TrapezoidIntegrator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.analysis.integration;
- import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * Implements the <a href="http://mathworld.wolfram.com/TrapezoidalRule.html">
- * Trapezoid Rule</a> for integration of real univariate functions.
- *
- * See <b>Introduction to Numerical Analysis</b>, ISBN 038795452X, chapter 3.
- *
- * <p>
- * The function should be integrable.
- *
- * <p>
- * <em>Caveat:</em> At each iteration, the algorithm refines the estimation by
- * evaluating the function twice as many times as in the previous iteration;
- * When specifying a {@link #integrate(int,UnivariateFunction,double,double)
- * maximum number of function evaluations}, the caller must ensure that it
- * is compatible with the {@link #TrapezoidIntegrator(int,int) requested
- * minimal number of iterations}.
- *
- * @since 1.2
- */
- public class TrapezoidIntegrator extends BaseAbstractUnivariateIntegrator {
- /** Maximum number of iterations for trapezoid. */
- private static final int TRAPEZOID_MAX_ITERATIONS_COUNT = 30;
- /** Intermediate result. */
- private double s;
- /**
- * Build a trapezoid integrator with given accuracies and iterations counts.
- * @param relativeAccuracy relative accuracy of the result
- * @param absoluteAccuracy absolute accuracy of the result
- * @param minimalIterationCount minimum number of iterations
- * @param maximalIterationCount maximum number of iterations
- * @throws org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException
- * if {@code minimalIterationCount <= 0}.
- * @throws org.apache.commons.math4.legacy.exception.NumberIsTooSmallException
- * if {@code maximalIterationCount < minimalIterationCount}.
- * is lesser than or equal to the minimal number of iterations
- * @throws NumberIsTooLargeException if {@code maximalIterationCount > 30}.
- */
- public TrapezoidIntegrator(final double relativeAccuracy,
- final double absoluteAccuracy,
- final int minimalIterationCount,
- final int maximalIterationCount) {
- super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
- if (maximalIterationCount > TRAPEZOID_MAX_ITERATIONS_COUNT) {
- throw new NumberIsTooLargeException(maximalIterationCount,
- TRAPEZOID_MAX_ITERATIONS_COUNT, false);
- }
- }
- /**
- * Build a trapezoid integrator with given iteration counts.
- * @param minimalIterationCount minimum number of iterations
- * @param maximalIterationCount maximum number of iterations
- * @throws org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException
- * if {@code minimalIterationCount <= 0}.
- * @throws org.apache.commons.math4.legacy.exception.NumberIsTooSmallException
- * if {@code maximalIterationCount < minimalIterationCount}.
- * is lesser than or equal to the minimal number of iterations
- * @throws NumberIsTooLargeException if {@code maximalIterationCount > 30}.
- */
- public TrapezoidIntegrator(final int minimalIterationCount,
- final int maximalIterationCount) {
- super(minimalIterationCount, maximalIterationCount);
- if (maximalIterationCount > TRAPEZOID_MAX_ITERATIONS_COUNT) {
- throw new NumberIsTooLargeException(maximalIterationCount,
- TRAPEZOID_MAX_ITERATIONS_COUNT, false);
- }
- }
- /**
- * Construct a trapezoid integrator with default settings.
- */
- public TrapezoidIntegrator() {
- super(DEFAULT_MIN_ITERATIONS_COUNT, TRAPEZOID_MAX_ITERATIONS_COUNT);
- }
- /**
- * Compute the n-th stage integral of trapezoid rule. This function
- * should only be called by API <code>integrate()</code> in the package.
- * To save time it does not verify arguments - caller does.
- * <p>
- * The interval is divided equally into 2^n sections rather than an
- * arbitrary m sections because this configuration can best utilize the
- * already computed values.</p>
- *
- * @param baseIntegrator integrator holding integration parameters
- * @param n the stage of 1/2 refinement, n = 0 is no refinement
- * @return the value of n-th stage integral
- * @throws org.apache.commons.math4.legacy.exception.TooManyEvaluationsException if the maximal number of evaluations
- * is exceeded.
- */
- double stage(final BaseAbstractUnivariateIntegrator baseIntegrator, final int n) {
- if (n == 0) {
- final double max = baseIntegrator.getMax();
- final double min = baseIntegrator.getMin();
- s = 0.5 * (max - min) *
- (baseIntegrator.computeObjectiveValue(min) +
- baseIntegrator.computeObjectiveValue(max));
- return s;
- } else {
- final long np = 1L << (n-1); // number of new points in this stage
- double sum = 0;
- final double max = baseIntegrator.getMax();
- final double min = baseIntegrator.getMin();
- // spacing between adjacent new points
- final double spacing = (max - min) / np;
- double x = min + 0.5 * spacing; // the first new point
- for (long i = 0; i < np; i++) {
- sum += baseIntegrator.computeObjectiveValue(x);
- x += spacing;
- }
- // add the new sum to previously calculated result
- s = 0.5 * (s + sum * spacing);
- return s;
- }
- }
- /** {@inheritDoc} */
- @Override
- protected double doIntegrate() {
- double oldt = stage(this, 0);
- iterations.increment();
- while (true) {
- final int i = iterations.getCount();
- final double t = stage(this, i);
- if (i >= getMinimalIterationCount()) {
- final double delta = JdkMath.abs(t - oldt);
- final double rLimit =
- getRelativeAccuracy() * (JdkMath.abs(oldt) + JdkMath.abs(t)) * 0.5;
- if (delta <= rLimit || delta <= getAbsoluteAccuracy()) {
- return t;
- }
- }
- oldt = t;
- iterations.increment();
- }
- }
- }