001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017package org.apache.commons.math4.legacy.stat.regression; 018 019/** 020 * The multiple linear regression can be represented in matrix-notation. 021 * <pre> 022 * y=X*b+u 023 * </pre> 024 * where y is an <code>n-vector</code> <b>regressand</b>, X is a <code>[n,k]</code> matrix whose <code>k</code> columns are called 025 * <b>regressors</b>, b is <code>k-vector</code> of <b>regression parameters</b> and <code>u</code> is an <code>n-vector</code> 026 * of <b>error terms</b> or <b>residuals</b>. 027 * 028 * The notation is quite standard in literature, 029 * cf eg <a href="http://www.econ.queensu.ca/ETM">Davidson and MacKinnon, Econometrics Theory and Methods, 2004</a>. 030 * @since 2.0 031 */ 032public interface MultipleLinearRegression { 033 034 /** 035 * Estimates the regression parameters b. 036 * 037 * @return The [k,1] array representing b 038 */ 039 double[] estimateRegressionParameters(); 040 041 /** 042 * Estimates the variance of the regression parameters, ie Var(b). 043 * 044 * @return The [k,k] array representing the variance of b 045 */ 046 double[][] estimateRegressionParametersVariance(); 047 048 /** 049 * Estimates the residuals, ie u = y - X*b. 050 * 051 * @return The [n,1] array representing the residuals 052 */ 053 double[] estimateResiduals(); 054 055 /** 056 * Returns the variance of the regressand, ie Var(y). 057 * 058 * @return The double representing the variance of y 059 */ 060 double estimateRegressandVariance(); 061 062 /** 063 * Returns the standard errors of the regression parameters. 064 * 065 * @return standard errors of estimated regression parameters 066 */ 067 double[] estimateRegressionParametersStandardErrors(); 068}