001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math4.legacy.optim.linear; 018 019import java.util.ArrayList; 020import java.util.List; 021 022import org.apache.commons.math4.legacy.exception.TooManyIterationsException; 023import org.apache.commons.math4.legacy.optim.OptimizationData; 024import org.apache.commons.math4.legacy.optim.PointValuePair; 025import org.apache.commons.math4.core.jdkmath.JdkMath; 026import org.apache.commons.numbers.core.Precision; 027 028/** 029 * Solves a linear problem using the "Two-Phase Simplex" method. 030 * <p> 031 * The {@link SimplexSolver} supports the following {@link OptimizationData} data provided 032 * as arguments to {@link #optimize(OptimizationData...)}: 033 * <ul> 034 * <li>objective function: {@link LinearObjectiveFunction} - mandatory</li> 035 * <li>linear constraints {@link LinearConstraintSet} - mandatory</li> 036 * <li>type of optimization: {@link org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType GoalType} 037 * - optional, default: {@link org.apache.commons.math4.legacy.optim.nonlinear.scalar.GoalType#MINIMIZE MINIMIZE}</li> 038 * <li>whether to allow negative values as solution: {@link NonNegativeConstraint} - optional, default: true</li> 039 * <li>pivot selection rule: {@link PivotSelectionRule} - optional, default {@link PivotSelectionRule#DANTZIG}</li> 040 * <li>callback for the best solution: {@link SolutionCallback} - optional</li> 041 * <li>maximum number of iterations: {@link org.apache.commons.math4.legacy.optim.MaxIter} - optional, default: {@link Integer#MAX_VALUE}</li> 042 * </ul> 043 * <p> 044 * <b>Note:</b> Depending on the problem definition, the default convergence criteria 045 * may be too strict, resulting in {@link NoFeasibleSolutionException} or 046 * {@link TooManyIterationsException}. In such a case it is advised to adjust these 047 * criteria with more appropriate values, e.g. relaxing the epsilon value. 048 * <p> 049 * Default convergence criteria: 050 * <ul> 051 * <li>Algorithm convergence: 1e-6</li> 052 * <li>Floating-point comparisons: 10 ulp</li> 053 * <li>Cut-Off value: 1e-10</li> 054 * </ul> 055 * <p> 056 * The cut-off value has been introduced to handle the case of very small pivot elements 057 * in the Simplex tableau, as these may lead to numerical instabilities and degeneracy. 058 * Potential pivot elements smaller than this value will be treated as if they were zero 059 * and are thus not considered by the pivot selection mechanism. The default value is safe 060 * for many problems, but may need to be adjusted in case of very small coefficients 061 * used in either the {@link LinearConstraint} or {@link LinearObjectiveFunction}. 062 * 063 * @since 2.0 064 */ 065public class SimplexSolver extends LinearOptimizer { 066 /** Default amount of error to accept in floating point comparisons (as ulps). */ 067 static final int DEFAULT_ULPS = 10; 068 069 /** Default cut-off value. */ 070 static final double DEFAULT_CUT_OFF = 1e-10; 071 072 /** Default amount of error to accept for algorithm convergence. */ 073 private static final double DEFAULT_EPSILON = 1.0e-6; 074 075 /** Amount of error to accept for algorithm convergence. */ 076 private final double epsilon; 077 078 /** Amount of error to accept in floating point comparisons (as ulps). */ 079 private final int maxUlps; 080 081 /** 082 * Cut-off value for entries in the tableau: values smaller than the cut-off 083 * are treated as zero to improve numerical stability. 084 */ 085 private final double cutOff; 086 087 /** The pivot selection method to use. */ 088 private PivotSelectionRule pivotSelection; 089 090 /** 091 * The solution callback to access the best solution found so far in case 092 * the optimizer fails to find an optimal solution within the iteration limits. 093 */ 094 private SolutionCallback solutionCallback; 095 096 /** 097 * Builds a simplex solver with default settings. 098 */ 099 public SimplexSolver() { 100 this(DEFAULT_EPSILON, DEFAULT_ULPS, DEFAULT_CUT_OFF); 101 } 102 103 /** 104 * Builds a simplex solver with a specified accepted amount of error. 105 * 106 * @param epsilon Amount of error to accept for algorithm convergence. 107 */ 108 public SimplexSolver(final double epsilon) { 109 this(epsilon, DEFAULT_ULPS, DEFAULT_CUT_OFF); 110 } 111 112 /** 113 * Builds a simplex solver with a specified accepted amount of error. 114 * 115 * @param epsilon Amount of error to accept for algorithm convergence. 116 * @param maxUlps Amount of error to accept in floating point comparisons. 117 */ 118 public SimplexSolver(final double epsilon, final int maxUlps) { 119 this(epsilon, maxUlps, DEFAULT_CUT_OFF); 120 } 121 122 /** 123 * Builds a simplex solver with a specified accepted amount of error. 124 * 125 * @param epsilon Amount of error to accept for algorithm convergence. 126 * @param maxUlps Amount of error to accept in floating point comparisons. 127 * @param cutOff Values smaller than the cutOff are treated as zero. 128 */ 129 public SimplexSolver(final double epsilon, final int maxUlps, final double cutOff) { 130 this.epsilon = epsilon; 131 this.maxUlps = maxUlps; 132 this.cutOff = cutOff; 133 this.pivotSelection = PivotSelectionRule.DANTZIG; 134 } 135 136 /** 137 * {@inheritDoc} 138 * 139 * @param optData Optimization data. In addition to those documented in 140 * {@link LinearOptimizer#optimize(OptimizationData...) 141 * LinearOptimizer}, this method will register the following data: 142 * <ul> 143 * <li>{@link SolutionCallback}</li> 144 * <li>{@link PivotSelectionRule}</li> 145 * </ul> 146 * 147 * @return {@inheritDoc} 148 * @throws TooManyIterationsException if the maximal number of iterations is exceeded. 149 * @throws org.apache.commons.math4.legacy.exception.DimensionMismatchException if the dimension 150 * of the constraints does not match the dimension of the objective function 151 */ 152 @Override 153 public PointValuePair optimize(OptimizationData... optData) 154 throws TooManyIterationsException { 155 // Set up base class and perform computation. 156 return super.optimize(optData); 157 } 158 159 /** 160 * {@inheritDoc} 161 * 162 * @param optData Optimization data. 163 * In addition to those documented in 164 * {@link LinearOptimizer#parseOptimizationData(OptimizationData[]) 165 * LinearOptimizer}, this method will register the following data: 166 * <ul> 167 * <li>{@link SolutionCallback}</li> 168 * <li>{@link PivotSelectionRule}</li> 169 * </ul> 170 */ 171 @Override 172 protected void parseOptimizationData(OptimizationData... optData) { 173 // Allow base class to register its own data. 174 super.parseOptimizationData(optData); 175 176 // reset the callback before parsing 177 solutionCallback = null; 178 179 for (OptimizationData data : optData) { 180 if (data instanceof SolutionCallback) { 181 solutionCallback = (SolutionCallback) data; 182 continue; 183 } 184 if (data instanceof PivotSelectionRule) { 185 pivotSelection = (PivotSelectionRule) data; 186 continue; 187 } 188 } 189 } 190 191 /** 192 * Returns the column with the most negative coefficient in the objective function row. 193 * 194 * @param tableau Simple tableau for the problem. 195 * @return the column with the most negative coefficient. 196 */ 197 private Integer getPivotColumn(SimplexTableau tableau) { 198 double minValue = 0; 199 Integer minPos = null; 200 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getWidth() - 1; i++) { 201 final double entry = tableau.getEntry(0, i); 202 // check if the entry is strictly smaller than the current minimum 203 // do not use a ulp/epsilon check 204 if (entry < minValue) { 205 minValue = entry; 206 minPos = i; 207 208 // Bland's rule: chose the entering column with the lowest index 209 if (pivotSelection == PivotSelectionRule.BLAND && isValidPivotColumn(tableau, i)) { 210 break; 211 } 212 } 213 } 214 return minPos; 215 } 216 217 /** 218 * Checks whether the given column is valid pivot column, i.e. will result 219 * in a valid pivot row. 220 * <p> 221 * When applying Bland's rule to select the pivot column, it may happen that 222 * there is no corresponding pivot row. This method will check if the selected 223 * pivot column will return a valid pivot row. 224 * 225 * @param tableau simplex tableau for the problem 226 * @param col the column to test 227 * @return {@code true} if the pivot column is valid, {@code false} otherwise 228 */ 229 private boolean isValidPivotColumn(SimplexTableau tableau, int col) { 230 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) { 231 final double entry = tableau.getEntry(i, col); 232 233 // do the same check as in getPivotRow 234 if (Precision.compareTo(entry, 0d, cutOff) > 0) { 235 return true; 236 } 237 } 238 return false; 239 } 240 241 /** 242 * Returns the row with the minimum ratio as given by the minimum ratio test (MRT). 243 * 244 * @param tableau Simplex tableau for the problem. 245 * @param col Column to test the ratio of (see {@link #getPivotColumn(SimplexTableau)}). 246 * @return the row with the minimum ratio. 247 */ 248 private Integer getPivotRow(SimplexTableau tableau, final int col) { 249 // create a list of all the rows that tie for the lowest score in the minimum ratio test 250 List<Integer> minRatioPositions = new ArrayList<>(); 251 double minRatio = Double.MAX_VALUE; 252 for (int i = tableau.getNumObjectiveFunctions(); i < tableau.getHeight(); i++) { 253 final double rhs = tableau.getEntry(i, tableau.getWidth() - 1); 254 final double entry = tableau.getEntry(i, col); 255 256 // only consider pivot elements larger than the cutOff threshold 257 // selecting others may lead to degeneracy or numerical instabilities 258 if (Precision.compareTo(entry, 0d, cutOff) > 0) { 259 final double ratio = JdkMath.abs(rhs / entry); 260 // check if the entry is strictly equal to the current min ratio 261 // do not use a ulp/epsilon check 262 final int cmp = Double.compare(ratio, minRatio); 263 if (cmp == 0) { 264 minRatioPositions.add(i); 265 } else if (cmp < 0) { 266 minRatio = ratio; 267 minRatioPositions.clear(); 268 minRatioPositions.add(i); 269 } 270 } 271 } 272 273 if (minRatioPositions.isEmpty()) { 274 return null; 275 } else if (minRatioPositions.size() > 1) { 276 // there's a degeneracy as indicated by a tie in the minimum ratio test 277 278 // 1. check if there's an artificial variable that can be forced out of the basis 279 if (tableau.getNumArtificialVariables() > 0) { 280 for (Integer row : minRatioPositions) { 281 for (int i = 0; i < tableau.getNumArtificialVariables(); i++) { 282 int column = i + tableau.getArtificialVariableOffset(); 283 final double entry = tableau.getEntry(row, column); 284 if (Precision.equals(entry, 1d, maxUlps) && row.equals(tableau.getBasicRow(column))) { 285 return row; 286 } 287 } 288 } 289 } 290 291 // 2. apply Bland's rule to prevent cycling: 292 // take the row for which the corresponding basic variable has the smallest index 293 // 294 // see http://www.stanford.edu/class/msande310/blandrule.pdf 295 // see http://en.wikipedia.org/wiki/Bland%27s_rule (not equivalent to the above paper) 296 297 Integer minRow = null; 298 int minIndex = tableau.getWidth(); 299 for (Integer row : minRatioPositions) { 300 final int basicVar = tableau.getBasicVariable(row); 301 if (basicVar < minIndex) { 302 minIndex = basicVar; 303 minRow = row; 304 } 305 } 306 return minRow; 307 } 308 return minRatioPositions.get(0); 309 } 310 311 /** 312 * Runs one iteration of the Simplex method on the given model. 313 * 314 * @param tableau Simple tableau for the problem. 315 * @throws TooManyIterationsException if the allowed number of iterations has been exhausted. 316 * @throws UnboundedSolutionException if the model is found not to have a bounded solution. 317 */ 318 protected void doIteration(final SimplexTableau tableau) 319 throws TooManyIterationsException, 320 UnboundedSolutionException { 321 322 incrementIterationCount(); 323 324 Integer pivotCol = getPivotColumn(tableau); 325 Integer pivotRow = getPivotRow(tableau, pivotCol); 326 if (pivotRow == null) { 327 throw new UnboundedSolutionException(); 328 } 329 330 tableau.performRowOperations(pivotCol, pivotRow); 331 } 332 333 /** 334 * Solves Phase 1 of the Simplex method. 335 * 336 * @param tableau Simple tableau for the problem. 337 * @throws TooManyIterationsException if the allowed number of iterations has been exhausted. 338 * @throws UnboundedSolutionException if the model is found not to have a bounded solution. 339 * @throws NoFeasibleSolutionException if there is no feasible solution? 340 */ 341 protected void solvePhase1(final SimplexTableau tableau) 342 throws TooManyIterationsException, 343 UnboundedSolutionException, 344 NoFeasibleSolutionException { 345 346 // make sure we're in Phase 1 347 if (tableau.getNumArtificialVariables() == 0) { 348 return; 349 } 350 351 while (!tableau.isOptimal()) { 352 doIteration(tableau); 353 } 354 355 // if W is not zero then we have no feasible solution 356 if (!Precision.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0d, epsilon)) { 357 throw new NoFeasibleSolutionException(); 358 } 359 } 360 361 /** {@inheritDoc} */ 362 @Override 363 public PointValuePair doOptimize() 364 throws TooManyIterationsException, 365 UnboundedSolutionException, 366 NoFeasibleSolutionException { 367 368 // reset the tableau to indicate a non-feasible solution in case 369 // we do not pass phase 1 successfully 370 if (solutionCallback != null) { 371 solutionCallback.setTableau(null); 372 } 373 374 final SimplexTableau tableau = 375 new SimplexTableau(getFunction(), 376 getConstraints(), 377 getGoalType(), 378 isRestrictedToNonNegative(), 379 epsilon, 380 maxUlps); 381 382 solvePhase1(tableau); 383 tableau.dropPhase1Objective(); 384 385 // after phase 1, we are sure to have a feasible solution 386 if (solutionCallback != null) { 387 solutionCallback.setTableau(tableau); 388 } 389 390 while (!tableau.isOptimal()) { 391 doIteration(tableau); 392 } 393 394 // check that the solution respects the nonNegative restriction in case 395 // the epsilon/cutOff values are too large for the actual linear problem 396 // (e.g. with very small constraint coefficients), the solver might actually 397 // find a non-valid solution (with negative coefficients). 398 final PointValuePair solution = tableau.getSolution(); 399 if (isRestrictedToNonNegative()) { 400 final double[] coeff = solution.getPoint(); 401 for (int i = 0; i < coeff.length; i++) { 402 if (Precision.compareTo(coeff[i], 0, epsilon) < 0) { 403 throw new NoFeasibleSolutionException(); 404 } 405 } 406 } 407 return solution; 408 } 409}