SparseGradient.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.analysis.differentiation;
- import java.util.Collections;
- import java.util.HashMap;
- import java.util.Map;
- import org.apache.commons.numbers.core.Sum;
- import org.apache.commons.numbers.core.Precision;
- import org.apache.commons.math4.legacy.core.Field;
- import org.apache.commons.math4.legacy.core.FieldElement;
- import org.apache.commons.math4.legacy.core.RealFieldElement;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * First derivative computation with large number of variables.
- * <p>
- * This class plays a similar role to {@link DerivativeStructure}, with
- * a focus on efficiency when dealing with large number of independent variables
- * and most computation depend only on a few of them, and when only first derivative
- * is desired. When these conditions are met, this class should be much faster than
- * {@link DerivativeStructure} and use less memory.
- * </p>
- *
- * @since 3.3
- */
- public final class SparseGradient implements RealFieldElement<SparseGradient> {
- /** Value of the calculation. */
- private double value;
- /** Stored derivative, each key representing a different independent variable. */
- private final Map<Integer, Double> derivatives;
- /** Internal constructor.
- * @param value value of the function
- * @param derivatives derivatives map, a deep copy will be performed,
- * so the map given here will remain safe from changes in the new instance,
- * may be null to create an empty derivatives map, i.e. a constant value
- */
- private SparseGradient(final double value, final Map<Integer, Double> derivatives) {
- this.value = value;
- this.derivatives = new HashMap<>();
- if (derivatives != null) {
- this.derivatives.putAll(derivatives);
- }
- }
- /** Internal constructor.
- * @param value value of the function
- * @param scale scaling factor to apply to all derivatives
- * @param derivatives derivatives map, a deep copy will be performed,
- * so the map given here will remain safe from changes in the new instance,
- * may be null to create an empty derivatives map, i.e. a constant value
- */
- private SparseGradient(final double value, final double scale,
- final Map<Integer, Double> derivatives) {
- this.value = value;
- this.derivatives = new HashMap<>();
- if (derivatives != null) {
- for (final Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
- this.derivatives.put(entry.getKey(), scale * entry.getValue());
- }
- }
- }
- /** Factory method creating a constant.
- * @param value value of the constant
- * @return a new instance
- */
- public static SparseGradient createConstant(final double value) {
- return new SparseGradient(value, Collections.<Integer, Double>emptyMap());
- }
- /** Factory method creating an independent variable.
- * @param idx index of the variable
- * @param value value of the variable
- * @return a new instance
- */
- public static SparseGradient createVariable(final int idx, final double value) {
- return new SparseGradient(value, Collections.singletonMap(idx, 1.0));
- }
- /**
- * Find the number of variables.
- * @return number of variables
- */
- public int numVars() {
- return derivatives.size();
- }
- /**
- * Get the derivative with respect to a particular index variable.
- *
- * @param index index to differentiate with.
- * @return derivative with respect to a particular index variable
- */
- public double getDerivative(final int index) {
- final Double out = derivatives.get(index);
- return (out == null) ? 0.0 : out;
- }
- /**
- * Get the value of the function.
- * @return value of the function.
- */
- public double getValue() {
- return value;
- }
- /** {@inheritDoc} */
- @Override
- public double getReal() {
- return value;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient add(final SparseGradient a) {
- final SparseGradient out = new SparseGradient(value + a.value, derivatives);
- for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
- final int id = entry.getKey();
- final Double old = out.derivatives.get(id);
- if (old == null) {
- out.derivatives.put(id, entry.getValue());
- } else {
- out.derivatives.put(id, old + entry.getValue());
- }
- }
- return out;
- }
- /**
- * Add in place.
- * <p>
- * This method is designed to be faster when used multiple times in a loop.
- * </p>
- * <p>
- * The instance is changed here, in order to not change the
- * instance the {@link #add(SparseGradient)} method should
- * be used.
- * </p>
- * @param a instance to add
- */
- public void addInPlace(final SparseGradient a) {
- value += a.value;
- for (final Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
- final int id = entry.getKey();
- final Double old = derivatives.get(id);
- if (old == null) {
- derivatives.put(id, entry.getValue());
- } else {
- derivatives.put(id, old + entry.getValue());
- }
- }
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient add(final double c) {
- return new SparseGradient(value + c, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient subtract(final SparseGradient a) {
- final SparseGradient out = new SparseGradient(value - a.value, derivatives);
- for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
- final int id = entry.getKey();
- final Double old = out.derivatives.get(id);
- if (old == null) {
- out.derivatives.put(id, -entry.getValue());
- } else {
- out.derivatives.put(id, old - entry.getValue());
- }
- }
- return out;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient subtract(double c) {
- return new SparseGradient(value - c, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient multiply(final SparseGradient a) {
- final SparseGradient out =
- new SparseGradient(value * a.value, Collections.<Integer, Double>emptyMap());
- // Derivatives.
- for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
- out.derivatives.put(entry.getKey(), a.value * entry.getValue());
- }
- for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
- final int id = entry.getKey();
- final Double old = out.derivatives.get(id);
- if (old == null) {
- out.derivatives.put(id, value * entry.getValue());
- } else {
- out.derivatives.put(id, old + value * entry.getValue());
- }
- }
- return out;
- }
- /**
- * Multiply in place.
- * <p>
- * This method is designed to be faster when used multiple times in a loop.
- * </p>
- * <p>
- * The instance is changed here, in order to not change the
- * instance the {@link #add(SparseGradient)} method should
- * be used.
- * </p>
- * @param a instance to multiply
- */
- public void multiplyInPlace(final SparseGradient a) {
- // Derivatives.
- for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
- derivatives.put(entry.getKey(), a.value * entry.getValue());
- }
- for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
- final int id = entry.getKey();
- final Double old = derivatives.get(id);
- if (old == null) {
- derivatives.put(id, value * entry.getValue());
- } else {
- derivatives.put(id, old + value * entry.getValue());
- }
- }
- value *= a.value;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient multiply(final double c) {
- return new SparseGradient(value * c, c, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient multiply(final int n) {
- return new SparseGradient(value * n, n, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient divide(final SparseGradient a) {
- final SparseGradient out = new SparseGradient(value / a.value, Collections.<Integer, Double>emptyMap());
- // Derivatives.
- for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
- out.derivatives.put(entry.getKey(), entry.getValue() / a.value);
- }
- for (Map.Entry<Integer, Double> entry : a.derivatives.entrySet()) {
- final int id = entry.getKey();
- final Double old = out.derivatives.get(id);
- if (old == null) {
- out.derivatives.put(id, -out.value / a.value * entry.getValue());
- } else {
- out.derivatives.put(id, old - out.value / a.value * entry.getValue());
- }
- }
- return out;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient divide(final double c) {
- return new SparseGradient(value / c, 1.0 / c, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient negate() {
- return new SparseGradient(-value, -1.0, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public Field<SparseGradient> getField() {
- return new Field<SparseGradient>() {
- /** {@inheritDoc} */
- @Override
- public SparseGradient getZero() {
- return createConstant(0);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient getOne() {
- return createConstant(1);
- }
- /** {@inheritDoc} */
- @Override
- public Class<? extends FieldElement<SparseGradient>> getRuntimeClass() {
- return SparseGradient.class;
- }
- };
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient remainder(final double a) {
- return new SparseGradient(JdkMath.IEEEremainder(value, a), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient remainder(final SparseGradient a) {
- // compute k such that lhs % rhs = lhs - k rhs
- final double rem = JdkMath.IEEEremainder(value, a.value);
- final double k = JdkMath.rint((value - rem) / a.value);
- return subtract(a.multiply(k));
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient abs() {
- if (Double.doubleToLongBits(value) < 0) {
- // we use the bits representation to also handle -0.0
- return negate();
- } else {
- return this;
- }
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient ceil() {
- return createConstant(JdkMath.ceil(value));
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient floor() {
- return createConstant(JdkMath.floor(value));
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient rint() {
- return createConstant(JdkMath.rint(value));
- }
- /** {@inheritDoc} */
- @Override
- public long round() {
- return JdkMath.round(value);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient signum() {
- return createConstant(JdkMath.signum(value));
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient copySign(final SparseGradient sign) {
- final long m = Double.doubleToLongBits(value);
- final long s = Double.doubleToLongBits(sign.value);
- if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK
- return this;
- }
- return negate(); // flip sign
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient copySign(final double sign) {
- final long m = Double.doubleToLongBits(value);
- final long s = Double.doubleToLongBits(sign);
- if ((m >= 0 && s >= 0) || (m < 0 && s < 0)) { // Sign is currently OK
- return this;
- }
- return negate(); // flip sign
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient scalb(final int n) {
- final SparseGradient out = new SparseGradient(JdkMath.scalb(value, n), Collections.<Integer, Double>emptyMap());
- for (Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
- out.derivatives.put(entry.getKey(), JdkMath.scalb(entry.getValue(), n));
- }
- return out;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient hypot(final SparseGradient y) {
- if (Double.isInfinite(value) || Double.isInfinite(y.value)) {
- return createConstant(Double.POSITIVE_INFINITY);
- } else if (Double.isNaN(value) || Double.isNaN(y.value)) {
- return createConstant(Double.NaN);
- } else {
- final int expX = JdkMath.getExponent(value);
- final int expY = JdkMath.getExponent(y.value);
- if (expX > expY + 27) {
- // y is negligible with respect to x
- return abs();
- } else if (expY > expX + 27) {
- // x is negligible with respect to y
- return y.abs();
- } else {
- // find an intermediate scale to avoid both overflow and underflow
- final int middleExp = (expX + expY) / 2;
- // scale parameters without losing precision
- final SparseGradient scaledX = scalb(-middleExp);
- final SparseGradient scaledY = y.scalb(-middleExp);
- // compute scaled hypotenuse
- final SparseGradient scaledH =
- scaledX.multiply(scaledX).add(scaledY.multiply(scaledY)).sqrt();
- // remove scaling
- return scaledH.scalb(middleExp);
- }
- }
- }
- /**
- * Returns the hypotenuse of a triangle with sides {@code x} and {@code y}
- * - sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
- * avoiding intermediate overflow or underflow.
- *
- * <ul>
- * <li> If either argument is infinite, then the result is positive infinity.</li>
- * <li> else, if either argument is NaN then the result is NaN.</li>
- * </ul>
- *
- * @param x a value
- * @param y a value
- * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>)
- */
- public static SparseGradient hypot(final SparseGradient x, final SparseGradient y) {
- return x.hypot(y);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient reciprocal() {
- return new SparseGradient(1.0 / value, -1.0 / (value * value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient sqrt() {
- final double sqrt = JdkMath.sqrt(value);
- return new SparseGradient(sqrt, 0.5 / sqrt, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient cbrt() {
- final double cbrt = JdkMath.cbrt(value);
- return new SparseGradient(cbrt, 1.0 / (3 * cbrt * cbrt), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient rootN(final int n) {
- if (n == 2) {
- return sqrt();
- } else if (n == 3) {
- return cbrt();
- } else {
- final double root = JdkMath.pow(value, 1.0 / n);
- return new SparseGradient(root, 1.0 / (n * JdkMath.pow(root, n - 1)), derivatives);
- }
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient pow(final double p) {
- return new SparseGradient(JdkMath.pow(value, p), p * JdkMath.pow(value, p - 1), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient pow(final int n) {
- if (n == 0) {
- return getField().getOne();
- } else {
- final double valueNm1 = JdkMath.pow(value, n - 1);
- return new SparseGradient(value * valueNm1, n * valueNm1, derivatives);
- }
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient pow(final SparseGradient e) {
- return log().multiply(e).exp();
- }
- /** Compute a<sup>x</sup> where a is a double and x a {@link SparseGradient}.
- * @param a number to exponentiate
- * @param x power to apply
- * @return a<sup>x</sup>
- */
- public static SparseGradient pow(final double a, final SparseGradient x) {
- if (a == 0) {
- if (x.value == 0) {
- return x.compose(1.0, Double.NEGATIVE_INFINITY);
- } else if (x.value < 0) {
- return x.compose(Double.NaN, Double.NaN);
- } else {
- return x.getField().getZero();
- }
- } else {
- final double ax = JdkMath.pow(a, x.value);
- return new SparseGradient(ax, ax * JdkMath.log(a), x.derivatives);
- }
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient exp() {
- final double e = JdkMath.exp(value);
- return new SparseGradient(e, e, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient expm1() {
- return new SparseGradient(JdkMath.expm1(value), JdkMath.exp(value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient log() {
- return new SparseGradient(JdkMath.log(value), 1.0 / value, derivatives);
- }
- /** Base 10 logarithm.
- * @return base 10 logarithm of the instance
- */
- @Override
- public SparseGradient log10() {
- return new SparseGradient(JdkMath.log10(value), 1.0 / (JdkMath.log(10.0) * value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient log1p() {
- return new SparseGradient(JdkMath.log1p(value), 1.0 / (1.0 + value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient cos() {
- return new SparseGradient(JdkMath.cos(value), -JdkMath.sin(value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient sin() {
- return new SparseGradient(JdkMath.sin(value), JdkMath.cos(value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient tan() {
- final double t = JdkMath.tan(value);
- return new SparseGradient(t, 1 + t * t, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient acos() {
- return new SparseGradient(JdkMath.acos(value), -1.0 / JdkMath.sqrt(1 - value * value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient asin() {
- return new SparseGradient(JdkMath.asin(value), 1.0 / JdkMath.sqrt(1 - value * value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient atan() {
- return new SparseGradient(JdkMath.atan(value), 1.0 / (1 + value * value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient atan2(final SparseGradient x) {
- // compute r = sqrt(x^2+y^2)
- final SparseGradient r = multiply(this).add(x.multiply(x)).sqrt();
- final SparseGradient a;
- if (x.value >= 0) {
- // compute atan2(y, x) = 2 atan(y / (r + x))
- a = divide(r.add(x)).atan().multiply(2);
- } else {
- // compute atan2(y, x) = +/- pi - 2 atan(y / (r - x))
- final SparseGradient tmp = divide(r.subtract(x)).atan().multiply(-2);
- a = tmp.add(tmp.value <= 0 ? -JdkMath.PI : JdkMath.PI);
- }
- // fix value to take special cases (+0/+0, +0/-0, -0/+0, -0/-0, +/-infinity) correctly
- a.value = JdkMath.atan2(value, x.value);
- return a;
- }
- /** Two arguments arc tangent operation.
- * @param y first argument of the arc tangent
- * @param x second argument of the arc tangent
- * @return atan2(y, x)
- */
- public static SparseGradient atan2(final SparseGradient y, final SparseGradient x) {
- return y.atan2(x);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient cosh() {
- return new SparseGradient(JdkMath.cosh(value), JdkMath.sinh(value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient sinh() {
- return new SparseGradient(JdkMath.sinh(value), JdkMath.cosh(value), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient tanh() {
- final double t = JdkMath.tanh(value);
- return new SparseGradient(t, 1 - t * t, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient acosh() {
- return new SparseGradient(JdkMath.acosh(value), 1.0 / JdkMath.sqrt(value * value - 1.0), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient asinh() {
- return new SparseGradient(JdkMath.asinh(value), 1.0 / JdkMath.sqrt(value * value + 1.0), derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient atanh() {
- return new SparseGradient(JdkMath.atanh(value), 1.0 / (1.0 - value * value), derivatives);
- }
- /** Convert radians to degrees, with error of less than 0.5 ULP.
- * @return instance converted into degrees
- */
- public SparseGradient toDegrees() {
- return new SparseGradient(JdkMath.toDegrees(value), JdkMath.toDegrees(1.0), derivatives);
- }
- /** Convert degrees to radians, with error of less than 0.5 ULP.
- * @return instance converted into radians
- */
- public SparseGradient toRadians() {
- return new SparseGradient(JdkMath.toRadians(value), JdkMath.toRadians(1.0), derivatives);
- }
- /** Evaluate Taylor expansion of a sparse gradient.
- * @param delta parameters offsets (Δx, Δy, ...)
- * @return value of the Taylor expansion at x + Δx, y + Δy, ...
- */
- public double taylor(final double ... delta) {
- double y = value;
- for (int i = 0; i < delta.length; ++i) {
- y += delta[i] * getDerivative(i);
- }
- return y;
- }
- /** Compute composition of the instance by a univariate function.
- * @param f0 value of the function at (i.e. f({@link #getValue()}))
- * @param f1 first derivative of the function at
- * the current point (i.e. f'({@link #getValue()}))
- * @return f(this)
- */
- public SparseGradient compose(final double f0, final double f1) {
- return new SparseGradient(f0, f1, derivatives);
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient linearCombination(final SparseGradient[] a,
- final SparseGradient[] b) {
- // compute a simple value, with all partial derivatives
- SparseGradient out = a[0].getField().getZero();
- for (int i = 0; i < a.length; ++i) {
- out = out.add(a[i].multiply(b[i]));
- }
- // recompute an accurate value, taking care of cancellations
- final double[] aDouble = new double[a.length];
- for (int i = 0; i < a.length; ++i) {
- aDouble[i] = a[i].getValue();
- }
- final double[] bDouble = new double[b.length];
- for (int i = 0; i < b.length; ++i) {
- bDouble[i] = b[i].getValue();
- }
- out.value = Sum.ofProducts(aDouble, bDouble).getAsDouble();
- return out;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient linearCombination(final double[] a, final SparseGradient[] b) {
- // compute a simple value, with all partial derivatives
- SparseGradient out = b[0].getField().getZero();
- for (int i = 0; i < a.length; ++i) {
- out = out.add(b[i].multiply(a[i]));
- }
- // recompute an accurate value, taking care of cancellations
- final double[] bDouble = new double[b.length];
- for (int i = 0; i < b.length; ++i) {
- bDouble[i] = b[i].getValue();
- }
- out.value = Sum.ofProducts(a, bDouble).getAsDouble();
- return out;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
- final SparseGradient a2, final SparseGradient b2) {
- // compute a simple value, with all partial derivatives
- SparseGradient out = a1.multiply(b1).add(a2.multiply(b2));
- // recompute an accurate value, taking care of cancellations
- out.value = Sum.create()
- .addProduct(a1.value, b1.value)
- .addProduct(a2.value, b2.value).getAsDouble();
- return out;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient linearCombination(final double a1, final SparseGradient b1,
- final double a2, final SparseGradient b2) {
- // compute a simple value, with all partial derivatives
- SparseGradient out = b1.multiply(a1).add(b2.multiply(a2));
- // recompute an accurate value, taking care of cancellations
- out.value = Sum.create()
- .addProduct(a1, b1.value)
- .addProduct(a2, b2.value).getAsDouble();
- return out;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
- final SparseGradient a2, final SparseGradient b2,
- final SparseGradient a3, final SparseGradient b3) {
- // compute a simple value, with all partial derivatives
- SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)).add(a3.multiply(b3));
- // recompute an accurate value, taking care of cancellations
- out.value = Sum.create()
- .addProduct(a1.value, b1.value)
- .addProduct(a2.value, b2.value)
- .addProduct(a3.value, b3.value).getAsDouble();
- return out;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient linearCombination(final double a1, final SparseGradient b1,
- final double a2, final SparseGradient b2,
- final double a3, final SparseGradient b3) {
- // compute a simple value, with all partial derivatives
- SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)).add(b3.multiply(a3));
- // recompute an accurate value, taking care of cancellations
- out.value = Sum.create()
- .addProduct(a1, b1.value)
- .addProduct(a2, b2.value)
- .addProduct(a3, b3.value).getAsDouble();
- return out;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient linearCombination(final SparseGradient a1, final SparseGradient b1,
- final SparseGradient a2, final SparseGradient b2,
- final SparseGradient a3, final SparseGradient b3,
- final SparseGradient a4, final SparseGradient b4) {
- // compute a simple value, with all partial derivatives
- SparseGradient out = a1.multiply(b1).add(a2.multiply(b2)).add(a3.multiply(b3)).add(a4.multiply(b4));
- // recompute an accurate value, taking care of cancellations
- out.value = Sum.create()
- .addProduct(a1.value, b1.value)
- .addProduct(a2.value, b2.value)
- .addProduct(a3.value, b3.value)
- .addProduct(a4.value, b4.value).getAsDouble();
- return out;
- }
- /** {@inheritDoc} */
- @Override
- public SparseGradient linearCombination(final double a1, final SparseGradient b1,
- final double a2, final SparseGradient b2,
- final double a3, final SparseGradient b3,
- final double a4, final SparseGradient b4) {
- // compute a simple value, with all partial derivatives
- SparseGradient out = b1.multiply(a1).add(b2.multiply(a2)).add(b3.multiply(a3)).add(b4.multiply(a4));
- // recompute an accurate value, taking care of cancellations
- out.value = Sum.create()
- .addProduct(a1, b1.value)
- .addProduct(a2, b2.value)
- .addProduct(a3, b3.value)
- .addProduct(a4, b4.value).getAsDouble();
- return out;
- }
- /**
- * Test for the equality of two sparse gradients.
- * <p>
- * Sparse gradients are considered equal if they have the same value
- * and the same derivatives.
- * </p>
- * @param other Object to test for equality to this
- * @return true if two sparse gradients are equal
- */
- @Override
- public boolean equals(Object other) {
- if (this == other) {
- return true;
- }
- if (other instanceof SparseGradient) {
- final SparseGradient rhs = (SparseGradient)other;
- if (!Precision.equals(value, rhs.value, 1)) {
- return false;
- }
- if (derivatives.size() != rhs.derivatives.size()) {
- return false;
- }
- for (final Map.Entry<Integer, Double> entry : derivatives.entrySet()) {
- if (!rhs.derivatives.containsKey(entry.getKey())) {
- return false;
- }
- if (!Precision.equals(entry.getValue(), rhs.derivatives.get(entry.getKey()), 1)) {
- return false;
- }
- }
- return true;
- }
- return false;
- }
- /**
- * Get a hashCode for the derivative structure.
- * @return a hash code value for this object
- * @since 3.2
- */
- @Override
- public int hashCode() {
- return 743 + 809 * Double.hashCode(value) + 167 * derivatives.hashCode();
- }
- }