001/* 002 * Licensed to the Apache Software Foundation (ASF) under one or more 003 * contributor license agreements. See the NOTICE file distributed with 004 * this work for additional information regarding copyright ownership. 005 * The ASF licenses this file to You under the Apache License, Version 2.0 006 * (the "License"); you may not use this file except in compliance with 007 * the License. You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 */ 017 018package org.apache.commons.math4.neuralnet.twod.util; 019 020import java.util.List; 021import org.apache.commons.math4.neuralnet.internal.NeuralNetException; 022import org.apache.commons.math4.neuralnet.DistanceMeasure; 023import org.apache.commons.math4.neuralnet.MapRanking; 024import org.apache.commons.math4.neuralnet.Neuron; 025import org.apache.commons.math4.neuralnet.twod.NeuronSquareMesh2D; 026 027/** 028 * Visualization of high-dimensional data projection on a 2D-map. 029 * The method is described in 030 * <blockquote> 031 * <em>Using Smoothed Data Histograms for Cluster Visualization in Self-Organizing Maps</em> 032 * <br> 033 * by Elias Pampalk, Andreas Rauber and Dieter Merkl. 034 * </blockquote> 035 * @since 3.6 036 */ 037public class SmoothedDataHistogram implements MapDataVisualization { 038 /** Smoothing parameter. */ 039 private final int smoothingBins; 040 /** Distance. */ 041 private final DistanceMeasure distance; 042 /** Normalization factor. */ 043 private final double membershipNormalization; 044 045 /** 046 * @param smoothingBins Number of bins. 047 * @param distance Distance. 048 */ 049 public SmoothedDataHistogram(int smoothingBins, 050 DistanceMeasure distance) { 051 this.smoothingBins = smoothingBins; 052 this.distance = distance; 053 054 double sum = 0; 055 for (int i = 0; i < smoothingBins; i++) { 056 sum += smoothingBins - i; 057 } 058 059 this.membershipNormalization = 1d / sum; 060 } 061 062 /** 063 * {@inheritDoc} 064 * 065 * @throws IllegalArgumentException if the size of the {@code map} is 066 * smaller than the number of {@link #SmoothedDataHistogram(int,DistanceMeasure) 067 * smoothing bins}. 068 */ 069 @Override 070 public double[][] computeImage(NeuronSquareMesh2D map, 071 Iterable<double[]> data) { 072 final int nR = map.getNumberOfRows(); 073 final int nC = map.getNumberOfColumns(); 074 075 final int mapSize = nR * nC; 076 if (mapSize < smoothingBins) { 077 throw new NeuralNetException(NeuralNetException.TOO_SMALL, 078 mapSize, smoothingBins); 079 } 080 081 final LocationFinder finder = new LocationFinder(map); 082 final MapRanking rank = new MapRanking(map.getNetwork(), distance); 083 084 // Histogram bins. 085 final double[][] histo = new double[nR][nC]; 086 087 for (final double[] sample : data) { 088 final List<Neuron> sorted = rank.rank(sample); 089 for (int i = 0; i < smoothingBins; i++) { 090 final LocationFinder.Location loc = finder.getLocation(sorted.get(i)); 091 final int row = loc.getRow(); 092 final int col = loc.getColumn(); 093 histo[row][col] += (smoothingBins - i) * membershipNormalization; 094 } 095 } 096 097 return histo; 098 } 099}