001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math4.legacy.fitting.leastsquares; 018 019import org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresProblem.Evaluation; 020import org.apache.commons.math4.legacy.linear.ArrayRealVector; 021import org.apache.commons.math4.legacy.linear.DecompositionSolver; 022import org.apache.commons.math4.legacy.linear.QRDecomposition; 023import org.apache.commons.math4.legacy.linear.RealMatrix; 024import org.apache.commons.math4.legacy.linear.RealVector; 025import org.apache.commons.math4.core.jdkmath.JdkMath; 026 027/** 028 * An implementation of {@link Evaluation} that is designed for extension. All of the 029 * methods implemented here use the methods that are left unimplemented. 030 * <p> 031 * TODO cache results? 032 * 033 * @since 3.3 034 */ 035public abstract class AbstractEvaluation implements Evaluation { 036 037 /** number of observations. */ 038 private final int observationSize; 039 040 /** 041 * Constructor. 042 * 043 * @param observationSize the number of observations. 044 * Needed for {@link #getRMS()} and {@link #getReducedChiSquare(int)}. 045 */ 046 AbstractEvaluation(final int observationSize) { 047 this.observationSize = observationSize; 048 } 049 050 /** {@inheritDoc} */ 051 @Override 052 public RealMatrix getCovariances(double threshold) { 053 // Set up the Jacobian. 054 final RealMatrix j = this.getJacobian(); 055 056 // Compute transpose(J)J. 057 final RealMatrix jTj = j.transpose().multiply(j); 058 059 // Compute the covariances matrix. 060 final DecompositionSolver solver 061 = new QRDecomposition(jTj, threshold).getSolver(); 062 return solver.getInverse(); 063 } 064 065 /** {@inheritDoc} */ 066 @Override 067 public RealVector getSigma(double covarianceSingularityThreshold) { 068 final RealMatrix cov = this.getCovariances(covarianceSingularityThreshold); 069 final int nC = cov.getColumnDimension(); 070 final RealVector sig = new ArrayRealVector(nC); 071 for (int i = 0; i < nC; ++i) { 072 sig.setEntry(i, JdkMath.sqrt(cov.getEntry(i,i))); 073 } 074 return sig; 075 } 076 077 /** {@inheritDoc} */ 078 @Override 079 public double getRMS() { 080 return JdkMath.sqrt(getReducedChiSquare(1)); 081 } 082 083 /** {@inheritDoc} */ 084 @Override 085 public double getCost() { 086 return JdkMath.sqrt(getChiSquare()); 087 } 088 089 /** {@inheritDoc} */ 090 @Override 091 public double getChiSquare() { 092 final ArrayRealVector r = new ArrayRealVector(getResiduals()); 093 return r.dotProduct(r); 094 } 095 096 /** {@inheritDoc} */ 097 @Override 098 public double getReducedChiSquare(int numberOfFittedParameters) { 099 return getChiSquare() / (observationSize - numberOfFittedParameters + 1); 100 } 101}