EmpiricalDistribution.java
- /*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements. See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.commons.math4.legacy.distribution;
- import java.util.ArrayList;
- import java.util.List;
- import java.util.function.Function;
- import org.apache.commons.statistics.distribution.NormalDistribution;
- import org.apache.commons.statistics.distribution.ContinuousDistribution;
- import org.apache.commons.numbers.core.Precision;
- import org.apache.commons.rng.UniformRandomProvider;
- import org.apache.commons.math4.legacy.exception.OutOfRangeException;
- import org.apache.commons.math4.legacy.exception.NotStrictlyPositiveException;
- import org.apache.commons.math4.legacy.stat.descriptive.StatisticalSummary;
- import org.apache.commons.math4.legacy.stat.descriptive.SummaryStatistics;
- import org.apache.commons.math4.core.jdkmath.JdkMath;
- /**
- * <p>Represents an <a href="http://en.wikipedia.org/wiki/Empirical_distribution_function">
- * empirical probability distribution</a>: Probability distribution derived
- * from observed data without making any assumptions about the functional
- * form of the population distribution that the data come from.</p>
- *
- * <p>An {@code EmpiricalDistribution} maintains data structures called
- * <i>distribution digests</i> that describe empirical distributions and
- * support the following operations:
- * <ul>
- * <li>loading the distribution from "observed" data values</li>
- * <li>dividing the input data into "bin ranges" and reporting bin
- * frequency counts (data for histogram)</li>
- * <li>reporting univariate statistics describing the full set of data
- * values as well as the observations within each bin</li>
- * <li>generating random values from the distribution</li>
- * </ul>
- *
- * Applications can use {@code EmpiricalDistribution} to build grouped
- * frequency histograms representing the input data or to generate random
- * values "like" those in the input, i.e. the values generated will follow
- * the distribution of the values in the file.
- *
- * <p>The implementation uses what amounts to the
- * <a href="http://nedwww.ipac.caltech.edu/level5/March02/Silverman/Silver2_6.html">
- * Variable Kernel Method</a> with Gaussian smoothing:<p>
- * <strong>Digesting the input file</strong>
- * <ol>
- * <li>Pass the file once to compute min and max.</li>
- * <li>Divide the range from min to max into {@code binCount} bins.</li>
- * <li>Pass the data file again, computing bin counts and univariate
- * statistics (mean and std dev.) for each bin.</li>
- * <li>Divide the interval (0,1) into subintervals associated with the bins,
- * with the length of a bin's subinterval proportional to its count.</li>
- * </ol>
- * <strong>Generating random values from the distribution</strong>
- * <ol>
- * <li>Generate a uniformly distributed value in (0,1) </li>
- * <li>Select the subinterval to which the value belongs.
- * <li>Generate a random Gaussian value with mean = mean of the associated
- * bin and std dev = std dev of associated bin.</li>
- * </ol>
- *
- * <p>EmpiricalDistribution implements the {@link ContinuousDistribution} interface
- * as follows. Given x within the range of values in the dataset, let B
- * be the bin containing x and let K be the within-bin kernel for B. Let P(B-)
- * be the sum of the probabilities of the bins below B and let K(B) be the
- * mass of B under K (i.e., the integral of the kernel density over B). Then
- * set {@code P(X < x) = P(B-) + P(B) * K(x) / K(B)} where {@code K(x)} is the
- * kernel distribution evaluated at x. This results in a cdf that matches the
- * grouped frequency distribution at the bin endpoints and interpolates within
- * bins using within-bin kernels.</p>
- *
- * <strong>CAVEAT</strong>: It is advised that the {@link #from(int,double[])
- * bin count} is about one tenth of the size of the input array.
- */
- public final class EmpiricalDistribution extends AbstractRealDistribution
- implements ContinuousDistribution {
- /** Bins characteristics. */
- private final List<SummaryStatistics> binStats;
- /** Sample statistics. */
- private final SummaryStatistics sampleStats;
- /** Max loaded value. */
- private final double max;
- /** Min loaded value. */
- private final double min;
- /** Grid size. */
- private final double delta;
- /** Number of bins. */
- private final int binCount;
- /** Upper bounds of subintervals in (0, 1) belonging to the bins. */
- private final double[] upperBounds;
- /** Kernel factory. */
- private final Function<SummaryStatistics, ContinuousDistribution> kernelFactory;
- /**
- * Creates a new instance with the specified data.
- *
- * @param binCount Number of bins. Must be strictly positive.
- * @param input Input data. Cannot be {@code null}.
- * @param kernelFactory Kernel factory.
- * @throws NotStrictlyPositiveException if {@code binCount <= 0}.
- */
- private EmpiricalDistribution(int binCount,
- double[] input,
- Function<SummaryStatistics, ContinuousDistribution> kernelFactory) {
- if (binCount <= 0) {
- throw new NotStrictlyPositiveException(binCount);
- }
- this.binCount = binCount;
- // First pass through the data.
- sampleStats = new SummaryStatistics();
- for (int i = 0; i < input.length; i++) {
- sampleStats.addValue(input[i]);
- }
- // Set up grid.
- min = sampleStats.getMin();
- max = sampleStats.getMax();
- delta = (max - min) / binCount;
- // Second pass through the data.
- binStats = createBinStats(input);
- // Assign upper bounds based on bin counts.
- upperBounds = new double[binCount];
- final double n = sampleStats.getN();
- upperBounds[0] = binStats.get(0).getN() / n;
- for (int i = 1; i < binCount - 1; i++) {
- upperBounds[i] = upperBounds[i - 1] + binStats.get(i).getN() / n;
- }
- upperBounds[binCount - 1] = 1d;
- this.kernelFactory = kernelFactory;
- }
- /**
- * Factory that creates a new instance from the specified data.
- *
- * @param binCount Number of bins. Must be strictly positive.
- * @param input Input data. Cannot be {@code null}.
- * @param kernelFactory Factory for creating within-bin kernels.
- * @return a new instance.
- * @throws NotStrictlyPositiveException if {@code binCount <= 0}.
- */
- public static EmpiricalDistribution from(int binCount,
- double[] input,
- Function<SummaryStatistics, ContinuousDistribution> kernelFactory) {
- return new EmpiricalDistribution(binCount,
- input,
- kernelFactory);
- }
- /**
- * Factory that creates a new instance from the specified data.
- *
- * @param binCount Number of bins. Must be strictly positive.
- * @param input Input data. Cannot be {@code null}.
- * @return a new instance.
- * @throws NotStrictlyPositiveException if {@code binCount <= 0}.
- */
- public static EmpiricalDistribution from(int binCount,
- double[] input) {
- return from(binCount, input, defaultKernel());
- }
- /**
- * Create statistics (second pass through the data).
- *
- * @param input Input data.
- * @return bins statistics.
- */
- private List<SummaryStatistics> createBinStats(double[] input) {
- final List<SummaryStatistics> stats = new ArrayList<>();
- for (int i = 0; i < binCount; i++) {
- stats.add(i, new SummaryStatistics());
- }
- // Second pass though the data.
- for (int i = 0; i < input.length; i++) {
- final double v = input[i];
- stats.get(findBin(v)).addValue(v);
- }
- return stats;
- }
- /**
- * Returns the index of the bin to which the given value belongs.
- *
- * @param value Value whose bin we are trying to find.
- * @return the index of the bin containing the value.
- */
- private int findBin(double value) {
- return Math.min(Math.max((int) JdkMath.ceil((value - min) / delta) - 1,
- 0),
- binCount - 1);
- }
- /**
- * Returns a {@link StatisticalSummary} describing this distribution.
- * <strong>Preconditions:</strong><ul>
- * <li>the distribution must be loaded before invoking this method</li></ul>
- *
- * @return the sample statistics
- * @throws IllegalStateException if the distribution has not been loaded
- */
- public StatisticalSummary getSampleStats() {
- return sampleStats.copy();
- }
- /**
- * Returns the number of bins.
- *
- * @return the number of bins.
- */
- public int getBinCount() {
- return binCount;
- }
- /**
- * Returns a copy of the {@link SummaryStatistics} instances containing
- * statistics describing the values in each of the bins.
- * The list is indexed on the bin number.
- *
- * @return the bins statistics.
- */
- public List<SummaryStatistics> getBinStats() {
- final List<SummaryStatistics> copy = new ArrayList<>();
- for (SummaryStatistics s : binStats) {
- copy.add(s.copy());
- }
- return copy;
- }
- /**
- * Returns the upper bounds of the bins.
- *
- * Assuming array {@code u} is returned by this method, the bins are:
- * <ul>
- * <li>{@code (min, u[0])},</li>
- * <li>{@code (u[0], u[1])},</li>
- * <li>... ,</li>
- * <li>{@code (u[binCount - 2], u[binCount - 1] = max)},</li>
- * </ul>
- *
- * @return the bins upper bounds.
- *
- * @since 2.1
- */
- public double[] getUpperBounds() {
- double[] binUpperBounds = new double[binCount];
- for (int i = 0; i < binCount - 1; i++) {
- binUpperBounds[i] = min + delta * (i + 1);
- }
- binUpperBounds[binCount - 1] = max;
- return binUpperBounds;
- }
- /**
- * Returns the upper bounds of the subintervals of [0, 1] used in generating
- * data from the empirical distribution.
- * Subintervals correspond to bins with lengths proportional to bin counts.
- *
- * <strong>Preconditions:</strong><ul>
- * <li>the distribution must be loaded before invoking this method</li></ul>
- *
- * @return array of upper bounds of subintervals used in data generation
- * @throws NullPointerException unless a {@code load} method has been
- * called beforehand.
- *
- * @since 2.1
- */
- public double[] getGeneratorUpperBounds() {
- int len = upperBounds.length;
- double[] out = new double[len];
- System.arraycopy(upperBounds, 0, out, 0, len);
- return out;
- }
- // Distribution methods.
- /**
- * {@inheritDoc}
- *
- * Returns the kernel density normalized so that its integral over each bin
- * equals the bin mass.
- *
- * Algorithm description:
- * <ol>
- * <li>Find the bin B that x belongs to.</li>
- * <li>Compute K(B) = the mass of B with respect to the within-bin kernel (i.e., the
- * integral of the kernel density over B).</li>
- * <li>Return k(x) * P(B) / K(B), where k is the within-bin kernel density
- * and P(B) is the mass of B.</li>
- * </ol>
- *
- * @since 3.1
- */
- @Override
- public double density(double x) {
- if (x < min || x > max) {
- return 0d;
- }
- final int binIndex = findBin(x);
- final ContinuousDistribution kernel = getKernel(binStats.get(binIndex));
- return kernel.density(x) * pB(binIndex) / kB(binIndex);
- }
- /**
- * {@inheritDoc}
- *
- * Algorithm description:
- * <ol>
- * <li>Find the bin B that x belongs to.</li>
- * <li>Compute P(B) = the mass of B and P(B-) = the combined mass of the bins below B.</li>
- * <li>Compute K(B) = the probability mass of B with respect to the within-bin kernel
- * and K(B-) = the kernel distribution evaluated at the lower endpoint of B</li>
- * <li>Return P(B-) + P(B) * [K(x) - K(B-)] / K(B) where
- * K(x) is the within-bin kernel distribution function evaluated at x.</li>
- * </ol>
- * If K is a constant distribution, we return P(B-) + P(B) (counting the full
- * mass of B).
- *
- * @since 3.1
- */
- @Override
- public double cumulativeProbability(double x) {
- if (x < min) {
- return 0d;
- } else if (x >= max) {
- return 1d;
- }
- final int binIndex = findBin(x);
- final double pBminus = pBminus(binIndex);
- final double pB = pB(binIndex);
- final ContinuousDistribution kernel = k(x);
- if (kernel instanceof ConstantContinuousDistribution) {
- if (x < kernel.getMean()) {
- return pBminus;
- } else {
- return pBminus + pB;
- }
- }
- final double[] binBounds = getUpperBounds();
- final double kB = kB(binIndex);
- final double lower = binIndex == 0 ? min : binBounds[binIndex - 1];
- final double withinBinCum =
- (kernel.cumulativeProbability(x) - kernel.cumulativeProbability(lower)) / kB;
- return pBminus + pB * withinBinCum;
- }
- /**
- * {@inheritDoc}
- *
- * Algorithm description:
- * <ol>
- * <li>Find the smallest i such that the sum of the masses of the bins
- * through i is at least p.</li>
- * <li>
- * <ol>
- * <li>Let K be the within-bin kernel distribution for bin i.</li>
- * <li>Let K(B) be the mass of B under K.</li>
- * <li>Let K(B-) be K evaluated at the lower endpoint of B (the combined
- * mass of the bins below B under K).</li>
- * <li>Let P(B) be the probability of bin i.</li>
- * <li>Let P(B-) be the sum of the bin masses below bin i.</li>
- * <li>Let pCrit = p - P(B-)</li>
- * </ol>
- * </li>
- * <li>Return the inverse of K evaluated at
- * K(B-) + pCrit * K(B) / P(B) </li>
- * </ol>
- *
- * @since 3.1
- */
- @Override
- public double inverseCumulativeProbability(final double p) {
- if (p < 0 ||
- p > 1) {
- throw new OutOfRangeException(p, 0, 1);
- }
- if (p == 0) {
- return getSupportLowerBound();
- }
- if (p == 1) {
- return getSupportUpperBound();
- }
- int i = 0;
- while (cumBinP(i) < p) {
- ++i;
- }
- final SummaryStatistics stats = binStats.get(i);
- final ContinuousDistribution kernel = getKernel(stats);
- final double kB = kB(i);
- final double[] binBounds = getUpperBounds();
- final double lower = i == 0 ? min : binBounds[i - 1];
- final double kBminus = kernel.cumulativeProbability(lower);
- final double pB = pB(i);
- final double pBminus = pBminus(i);
- final double pCrit = p - pBminus;
- if (pCrit <= 0) {
- return lower;
- }
- final double cP = kBminus + pCrit * kB / pB;
- return Precision.equals(cP, 1d) ?
- kernel.inverseCumulativeProbability(1d) :
- kernel.inverseCumulativeProbability(cP);
- }
- /**
- * {@inheritDoc}
- * @since 3.1
- */
- @Override
- public double getMean() {
- return sampleStats.getMean();
- }
- /**
- * {@inheritDoc}
- * @since 3.1
- */
- @Override
- public double getVariance() {
- return sampleStats.getVariance();
- }
- /**
- * {@inheritDoc}
- * @since 3.1
- */
- @Override
- public double getSupportLowerBound() {
- return min;
- }
- /**
- * {@inheritDoc}
- * @since 3.1
- */
- @Override
- public double getSupportUpperBound() {
- return max;
- }
- /**
- * The probability of bin i.
- *
- * @param i the index of the bin
- * @return the probability that selection begins in bin i
- */
- private double pB(int i) {
- return i == 0 ? upperBounds[0] :
- upperBounds[i] - upperBounds[i - 1];
- }
- /**
- * The combined probability of the bins up to but not including bin i.
- *
- * @param i the index of the bin
- * @return the probability that selection begins in a bin below bin i.
- */
- private double pBminus(int i) {
- return i == 0 ? 0 : upperBounds[i - 1];
- }
- /**
- * Mass of bin i under the within-bin kernel of the bin.
- *
- * @param i index of the bin
- * @return the difference in the within-bin kernel cdf between the
- * upper and lower endpoints of bin i
- */
- private double kB(int i) {
- final double[] binBounds = getUpperBounds();
- final ContinuousDistribution kernel = getKernel(binStats.get(i));
- return i == 0 ? kernel.probability(min, binBounds[0]) :
- kernel.probability(binBounds[i - 1], binBounds[i]);
- }
- /**
- * The within-bin kernel of the bin that x belongs to.
- *
- * @param x the value to locate within a bin
- * @return the within-bin kernel of the bin containing x
- */
- private ContinuousDistribution k(double x) {
- final int binIndex = findBin(x);
- return getKernel(binStats.get(binIndex));
- }
- /**
- * The combined probability of the bins up to and including binIndex.
- *
- * @param binIndex maximum bin index
- * @return sum of the probabilities of bins through binIndex
- */
- private double cumBinP(int binIndex) {
- return upperBounds[binIndex];
- }
- /**
- * @param stats Bin statistics.
- * @return the within-bin kernel.
- */
- private ContinuousDistribution getKernel(SummaryStatistics stats) {
- return kernelFactory.apply(stats);
- }
- /**
- * The within-bin smoothing kernel: A Gaussian distribution
- * (unless the bin contains 0 or 1 observation, in which case
- * a constant distribution is returned).
- *
- * @return the within-bin kernel factory.
- */
- private static Function<SummaryStatistics, ContinuousDistribution> defaultKernel() {
- return stats -> {
- if (stats.getN() <= 3 ||
- stats.getVariance() == 0) {
- return new ConstantContinuousDistribution(stats.getMean());
- } else {
- return NormalDistribution.of(stats.getMean(),
- stats.getStandardDeviation());
- }
- };
- }
- /**
- * Constant distribution.
- */
- private static final class ConstantContinuousDistribution implements ContinuousDistribution {
- /** Constant value of the distribution. */
- private final double value;
- /**
- * Create a constant real distribution with the given value.
- *
- * @param value Value of this distribution.
- */
- ConstantContinuousDistribution(double value) {
- this.value = value;
- }
- /** {@inheritDoc} */
- @Override
- public double density(double x) {
- return x == value ? 1 : 0;
- }
- /** {@inheritDoc} */
- @Override
- public double cumulativeProbability(double x) {
- return x < value ? 0 : 1;
- }
- /** {@inheritDoc} */
- @Override
- public double inverseCumulativeProbability(final double p) {
- if (p < 0 ||
- p > 1) {
- // Should never happen.
- throw new IllegalArgumentException("Internal error");
- }
- return value;
- }
- /** {@inheritDoc} */
- @Override
- public double getMean() {
- return value;
- }
- /** {@inheritDoc} */
- @Override
- public double getVariance() {
- return 0;
- }
- /**{@inheritDoc} */
- @Override
- public double getSupportLowerBound() {
- return value;
- }
- /** {@inheritDoc} */
- @Override
- public double getSupportUpperBound() {
- return value;
- }
- /**
- * {@inheritDoc}
- *
- * @param rng Not used: distribution contains a single value.
- * @return the value of the distribution.
- */
- @Override
- public ContinuousDistribution.Sampler createSampler(final UniformRandomProvider rng) {
- return this::getSupportLowerBound;
- }
- }
- }