001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017
018package org.apache.commons.math4.legacy.ode.nonstiff;
019
020import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
021import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
022import org.apache.commons.math4.legacy.exception.NoBracketingException;
023import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
024import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
025import org.apache.commons.math4.legacy.ode.AbstractIntegrator;
026import org.apache.commons.math4.legacy.ode.ExpandableStatefulODE;
027import org.apache.commons.math4.core.jdkmath.JdkMath;
028
029/**
030 * This abstract class holds the common part of all adaptive
031 * stepsize integrators for Ordinary Differential Equations.
032 *
033 * <p>These algorithms perform integration with stepsize control, which
034 * means the user does not specify the integration step but rather a
035 * tolerance on error. The error threshold is computed as
036 * <pre>
037 * threshold_i = absTol_i + relTol_i * max (abs (ym), abs (ym+1))
038 * </pre>
039 * where absTol_i is the absolute tolerance for component i of the
040 * state vector and relTol_i is the relative tolerance for the same
041 * component. The user can also use only two scalar values absTol and
042 * relTol which will be used for all components.
043 *
044 * <p>
045 * If the Ordinary Differential Equations is an {@link ExpandableStatefulODE
046 * extended ODE} rather than a {@link
047 * org.apache.commons.math4.legacy.ode.FirstOrderDifferentialEquations basic ODE}, then
048 * <em>only</em> the {@link ExpandableStatefulODE#getPrimaryState() primary part}
049 * of the state vector is used for stepsize control, not the complete state vector.
050 * </p>
051 *
052 * <p>If the estimated error for ym+1 is such that
053 * <pre>
054 * sqrt((sum (errEst_i / threshold_i)^2 ) / n) &lt; 1
055 * </pre>
056 *
057 * (where n is the main set dimension) then the step is accepted,
058 * otherwise the step is rejected and a new attempt is made with a new
059 * stepsize.
060 *
061 * @since 1.2
062 *
063 */
064
065public abstract class AdaptiveStepsizeIntegrator
066  extends AbstractIntegrator {
067
068    /** Allowed absolute scalar error. */
069    protected double scalAbsoluteTolerance;
070
071    /** Allowed relative scalar error. */
072    protected double scalRelativeTolerance;
073
074    /** Allowed absolute vectorial error. */
075    protected double[] vecAbsoluteTolerance;
076
077    /** Allowed relative vectorial error. */
078    protected double[] vecRelativeTolerance;
079
080    /** Main set dimension. */
081    protected int mainSetDimension;
082
083    /** User supplied initial step. */
084    private double initialStep;
085
086    /** Minimal step. */
087    private double minStep;
088
089    /** Maximal step. */
090    private double maxStep;
091
092  /** Build an integrator with the given stepsize bounds.
093   * The default step handler does nothing.
094   * @param name name of the method
095   * @param minStep minimal step (sign is irrelevant, regardless of
096   * integration direction, forward or backward), the last step can
097   * be smaller than this
098   * @param maxStep maximal step (sign is irrelevant, regardless of
099   * integration direction, forward or backward), the last step can
100   * be smaller than this
101   * @param scalAbsoluteTolerance allowed absolute error
102   * @param scalRelativeTolerance allowed relative error
103   */
104  public AdaptiveStepsizeIntegrator(final String name,
105                                    final double minStep, final double maxStep,
106                                    final double scalAbsoluteTolerance,
107                                    final double scalRelativeTolerance) {
108
109    super(name);
110    setStepSizeControl(minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance);
111    resetInternalState();
112  }
113
114  /** Build an integrator with the given stepsize bounds.
115   * The default step handler does nothing.
116   * @param name name of the method
117   * @param minStep minimal step (sign is irrelevant, regardless of
118   * integration direction, forward or backward), the last step can
119   * be smaller than this
120   * @param maxStep maximal step (sign is irrelevant, regardless of
121   * integration direction, forward or backward), the last step can
122   * be smaller than this
123   * @param vecAbsoluteTolerance allowed absolute error
124   * @param vecRelativeTolerance allowed relative error
125   */
126  public AdaptiveStepsizeIntegrator(final String name,
127                                    final double minStep, final double maxStep,
128                                    final double[] vecAbsoluteTolerance,
129                                    final double[] vecRelativeTolerance) {
130
131    super(name);
132    setStepSizeControl(minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
133    resetInternalState();
134  }
135
136  /** Set the adaptive step size control parameters.
137   * <p>
138   * A side effect of this method is to also reset the initial
139   * step so it will be automatically computed by the integrator
140   * if {@link #setInitialStepSize(double) setInitialStepSize}
141   * is not called by the user.
142   * </p>
143   * @param minimalStep minimal step (must be positive even for backward
144   * integration), the last step can be smaller than this
145   * @param maximalStep maximal step (must be positive even for backward
146   * integration)
147   * @param absoluteTolerance allowed absolute error
148   * @param relativeTolerance allowed relative error
149   */
150  public void setStepSizeControl(final double minimalStep, final double maximalStep,
151                                 final double absoluteTolerance,
152                                 final double relativeTolerance) {
153
154      minStep     = JdkMath.abs(minimalStep);
155      maxStep     = JdkMath.abs(maximalStep);
156      initialStep = -1;
157
158      scalAbsoluteTolerance = absoluteTolerance;
159      scalRelativeTolerance = relativeTolerance;
160      vecAbsoluteTolerance  = null;
161      vecRelativeTolerance  = null;
162  }
163
164  /** Set the adaptive step size control parameters.
165   * <p>
166   * A side effect of this method is to also reset the initial
167   * step so it will be automatically computed by the integrator
168   * if {@link #setInitialStepSize(double) setInitialStepSize}
169   * is not called by the user.
170   * </p>
171   * @param minimalStep minimal step (must be positive even for backward
172   * integration), the last step can be smaller than this
173   * @param maximalStep maximal step (must be positive even for backward
174   * integration)
175   * @param absoluteTolerance allowed absolute error
176   * @param relativeTolerance allowed relative error
177   */
178  public void setStepSizeControl(final double minimalStep, final double maximalStep,
179                                 final double[] absoluteTolerance,
180                                 final double[] relativeTolerance) {
181
182      minStep     = JdkMath.abs(minimalStep);
183      maxStep     = JdkMath.abs(maximalStep);
184      initialStep = -1;
185
186      scalAbsoluteTolerance = 0;
187      scalRelativeTolerance = 0;
188      vecAbsoluteTolerance  = absoluteTolerance.clone();
189      vecRelativeTolerance  = relativeTolerance.clone();
190  }
191
192  /** Set the initial step size.
193   * <p>This method allows the user to specify an initial positive
194   * step size instead of letting the integrator guess it by
195   * itself. If this method is not called before integration is
196   * started, the initial step size will be estimated by the
197   * integrator.</p>
198   * @param initialStepSize initial step size to use (must be positive even
199   * for backward integration ; providing a negative value or a value
200   * outside of the min/max step interval will lead the integrator to
201   * ignore the value and compute the initial step size by itself)
202   */
203  public void setInitialStepSize(final double initialStepSize) {
204    if (initialStepSize < minStep || initialStepSize > maxStep) {
205      initialStep = -1.0;
206    } else {
207      initialStep = initialStepSize;
208    }
209  }
210
211  /** {@inheritDoc} */
212  @Override
213  protected void sanityChecks(final ExpandableStatefulODE equations, final double t)
214      throws DimensionMismatchException, NumberIsTooSmallException {
215
216      super.sanityChecks(equations, t);
217
218      mainSetDimension = equations.getPrimaryMapper().getDimension();
219
220      if (vecAbsoluteTolerance != null && vecAbsoluteTolerance.length != mainSetDimension) {
221          throw new DimensionMismatchException(mainSetDimension, vecAbsoluteTolerance.length);
222      }
223
224      if (vecRelativeTolerance != null && vecRelativeTolerance.length != mainSetDimension) {
225          throw new DimensionMismatchException(mainSetDimension, vecRelativeTolerance.length);
226      }
227  }
228
229  /** Initialize the integration step.
230   * @param forward forward integration indicator
231   * @param order order of the method
232   * @param scale scaling vector for the state vector (can be shorter than state vector)
233   * @param t0 start time
234   * @param y0 state vector at t0
235   * @param yDot0 first time derivative of y0
236   * @param y1 work array for a state vector
237   * @param yDot1 work array for the first time derivative of y1
238   * @return first integration step
239   * @exception MaxCountExceededException if the number of functions evaluations is exceeded
240   * @exception DimensionMismatchException if arrays dimensions do not match equations settings
241   */
242  public double initializeStep(final boolean forward, final int order, final double[] scale,
243                               final double t0, final double[] y0, final double[] yDot0,
244                               final double[] y1, final double[] yDot1)
245      throws MaxCountExceededException, DimensionMismatchException {
246
247    if (initialStep > 0) {
248      // use the user provided value
249      return forward ? initialStep : -initialStep;
250    }
251
252    // very rough first guess : h = 0.01 * ||y/scale|| / ||y'/scale||
253    // this guess will be used to perform an Euler step
254    double ratio;
255    double yOnScale2 = 0;
256    double yDotOnScale2 = 0;
257    for (int j = 0; j < scale.length; ++j) {
258      ratio         = y0[j] / scale[j];
259      yOnScale2    += ratio * ratio;
260      ratio         = yDot0[j] / scale[j];
261      yDotOnScale2 += ratio * ratio;
262    }
263
264    double h = (yOnScale2 < 1.0e-10 || yDotOnScale2 < 1.0e-10) ?
265               1.0e-6 : (0.01 * JdkMath.sqrt(yOnScale2 / yDotOnScale2));
266    if (! forward) {
267      h = -h;
268    }
269
270    // perform an Euler step using the preceding rough guess
271    for (int j = 0; j < y0.length; ++j) {
272      y1[j] = y0[j] + h * yDot0[j];
273    }
274    computeDerivatives(t0 + h, y1, yDot1);
275
276    // estimate the second derivative of the solution
277    double yDDotOnScale = 0;
278    for (int j = 0; j < scale.length; ++j) {
279      ratio         = (yDot1[j] - yDot0[j]) / scale[j];
280      yDDotOnScale += ratio * ratio;
281    }
282    yDDotOnScale = JdkMath.sqrt(yDDotOnScale) / h;
283
284    // step size is computed such that
285    // h^order * max (||y'/tol||, ||y''/tol||) = 0.01
286    final double maxInv2 = JdkMath.max(JdkMath.sqrt(yDotOnScale2), yDDotOnScale);
287    final double h1 = (maxInv2 < 1.0e-15) ?
288                      JdkMath.max(1.0e-6, 0.001 * JdkMath.abs(h)) :
289                      JdkMath.pow(0.01 / maxInv2, 1.0 / order);
290    h = JdkMath.min(100.0 * JdkMath.abs(h), h1);
291    h = JdkMath.max(h, 1.0e-12 * JdkMath.abs(t0));  // avoids cancellation when computing t1 - t0
292    if (h < getMinStep()) {
293      h = getMinStep();
294    }
295    if (h > getMaxStep()) {
296      h = getMaxStep();
297    }
298    if (! forward) {
299      h = -h;
300    }
301
302    return h;
303  }
304
305  /** Filter the integration step.
306   * @param h signed step
307   * @param forward forward integration indicator
308   * @param acceptSmall if true, steps smaller than the minimal value
309   * are silently increased up to this value, if false such small
310   * steps generate an exception
311   * @return a bounded integration step (h if no bound is reach, or a bounded value)
312   * @exception NumberIsTooSmallException if the step is too small and acceptSmall is false
313   */
314  protected double filterStep(final double h, final boolean forward, final boolean acceptSmall)
315    throws NumberIsTooSmallException {
316
317      double filteredH = h;
318      if (JdkMath.abs(h) < minStep) {
319          if (acceptSmall) {
320              filteredH = forward ? minStep : -minStep;
321          } else {
322              throw new NumberIsTooSmallException(LocalizedFormats.MINIMAL_STEPSIZE_REACHED_DURING_INTEGRATION,
323                                                  JdkMath.abs(h), minStep, true);
324          }
325      }
326
327      if (filteredH > maxStep) {
328          filteredH = maxStep;
329      } else if (filteredH < -maxStep) {
330          filteredH = -maxStep;
331      }
332
333      return filteredH;
334  }
335
336  /** {@inheritDoc} */
337  @Override
338  public abstract void integrate (ExpandableStatefulODE equations, double t)
339      throws NumberIsTooSmallException, DimensionMismatchException,
340             MaxCountExceededException, NoBracketingException;
341
342  /** {@inheritDoc} */
343  @Override
344  public double getCurrentStepStart() {
345    return stepStart;
346  }
347
348  /** Reset internal state to dummy values. */
349  protected void resetInternalState() {
350    stepStart = Double.NaN;
351    stepSize  = JdkMath.sqrt(minStep * maxStep);
352  }
353
354  /** Get the minimal step.
355   * @return minimal step
356   */
357  public double getMinStep() {
358    return minStep;
359  }
360
361  /** Get the maximal step.
362   * @return maximal step
363   */
364  public double getMaxStep() {
365    return maxStep;
366  }
367}