SplineInterpolator.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.analysis.interpolation;
- import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialFunction;
- import org.apache.commons.math4.legacy.analysis.polynomials.PolynomialSplineFunction;
- import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
- import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
- import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
- import org.apache.commons.math4.legacy.core.MathArrays;
- /**
- * Computes a natural (also known as "free", "unclamped") cubic spline interpolation for the data set.
- * <p>
- * The {@link #interpolate(double[], double[])} method returns a {@link PolynomialSplineFunction}
- * consisting of n cubic polynomials, defined over the subintervals determined by the x values,
- * {@code x[0] < x[i] ... < x[n].} The x values are referred to as "knot points."</p>
- * <p>
- * The value of the PolynomialSplineFunction at a point x that is greater than or equal to the smallest
- * knot point and strictly less than the largest knot point is computed by finding the subinterval to which
- * x belongs and computing the value of the corresponding polynomial at <code>x - x[i] </code> where
- * <code>i</code> is the index of the subinterval. See {@link PolynomialSplineFunction} for more details.
- * </p>
- * <p>
- * The interpolating polynomials satisfy: <ol>
- * <li>The value of the PolynomialSplineFunction at each of the input x values equals the
- * corresponding y value.</li>
- * <li>Adjacent polynomials are equal through two derivatives at the knot points (i.e., adjacent polynomials
- * "match up" at the knot points, as do their first and second derivatives).</li>
- * </ol>
- * <p>
- * The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires,
- * <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131.
- * </p>
- *
- */
- public class SplineInterpolator implements UnivariateInterpolator {
- /**
- * Computes an interpolating function for the data set.
- * @param x the arguments for the interpolation points
- * @param y the values for the interpolation points
- * @return a function which interpolates the data set
- * @throws DimensionMismatchException if {@code x} and {@code y}
- * have different sizes.
- * @throws NumberIsTooSmallException if the size of {@code x < 3}.
- * @throws org.apache.commons.math4.legacy.exception.NonMonotonicSequenceException
- * if {@code x} is not sorted in strict increasing order.
- */
- @Override
- public PolynomialSplineFunction interpolate(double[] x, double[] y) {
- if (x.length != y.length) {
- throw new DimensionMismatchException(x.length, y.length);
- }
- if (x.length < 3) {
- throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS,
- x.length, 3, true);
- }
- // Number of intervals. The number of data points is n + 1.
- final int n = x.length - 1;
- MathArrays.checkOrder(x);
- // Differences between knot points
- final double[] h = new double[n];
- for (int i = 0; i < n; i++) {
- h[i] = x[i + 1] - x[i];
- }
- final double[] mu = new double[n];
- final double[] z = new double[n + 1];
- double g = 0;
- int indexM1 = 0;
- int index = 1;
- int indexP1 = 2;
- while (index < n) {
- final double xIp1 = x[indexP1];
- final double xIm1 = x[indexM1];
- final double hIm1 = h[indexM1];
- final double hI = h[index];
- g = 2d * (xIp1 - xIm1) - hIm1 * mu[indexM1];
- mu[index] = hI / g;
- z[index] = (3d * (y[indexP1] * hIm1 - y[index] * (xIp1 - xIm1)+ y[indexM1] * hI) /
- (hIm1 * hI) - hIm1 * z[indexM1]) / g;
- indexM1 = index;
- index = indexP1;
- indexP1 = indexP1 + 1;
- }
- // cubic spline coefficients -- b is linear, c quadratic, d is cubic (original y's are constants)
- final double[] b = new double[n];
- final double[] c = new double[n + 1];
- final double[] d = new double[n];
- for (int j = n - 1; j >= 0; j--) {
- final double cJp1 = c[j + 1];
- final double cJ = z[j] - mu[j] * cJp1;
- final double hJ = h[j];
- b[j] = (y[j + 1] - y[j]) / hJ - hJ * (cJp1 + 2d * cJ) / 3d;
- c[j] = cJ;
- d[j] = (cJp1 - cJ) / (3d * hJ);
- }
- final PolynomialFunction[] polynomials = new PolynomialFunction[n];
- final double[] coefficients = new double[4];
- for (int i = 0; i < n; i++) {
- coefficients[0] = y[i];
- coefficients[1] = b[i];
- coefficients[2] = c[i];
- coefficients[3] = d[i];
- polynomials[i] = new PolynomialFunction(coefficients);
- }
- return new PolynomialSplineFunction(x, polynomials);
- }
- }