            Arrays.fill(f, 0.0);
223        } else {
224            f[0] = coeff;
225            for (int n = 1; n < f.length; ++n) {
226
227                // update and evaluate polynomial P_n(x)
228                double v = 0;
229                p[n] = -p[n - 1];
230                for (int k = n; k >= 0; k -= 2) {
231                    v = v * u2 + p[k];
232                    if (k > 2) {
233                        p[k - 2] = (k - 1) * p[k - 1] - p[k - 3];
234                    } else if (k == 2) {
235                        p[0] = p[1];
236                    }
237                }
238                if ((n & 0x1) == 1) {
239                    v *= u;
240                }
241
242                coeff *= is;
243                f[n] = coeff * v;
244            }
245        }
246
247        return t.compose(f);
248    }
249}