GradientFunction.java

  1. /*
  2.  * Licensed to the Apache Software Foundation (ASF) under one or more
  3.  * contributor license agreements.  See the NOTICE file distributed with
  4.  * this work for additional information regarding copyright ownership.
  5.  * The ASF licenses this file to You under the Apache License, Version 2.0
  6.  * (the "License"); you may not use this file except in compliance with
  7.  * the License.  You may obtain a copy of the License at
  8.  *
  9.  *      http://www.apache.org/licenses/LICENSE-2.0
  10.  *
  11.  * Unless required by applicable law or agreed to in writing, software
  12.  * distributed under the License is distributed on an "AS IS" BASIS,
  13.  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14.  * See the License for the specific language governing permissions and
  15.  * limitations under the License.
  16.  */
  17. package org.apache.commons.math4.legacy.analysis.differentiation;

  18. import org.apache.commons.math4.legacy.analysis.MultivariateVectorFunction;

  19. /** Class representing the gradient of a multivariate function.
  20.  * <p>
  21.  * The vectorial components of the function represent the derivatives
  22.  * with respect to each function parameters.
  23.  * </p>
  24.  * @since 3.1
  25.  */
  26. public class GradientFunction implements MultivariateVectorFunction {

  27.     /** Underlying real-valued function. */
  28.     private final MultivariateDifferentiableFunction f;

  29.     /** Simple constructor.
  30.      * @param f underlying real-valued function
  31.      */
  32.     public GradientFunction(final MultivariateDifferentiableFunction f) {
  33.         this.f = f;
  34.     }

  35.     /** {@inheritDoc} */
  36.     @Override
  37.     public double[] value(double[] point) {

  38.         // set up parameters
  39.         final DerivativeStructure[] dsX = new DerivativeStructure[point.length];
  40.         for (int i = 0; i < point.length; ++i) {
  41.             dsX[i] = new DerivativeStructure(point.length, 1, i, point[i]);
  42.         }

  43.         // compute the derivatives
  44.         final DerivativeStructure dsY = f.value(dsX);

  45.         // extract the gradient
  46.         final double[] y = new double[point.length];
  47.         final int[] orders = new int[point.length];
  48.         for (int i = 0; i < point.length; ++i) {
  49.             orders[i] = 1;
  50.             y[i] = dsY.getPartialDerivative(orders);
  51.             orders[i] = 0;
  52.         }

  53.         return y;
  54.     }
  55. }