AbstractRealDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.distribution;
- import org.apache.commons.statistics.distribution.ContinuousDistribution;
- import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
- import org.apache.commons.math4.legacy.analysis.solvers.UnivariateSolverUtils;
- import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
- import org.apache.commons.math4.legacy.exception.OutOfRangeException;
- import org.apache.commons.math4.legacy.exception.util.LocalizedFormats;
- import org.apache.commons.rng.UniformRandomProvider;
- import org.apache.commons.rng.sampling.distribution.InverseTransformContinuousSampler;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * Base class for probability distributions on the reals.
- * Default implementations are provided for some of the methods
- * that do not vary from distribution to distribution.
- *
- * <p>
- * This base class provides a default factory method for creating
- * a {@link org.apache.commons.statistics.distribution.ContinuousDistribution.Sampler
- * sampler instance} that uses the
- * <a href="http://en.wikipedia.org/wiki/Inverse_transform_sampling">
- * inversion method</a> for generating random samples that follow the
- * distribution.
- * </p>
- *
- * @since 3.0
- */
- public abstract class AbstractRealDistribution
- implements ContinuousDistribution {
- /** Default absolute accuracy for inverse cumulative computation. */
- public static final double SOLVER_DEFAULT_ABSOLUTE_ACCURACY = 1e-6;
- /**
- * For a random variable {@code X} whose values are distributed according
- * to this distribution, this method returns {@code P(x0 < X <= x1)}.
- *
- * @param x0 Lower bound (excluded).
- * @param x1 Upper bound (included).
- * @return the probability that a random variable with this distribution
- * takes a value between {@code x0} and {@code x1}, excluding the lower
- * and including the upper endpoint.
- * @throws NumberIsTooLargeException if {@code x0 > x1}.
- *
- * The default implementation uses the identity
- * {@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}
- *
- * @since 3.1
- */
- @Override
- public double probability(double x0,
- double x1) {
- if (x0 > x1) {
- throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT,
- x0, x1, true);
- }
- return cumulativeProbability(x1) - cumulativeProbability(x0);
- }
- /**
- * {@inheritDoc}
- *
- * The default implementation returns
- * <ul>
- * <li>{@link #getSupportLowerBound()} for {@code p = 0},</li>
- * <li>{@link #getSupportUpperBound()} for {@code p = 1}.</li>
- * </ul>
- */
- @Override
- public double inverseCumulativeProbability(final double p) throws OutOfRangeException {
- /*
- * IMPLEMENTATION NOTES
- * --------------------
- * Where applicable, use is made of the one-sided Chebyshev inequality
- * to bracket the root. This inequality states that
- * P(X - mu >= k * sig) <= 1 / (1 + k^2),
- * mu: mean, sig: standard deviation. Equivalently
- * 1 - P(X < mu + k * sig) <= 1 / (1 + k^2),
- * F(mu + k * sig) >= k^2 / (1 + k^2).
- *
- * For k = sqrt(p / (1 - p)), we find
- * F(mu + k * sig) >= p,
- * and (mu + k * sig) is an upper-bound for the root.
- *
- * Then, introducing Y = -X, mean(Y) = -mu, sd(Y) = sig, and
- * P(Y >= -mu + k * sig) <= 1 / (1 + k^2),
- * P(-X >= -mu + k * sig) <= 1 / (1 + k^2),
- * P(X <= mu - k * sig) <= 1 / (1 + k^2),
- * F(mu - k * sig) <= 1 / (1 + k^2).
- *
- * For k = sqrt((1 - p) / p), we find
- * F(mu - k * sig) <= p,
- * and (mu - k * sig) is a lower-bound for the root.
- *
- * In cases where the Chebyshev inequality does not apply, geometric
- * progressions 1, 2, 4, ... and -1, -2, -4, ... are used to bracket
- * the root.
- */
- if (p < 0.0 || p > 1.0) {
- throw new OutOfRangeException(p, 0, 1);
- }
- double lowerBound = getSupportLowerBound();
- if (p == 0.0) {
- return lowerBound;
- }
- double upperBound = getSupportUpperBound();
- if (p == 1.0) {
- return upperBound;
- }
- final double mu = getMean();
- final double sig = JdkMath.sqrt(getVariance());
- final boolean chebyshevApplies;
- chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) ||
- Double.isInfinite(sig) || Double.isNaN(sig));
- if (lowerBound == Double.NEGATIVE_INFINITY) {
- if (chebyshevApplies) {
- lowerBound = mu - sig * JdkMath.sqrt((1. - p) / p);
- } else {
- lowerBound = -1.0;
- while (cumulativeProbability(lowerBound) >= p) {
- lowerBound *= 2.0;
- }
- }
- }
- if (upperBound == Double.POSITIVE_INFINITY) {
- if (chebyshevApplies) {
- upperBound = mu + sig * JdkMath.sqrt(p / (1. - p));
- } else {
- upperBound = 1.0;
- while (cumulativeProbability(upperBound) < p) {
- upperBound *= 2.0;
- }
- }
- }
- final UnivariateFunction toSolve = new UnivariateFunction() {
- /** {@inheritDoc} */
- @Override
- public double value(final double x) {
- return cumulativeProbability(x) - p;
- }
- };
- return UnivariateSolverUtils.solve(toSolve,
- lowerBound,
- upperBound,
- getSolverAbsoluteAccuracy());
- }
- /**
- * Returns the solver absolute accuracy for inverse cumulative computation.
- * You can override this method in order to use a Brent solver with an
- * absolute accuracy different from the default.
- *
- * @return the maximum absolute error in inverse cumulative probability estimates
- */
- protected double getSolverAbsoluteAccuracy() {
- return SOLVER_DEFAULT_ABSOLUTE_ACCURACY;
- }
- /**
- * {@inheritDoc}
- * <p>
- * The default implementation simply computes the logarithm of {@code density(x)}.
- */
- @Override
- public double logDensity(double x) {
- return JdkMath.log(density(x));
- }
- /**
- * Utility function for allocating an array and filling it with {@code n}
- * samples generated by the given {@code sampler}.
- *
- * @param n Number of samples.
- * @param sampler Sampler.
- * @return an array of size {@code n}.
- */
- public static double[] sample(int n,
- ContinuousDistribution.Sampler sampler) {
- final double[] samples = new double[n];
- for (int i = 0; i < n; i++) {
- samples[i] = sampler.sample();
- }
- return samples;
- }
- /**{@inheritDoc} */
- @Override
- public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
- // Inversion method distribution sampler.
- return InverseTransformContinuousSampler.of(rng, this::inverseCumulativeProbability)::sample;
- }
- }